-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhypergate_and_C50.Rmd
405 lines (341 loc) · 15.2 KB
/
hypergate_and_C50.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
title: "Hypergate and C5.0"
author: "S. Granjeaud - CRCM"
date: "21 August 2018"
output:
github_document:
fig_width: 8
fig_height: 6
dev: jpeg
toc: true
toc_depth: 2
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
#### Releases
| Version | Changes
|------------|:---------------------------------------------------------------|
| 18/08/21 | hypergate and C5.0 1st release
| TODO | Comment
|------------|:---------------------------------------------------------------|
| | apply hypergate to mulitiple populations and compare to C5.0
## Introduction
Hypergate is a package that aims to characterize and find a signature of a selected set of events. The result could be interpreted as signature or a gating strategy. Hypergate is available at .
C5.0 is a decision tree algorithm that aims to find splits on original axes that allow to separate multiple groups of data points.
Let's compare their results.
Before add some helper functions.
```{r}
#' @title hgate_info
#' @description Extract information about a hypergate return: the channels of the phenotype, the sign of the channels, the sign of the comparison, the thresholds.
#' @param gate A hypergate object (produced by hypergate())
#' @return A data.frame with channel, sign, comp and threshold columns
#' @seealso \code{\link{hg_pheno}}, \code{\link{hg_rule}}
#' @examples
#' data(Samusik_01_subset)
#' xp=Samusik_01_subset$xp_src[,Samusik_01_subset$regular_channels]
#' gate_vector=Samusik_01_subset$labels
#' hg=hypergate(xp=xp,gate_vector=gate_vector,level=23,delta_add=0.01)
#' hgate_info(gate=hg)
#' hgate_pheno(gate=hg)
#' hgate_rule(gate=hg)
#' @export
hgate_info <- function(gate) {
# retrieve threshold
pars = gate$pars.history
active_pars = gate$active_channels
pars = pars[, active_pars, drop = FALSE]
pars_order = apply(pars, 2, function(x) min(which(x != x[1])))
pars = pars[, order(pars_order, decreasing = FALSE), drop = FALSE]
pars = setNames(pars[nrow(pars), , drop = TRUE], colnames(pars))
# get channel names
channels = sub("_max", "", names(pars))
channels = sub("_min", "", channels)
# phenotype sign
dir.sign = rep('+', length(pars))
dir.sign[grep("_max", names(pars))] = '-'
# comparison sign
dir.comp = rep(' > ', length(pars))
dir.comp[grep("_max", names(pars))] = ' <= '
# all together
data.frame(
channels, sign = dir.sign, comp = dir.comp, threshold = pars
)
}
#' @title hgate_pheno
#' @description Build a human readable phenotype, i.e. a combination of channels and sign (+ or -) from a hypergate return.
#' @param gate A hypergate object (produced by hypergate())
#' @return A string representing the phenotype.
#' @seealso \code{\link{hg_rule}}, \code{\link{hg_info}}
#' @examples
#' ## See hgate_info
#' @export
hgate_pheno <- function(gate, collapse = ", ") {
with(hgate_info(gate), paste0(channels, sign, collapse = collapse))
}
#' @title hgate_info
#' @description Extract information about a hypergate return: the channels of the phenotype, the sign of the channels, the sign of the comparison, the thresholds.
