forked from karfly/learnable-triangulation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvisualise_results.py
153 lines (126 loc) · 5.5 KB
/
visualise_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/bin/python3
import os, sys
import cv2
import numpy as np
import pickle
import re
from mvn.utils import vis, cfg
from mvn.datasets import human36m, cmupanoptic
from mvn.utils.multiview import project_3d_points_to_image_plane_without_distortion as project
USAGE_TEXT = 'USAGE: python3 visualise_results.py <results_pkl_file> <config_yaml_file_used_in_experiment> [n_images_step=1 [save_images_instead=0]]\n NOTE: Saves images to \'saved_images\' where `results_pkl_file` is found'
try:
results_file = sys.argv[1]
except:
print("Need to specify results pkl file!")
print(USAGE_TEXT)
exit()
try:
config_file = sys.argv[2]
except:
print("Need to specify config yaml file!")
print(USAGE_TEXT)
exit()
try:
n_images_step = int(sys.argv[3])
if n_images_step < 1:
raise Exception("n_images_step cannot be < 1")
except:
n_images_step = 1
try:
save_images_instead = (int(sys.argv[4]) == 1)
except:
save_images_instead = 0
assert os.path.exists(results_file) and os.path.isfile(results_file), f"Results file {results_file} does not exist!"
assert os.path.exists(config_file) and os.path.isfile(config_file), f"Config file {config_file} does not exist!"
# Load config file and necessary information
config = cfg.load_config(config_file)
if config.kind == "cmu":
dataset = cmupanoptic.CMUPanopticDataset(
cmu_root=config.dataset.val.cmu_root,
pred_results_path=config.dataset.val.pred_results_path if hasattr(
config.dataset.val, "pred_results_path") else None,
train=False,
test=True,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.val.labels_path,
retain_every_n_frames_in_test=config.dataset.val.retain_every_n_frames_in_test,
scale_bbox=config.dataset.val.scale_bbox,
square_bbox=config.dataset.val.square_bbox if hasattr(config.dataset.val, "square_bbox") else True,
kind=config.kind,
ignore_cameras=config.dataset.val.ignore_cameras if hasattr(config.dataset.val, "ignore_cameras") else [],
crop=config.dataset.val.crop if hasattr(config.dataset.val, "crop") else True,
norm_image=False,
frames_split_file=config.opt.frames_split_file if hasattr(config.opt, "frames_split_file") else None
)
elif config.kind == "human36m" or config.kind == "h36m":
dataset = human36m.Human36MMultiViewDataset(
h36m_root=config.dataset.val.h36m_root,
pred_results_path=config.dataset.val.pred_results_path if hasattr(config.dataset.val, "pred_results_path") else None,
train=False,
test=True,
image_shape=config.image_shape if hasattr(config, "image_shape") else (256, 256),
labels_path=config.dataset.val.labels_path,
with_damaged_actions=config.dataset.val.with_damaged_actions,
retain_every_n_frames_in_test=config.dataset.val.retain_every_n_frames_in_test,
scale_bbox=config.dataset.val.scale_bbox,
kind=config.kind,
undistort_images=config.dataset.val.undistort_images,
ignore_cameras=config.dataset.val.ignore_cameras if hasattr(config.dataset.val, "ignore_cameras") else [],
crop=config.dataset.val.crop if hasattr(config.dataset.val, "crop") else True,
norm_image=False
)
else:
raise NotImplementedError(f"{config.kind} dataset not implemented")
# Load results pkl file
with open(results_file, "rb") as f:
data = pickle.load(f)
keypoints3d_pred = data["keypoints_3d"]
indexes = data["indexes"]
images = data["images"]
img_dir = re.findall(f"(.+){os.sep}(.+)\.pkl", os.path.abspath(results_file))[0][0]
img_dir = os.path.join(img_dir, "saved_images")
print(img_dir)
camera_indexes_to_show = [0, 2, 8]
for i in range(0, len(indexes), n_images_step):
labels = dataset[i]
displays = []
# Project and draw keypoints on images
for camera_idx in range(len(labels['cameras'])): #camera_indexes_to_show:
camera = labels['cameras'][camera_idx]
keypoints_3d_pred = keypoints3d_pred[i][:, :3]
keypoints_3d_gt = labels['keypoints_3d'][:, :3]
keypoints_2d_pred = project(camera.projection, keypoints_3d_pred)
keypoints_2d_gt = project(camera.projection, keypoints_3d_gt)
# import ipdb; ipdb.set_trace()
img = labels['images'][camera_idx]
pred_kind = config.pred_kind if hasattr(config, "pred_kind") else config.kind
display = vis.draw_2d_pose_cv2(keypoints_2d_pred, img, kind=pred_kind)
# display = vis.draw_2d_pose_cv2(keypoints_2d_gt, display, kind=config.kind)
cv2.putText(display, f"Cam {camera_idx:02}", (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0))
displays.append(display)
# Fancy stacked images
for j, display in enumerate(displays):
if j == 0:
combined = display
else:
combined = np.concatenate((combined, display), axis=1)
# Load
if save_images_instead:
img_path = img_dir
if not os.path.exists(img_path):
os.makedirs(img_path)
img_path = os.path.join(img_path, f"{i:04}.jpg")
try:
print(f"Saving image to {img_path}")
cv2.imwrite(img_path, display)
except:
print(f"Error: Cannot save to {img_path}")
else:
cv2.imshow('w', combined)
cv2.setWindowTitle('w', f"Index {i}")
c = cv2.waitKey(0) % 256
if c == ord('q') or c == 27:
print('Quitting...')
cv2.destroyAllWindows()
break
print('Done.')