-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRead_CSMIP_data.py
196 lines (149 loc) · 8.36 KB
/
Read_CSMIP_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 17 17:57:23 2023
@author: Issac
"""
import numpy as np
import os
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from scipy.signal import resample
from scipy.signal import butter, filtfilt, sosfilt
import matplotlib.pyplot as plt
class Read_CSMIP_data():
def __init__(self, filePath, time_step, output_response, window_size):
self.CSMIP_folder_path = filePath
self.time_step = time_step
self.output_response = output_response
self.window_size = window_size
def split_by_n(self, seq, n):
while seq:
yield seq[:n]
seq = seq[n:]
def read_response(self, fileName):
with open(fileName, 'r') as file:
Lines = file.readlines()
for index, item in enumerate(Lines):
if ("Accelerogram points" in item):
accel_index = index
elif ("End of Data" in item):
end_index = index
accel_lines = Lines[accel_index + 1: end_index]
num_char = 9
accel_data = []
for item in accel_lines:
data = list(self.split_by_n(item, num_char))
for datum in data:
if len(datum) == num_char:
accel_data.append(datum)
return accel_data
def Generate_data(self, X_data0, y_data0, window_size=50):
X_new_temp = []
y_new_temp = []
for ii in range(len(X_data0)):
X_temp = X_data0[ii]
y_temp = y_data0[ii]
X_new = []
y_new = []
for jj in range(int(np.floor(len(X_temp) / window_size))):
X_new.append(X_temp[jj * window_size:(jj + 1) * window_size])
y_new.append(y_temp[(jj + 1) * window_size - 1, :])
# y_new.append(y_temp[(jj + 1) * window_size - 1])
X_new_temp.append(np.array(X_new))
y_new_temp.append(np.array(y_new))
X_data_new0 = np.array(X_new_temp)
y_data_new0 = np.array(y_new_temp)
return X_data_new0, y_data_new0
def butter_highpass_filter_1D(self, time_series_array, cutoff_freq, sampling_freq):
nyquist_freq = 0.5 * sampling_freq
normalized_cutoff = cutoff_freq / nyquist_freq
# Set up Butterworth filter
b, a = butter(2, normalized_cutoff, btype='highpass')
# sos = butter(2, cutoff_freq, btype='highpass', fs=sampling_freq, output='sos')
# Apply filter to time series array
filtered_array = filtfilt(b, a, time_series_array)
return filtered_array
def butter_lowpass_filter_1D(self, time_series_array, cutoff_freq, sampling_freq):
nyquist_freq = 0.5 * sampling_freq
normalized_cutoff = cutoff_freq / nyquist_freq
# Set up Butterworth filter
b, a = butter(2, normalized_cutoff, btype='lowpass')
# sos = butter(2, cutoff_freq, btype='highpass', fs=sampling_freq, output='sos')
# Apply filter to time series array
filtered_array = filtfilt(b, a, time_series_array)
return filtered_array
def resample_1d_array(self, array, original_freq, target_freq):
"""
Resample a 1D numpy array from a given frequency to a target frequency using linear interpolation.
Parameters:
array (numpy.ndarray): The 1D numpy array to resample.
original_freq (float): The original frequency of the array.
target_freq (float): The target frequency to resample the array to.
Returns:
numpy.ndarray: The resampled array.
"""
time_stamps = np.arange(len(array)) / original_freq
target_time_stamps = np.arange(0, time_stamps[-1], 1/target_freq)
return np.interp(target_time_stamps, time_stamps, array)
def generate_3d_array(self):
accel_channel_comb = np.zeros((1, self.time_step, 1))
accel_GM_comb = np.zeros((1, self.time_step, self.output_response))
files = os.listdir(self.CSMIP_folder_path )
for index, file_name in enumerate(files):
channels_path = self.CSMIP_folder_path + r'\\'+ file_name
channels_files = os.listdir(channels_path )
for item in channels_files:
channel_fileName = channels_path + r'\\' + item
accel_output = np.array(self.read_response(channel_fileName),dtype=float)
# accel_output = self.butter_highpass_filter_1D(accel_output, 0.1, 200)
# accel_output = self.butter_lowpass_filter_1D(accel_output, 20, 200)
# Resample the data if the time step is much less than the specified time step
#Plot the graph for comparison (original Vs Resampled Data)
#Focus on the few training/testing sets first, so 9000
# time_step = len(accel_output)
new_time_step = int(accel_output.shape[0] * (100/200))
accel_output = resample(accel_output, new_time_step)
# accel_output = self.resample_1d_array(accel_output, 200, 100)
# old_x = np.arange(len(accel_output))
# new_x = np.linspace(0, len(accel_output)-1, self.time_step)
# accel_output = np.interp(new_x, old_x, accel_output)
# displ_output = np.interp(new_x, old_x, displ_output)
# Plot the original and resampled lists
# plt.plot(old_x, accel_output, 'b-', label='Original List')
# plt.plot(new_x, accel_output_resample, 'r--', label='Resampled List')
# plt.legend()
# plt.show()
# accel_output = accel_output_resample
# Pad zero terms at the end of the array if the time step is less than self.timestep
time_step = len(accel_output)
accel_output = np.pad(accel_output, (0, self.time_step - time_step),mode='constant')
# time_step = len(displ_output)
# displ_output = np.pad(displ_output, (0, self.time_step - time_step),mode='constant')
accel_output = np.reshape(accel_output, [1 , self.time_step, 1])
# accel_output = self.butter_highpass_filter(accel_output, 0.1, 100)
accel_channel_comb = np.append(accel_channel_comb,accel_output,axis=2)
accel_channel_comb = accel_channel_comb[:,:,1:]
accel_GM_comb = np.append(accel_GM_comb,accel_channel_comb,axis=0)
accel_channel_comb = np.zeros((1, self.time_step, 1))
accel_GM_comb = accel_GM_comb[1:,:,:]
X_data = accel_GM_comb[:,:,0]
y_data = accel_GM_comb[:,:,1:]
X_data = np.reshape(X_data, [X_data.shape[0], X_data.shape[1], 1])
# Scale data
# X_data_flatten = np.reshape(X_data, [X_data.shape[0]*X_data.shape[1], 1])
# scaler_X = MinMaxScaler(feature_range=(-1, 1))
# scaler_X.fit(X_data_flatten)
# X_data_flatten_map = scaler_X.transform(X_data_flatten)
# X_data_map = np.reshape(X_data_flatten_map, [X_data.shape[0], X_data.shape[1], 1])
# y_data_flatten = np.reshape(y_data, [y_data.shape[0]*y_data.shape[1], y_data.shape[2]])
# scaler_y = MinMaxScaler(feature_range=(-1, 1))
# scaler_y.fit(y_data_flatten)
# y_data_flatten_map = scaler_y.transform(y_data_flatten)
# y_data_map = np.reshape(y_data_flatten_map, [y_data.shape[0], y_data.shape[1], y_data.shape[2]])
# Normalize data
# X_data_normalized = tf.keras.utils.normalize(X_data, axis=1)
# y_data_normalized = tf.keras.utils.normalize(y_data, axis=1)
X_data_new, y_data_new = self.Generate_data(X_data, y_data, self.window_size)
X_data_new = np.reshape(X_data_new, [X_data_new.shape[0], X_data_new.shape[1], X_data_new.shape[2]])
return X_data_new , y_data_new
#if __name__ == "__main__":