#' @param gate A hypergate object (produced by hypergate())
#' @return A data.frame with channel, sign, comp and threshold columns
#' @seealso \code{\link{hg_pheno}}, \code{\link{hg_rule}}
#' @examples
#' ## See hgate_info
#' @export
hgate_rule <- function(gate, collapse = ", ", digits = 2) {
with(hgate_info(gate), paste0(channels, comp, round(threshold, digits), collapse = collapse))
}
```
## Hypergate example
### Rerun hypergate
```{r}
library(hypergate)
# Example data overview
data(Samusik_01_subset,package="hypergate")
head(Samusik_01_subset$labels, 10)
head(Samusik_01_subset$regular_channels, 10)
head(Samusik_01_subset$xp_src[,"label"], 10)
# Select a group of events
x = c(12.54, 8.08, 7.12, 12.12, 17.32, 20.62, 21.04, 20.83, 18.07, 15.2)
y = c(-10.61, -14.76, -18.55, -20.33, -21.16, -19.74, -14.4, -11.08, -10.02, -9.42)
pol = list(x = x, y = y)
gate_vector = sp::point.in.polygon(Samusik_01_subset$tsne[, 1],
Samusik_01_subset$tsne[, 2], pol$x, pol$y)
plot(Samusik_01_subset$tsne, pch = 16, cex = 0.5,
col = ifelse(gate_vector == 1, "firebrick3", "lightsteelblue"))
polygon(pol, lty = 2)
table(gate_vector)
# Define cluster colors (here there are 30 colors) from Nowicka et al F1000
color_clusters <- c("#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72",
"#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3",
"#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D",
"#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999",
"#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000",
"#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00")
plot(Samusik_01_subset$tsne, pch = 16, cex = 0.5,
col = color_clusters[as.factor(Samusik_01_subset$labels)])
# Compute hypergate
hg_output = hypergate(xp = Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels], gate_vector = gate_vector, level = 1, verbose = FALSE)
# hg_output
plot_gating_strategy(gate = hg_output, xp = Samusik_01_subset$xp_src[,
Samusik_01_subset$regular_channels], gate_vector = gate_vector,
level = 1, highlight = "firebrick3")
hgate_info(hg_output)
# Characterize the markers that target the group
gating_predicted = subset_matrix_hg(hg_output,
Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels])
table(ifelse(gating_predicted, "Gated-in", "Gated-out"),
ifelse(gate_vector == 1, "Events of interest", "Others"))
#
bm = boolmat(gate = hg_output,
xp = Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels])
head(bm)
```
### C5.0 alternative
The typical model is below.
```{r}
library(C50)
model <- C5.0(Samusik_01_subset$xp_src[,Samusik_01_subset$regular_channels], as.factor(gate_vector))
summary(model)
```
C5.0 reports the same markers and order similarly. The importance of each marker is not the same as hypergate, but the message is the same. Out of 126 events selected on the tsne plot, 116 are correctly identified by the last rule, but 10 are missed.
We can also focuss on rules that gives an easier interpretation.
```{r}
model <- C5.0(Samusik_01_subset$xp_src[,Samusik_01_subset$regular_channels], as.factor(gate_vector), rules = TRUE)
summary(model)
```
Same summary, but result consists in rules.
Let's see the last one.
```{r}
# Rule 4: (116, lift 15.7)
# Ly6C <= 2.884321
# SiglecF > 2.152557
# cKit <= 1.794831
# -> class 1 [0.992]
in.rule = rep(TRUE, length(gate_vector))
in.rule = in.rule & Samusik_01_subset$xp_src[,"Ly6C"] <= 2.884321
in.rule = in.rule & Samusik_01_subset$xp_src[,"SiglecF"] > 2.152557
in.rule = in.rule & Samusik_01_subset$xp_src[,"cKit"] <= 1.794831
table(in.rule, gate_vector)
# Columns are the truth, the groups we defined
# Rows are the prediction the groups the algorithm defined
# The last rule retains 116 events, 116 belong to the group, 0 are out of the
# group, but 10 events of the group are missing
```
## Reducing markers
### Reoptimize strategy, without Ly6C
The proposed optimization without Ly6C in the signature.
```{r}
hg_output_polished = reoptimize_strategy(gate = hg_output, channels_subset = c("SiglecF_min", "cKit_max"), xp = Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels], gate_vector = gate_vector, level = 1)
gating_predicted_polished = subset_matrix_hg(hg_output_polished,
Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels])
table(ifelse(gating_predicted_polished, "Gated-in", "Gated-out"),
ifelse(gate_vector == 1, "Events of interest", "Others"))
plot_gating_strategy(gate = hg_output_polished, xp = Samusik_01_subset$xp_src[,
Samusik_01_subset$regular_channels], gate_vector = gate_vector,
level = 1, highlight = "firebrick3")
hgate_info(hg_output_polished)
```
Let's see if we remove the Ly6C marker from the signature.
```{r}
hg_output1 = hypergate(xp = Samusik_01_subset$xp_src[,setdiff(Samusik_01_subset$regular_channels, c("Ly6C"))], gate_vector = gate_vector, level = 1, verbose = FALSE)
gating_predicted1 = subset_matrix_hg(hg_output1,
Samusik_01_subset$xp_src[, setdiff(Samusik_01_subset$regular_channels, c("Ly6C"))])
table(ifelse(gating_predicted, "Gated-in", "Gated-out"),
ifelse(gate_vector == 1, "Events of interest", "Others"))
plot_gating_strategy(gate = hg_output1, xp = Samusik_01_subset$xp_src[,
Samusik_01_subset$regular_channels], gate_vector = gate_vector,
level = 1, highlight = "firebrick3")
hgate_info(hg_output1)
```
The result is nearly the same.
Let's see if we keep the SiglecF marker alone.
```{r}
hg_output_polished2 = reoptimize_strategy(gate = hg_output, channels_subset = c("SiglecF_min"), xp = Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels],
gate_vector = gate_vector, level = 1)
plot_gating_strategy(gate = hg_output_polished2, xp = Samusik_01_subset$xp_src[,
Samusik_01_subset$regular_channels], gate_vector = gate_vector,
level = 1, highlight = "firebrick3")
gating_predicted_polished2 = subset_matrix_hg(hg_output_polished2,
Samusik_01_subset$xp_src[, Samusik_01_subset$regular_channels])
table(ifelse(gating_predicted_polished2, "Gated-in", "Gated-out"),
ifelse(gate_vector == 1, "Events of interest", "Others"))
hgate_info(hg_output_polished2)
```
It still perform well using other markers.
### C5.0 alternative
Maybe we can prune the tree at a higher level, but let's remove a marker and redo computation.
Let's remove Ly6C from markers.
```{r}
# without Ly6C
model_reoptimzed <- C5.0(Samusik_01_subset$xp_src[,setdiff(Samusik_01_subset$regular_channels, c("Ly6C"))], as.factor(gate_vector), rules = TRUE)
summary(model_reoptimzed)
# Rule 4: (114/1, lift 15.6)
# F480 > 1.084815
# SiglecF > 2.152557
# cKit <= 1.794831
# -> class 1 [0.983]
# While 13 events are missing, nearly all events are correctly identified
in.rule = rep(TRUE, length(gate_vector))
in.rule = in.rule & Samusik_01_subset$xp_src[,"F480"] > 1.084815
in.rule = in.rule & Samusik_01_subset$xp_src[,"SiglecF"] > 2.152557
in.rule = in.rule & Samusik_01_subset$xp_src[,"cKit"] <= 1.794831
table(in.rule, gate_vector)
# Rule 5: (114/1, lift 15.6)
# SiglecF > 2.152557
# cKit <= 1.794831
# CD43 <= 2.243915
# -> class 1 [0.983]
# same result with this slightly different rule
in.rule = rep(TRUE, length(gate_vector))
in.rule = in.rule & Samusik_01_subset$xp_src[,"SiglecF"] > 2.152557
in.rule = in.rule & Samusik_01_subset$xp_src[,"cKit"] <= 1.794831
in.rule = in.rule & Samusik_01_subset$xp_src[,"CD43"] <= 2.243915
table(in.rule, gate_vector)
```
Let's remove SiglecF from markers.
```{r}
# without SiglecF
model_reoptimzed2 <- C5.0(Samusik_01_subset$xp_src[,setdiff(Samusik_01_subset$regular_channels, c("SiglecF"))], as.factor(gate_vector), rules = TRUE)
summary(model_reoptimzed2)
# no simple rule
# Rule 10: (79, lift 15.7)
# F480 > 1.157256
# Ly6C <= 1.869782
# Foxp3 > 0.07933632
# cKit <= 1.819595
# CD43 <= 2.478766
# CD44 > 3.698416
# -> class 1 [0.988]
```
## Expand the number of populations
The graphical selection of hypergate corresponds mainly to pop 8, ie Eosinophils.
```{r}
# Identify the targetted cluster among annotated events
table(gate_vector, Samusik_01_subset$labels)
pops = c("B-cell Frac A-C (pro-B cells)", "Basophils", "CD4 T cells", "CD8 T cells", "Classical Monocytes", "CLP", "CMP", "Eosinophils", "gd T cells", "GMP", "HSC", "IgD- IgMpos B cells", "IgDpos IgMpos B cells", "IgM- IgD- B-cells", "Intermediate Monocytes", "Macrophages", "mDCs", "MEP", "MPP", "NK cells", "NKT cells", "Non-Classical Monocytes", "pDCs", "Plasma Cells")
# Check the amount of populations in the sample
table(Samusik_01_subset$labels)
# Let select some of the clusters
gate_vector_multi = Samusik_01_subset$labels
gate_vector_multi[!Samusik_01_subset$labels %in% c(5, 8, 12, 13, 15, 23)] = 0
table(gate_vector_multi)
```
### C5.0
Let's apply C5.0 to all those groups at once.
```{r}
model <- C5.0(Samusik_01_subset$xp_src[,Samusik_01_subset$regular_channels], as.factor(gate_vector_multi), rules = TRUE, control = C5.0Control(winnow = TRUE, noGlobalPruning = TRUE))
C50_head_tail <- function(model, head = 20, tail = 30) {
model_str <- strsplit(model$output, "\\n")[[1]]
if (length(model_str) < head + tail) return(model_str)
c(model_str[1:head], "", "...truncated result...", "", model_str[length(model_str)-(tail:1)])
}
cat(paste0(C50_head_tail(model), collapse = "\n"))
```
C5.0 is performing very well.
Let's find best rules using F scores.
```{r}
# get rules of the model
c50.rules = strsplit(model$rules, "\\n")[[1]]
# parse rules attributes
rules = c("conds,cover,TP,lift,class")
for (i in grep("conds", c50.rules)) {
rules = c(rules, sub("conds=\"(\\d+)\" cover=\"(\\d+)\" ok=\"(\\d+)\" lift=\"([0-9.]+)\" class=\"(\\d+)\"", "\\1,\\2,\\3,\\4,\\5", c50.rules[i]))
}
rules = read.table(text=paste(rules, collapse = "\n"), sep = ",", header = TRUE)
targets = as.data.frame(table(gate_vector_multi))
colnames(targets) = c("class", "Count")
rules = merge(rules, targets)
rules = within(rules, {
FP = cover - TP
FN = Count - TP
recall = TP/(TP + FN)
purity = TP/(TP + FP)
beta = 1
Fscore = ifelse(is.nan(purity) | is.nan(recall), 0,
(1 + beta^2) * (recall * purity)/(recall + beta^2 * purity))
rm(beta)
})
head(rules)
# find best rule for each class
rules.best.idx = sapply(unique(rules$class), function(cl) { c50.rules = rules[rules$class == cl, , drop = FALSE]; rownames(c50.rules[which.max(c50.rules$Fscore), , drop = FALSE])})
rules.best = rules[rules.best.idx,]
# Compare True Positive (TP) and Count (from manual annotation)
library(knitr)
kable(rules.best)
```
Let's extract rule defintions.
```{r}
# parse rules
rule.defs = c("rule,type,att,cut,result")
rule.id = 0
for (i in seq(c50.rules)) {
if (substr(c50.rules[i], 1, 6) == "conds=") {
rule.id = rule.id + 1
}
if (substr(c50.rules[i], 1, 5) == "type=") {
rule.defs = c(rule.defs, paste0(c(rule.id, sub("type=\"(\\d+)\" att=\"(.+)\" cut=\"([0-9.-]+)\" result=\"([<>])\"", "\\1,\\2,\\3,\\4", c50.rules[i])), collapse = ","))
}
}
rule.defs = read.table(text=paste(rule.defs, collapse = "\n"), sep = ",", header = TRUE)
# Helpers for C5.0
C50_info <- function(gate) {
with(gate, data.frame(
channels = att, sign = ifelse(result == "<", "-", "+"), comp = result, threshold = cut
))
}
C50_pheno <- function(gate, collapse = ", ") {
with(C50_info(gate), paste0(channels, sign, collapse = collapse))
}
C50_rule <- function(gate, collapse = ", ", digits = 2) {
with(C50_info(gate), paste0(channels, comp, round(threshold, digits), collapse = collapse))
}
```
Extract simplified population definitions for biologist.
```{r}
# Extract simplified population definitions for biologist
kable(sapply(rownames(rules.best), function(i) C50_pheno(subset(rule.defs, rule == i))))
kable(sapply(rownames(rules.best), function(i) C50_rule(subset(rule.defs, rule == i))))
# cbind
kable(rules.best)
kable(cbind(pheno = sapply(rownames(rules.best), function(i) C50_pheno(subset(rule.defs, rule == i))), pop = c("Others", pops[rules.best$class])))
```