-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqueezing_pumploss.py
140 lines (125 loc) · 4.59 KB
/
squeezing_pumploss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
####励起光の損失がどの程度スクイージングレベルに影響を与えるかというプログラム(スクイーズド光損失は0と仮定している)
import numpy as np
from matplotlib import pyplot as plt
#定数
c = 299792458E6 #光速(um/s)
eps = 8.85418782E-18 #真空の誘電率(F/um)
#変数
div = 1001
z = np.linspace(0, 200000, div) #素子長(um)
I = 0.1 #ポンプ光パワー(W)
A = 10 # 導波路断面積(um^2)
d33 = 1/9*(2/np.pi)*13.8 #非線形光学定数(pm/V)
d = d33*10E-6 #非線形光学定数(um/V)
npu = 2.271213253 #ポンプ光の感じる屈折率
ns = 2.147041829 #シグナル光の感じる屈折率
lamp = 0.405 #ポンプ光波長(um)
lams = lamp*2 #シグナル光波長(um)
kp = 2*np.pi*npu/lamp #ポンプ光波数(1/um)
ks = 2*np.pi*ns/lams #シグナル光波数(1/um)
omes = ks*c/ns #シグナル光の角周波数(rad/s)
a = [0.2,0.5,1,2,4] #損失(dB/cm)
print(str(I*100/A)+'MW/cm^2')
# gの計算
#g = (2*np.pi*2*d)/npu**(3/2) * np.sqrt((8*np.pi*I)/(c*A)) * (ks/npu)
g = np.sqrt((2*omes**2*d**2*I)/(ns**2*npu*eps*c**3*A)) #パラメトリックゲイン0.113E-3#
print("g = {} /um".format(g))
#-----------------------------------------------------------------------------
# 0
gaa = a[0] # 導波路損失(dB/cm)
gama = np.log(10**(gaa*1E-5)) # 導波路損失(/um)
Sa = [0 for a in range(div)]
Sfa = [0 for a in range(div)]
Smaxa = 0
i = 0
while i < div:
Sa[i] = (gama + 2*g*np.exp(-(gama+2*g)*z[i]))/(gama+2*g)
Sfa[i] = 10*np.log10(Sa[i])
if Smaxa > Sfa[i]:
Smaxa = Sfa[i]
zmaxa = z[i]
i += 1
#-----------------------------------------------------------------------------
# 1
gab = a[1] # 導波路損失(dB/cm)
gamb = np.log(10**(gab*1E-5)) # 導波路損失(/um)
Sb = [0 for a in range(div)]
Sfb = [0 for a in range(div)]
Smaxb = 0
i = 0
while i < div:
Sb[i] = (gamb + 2*g*np.exp(-(gamb+2*g)*z[i]))/(gamb+2*g)
Sfb[i] = 10*np.log10(Sb[i])
if Smaxb > Sfb[i]:
Smaxb = Sfb[i]
zmaxb = z[i]
i += 1
#-----------------------------------------------------------------------------
# 2
gac = a[2] # 導波路損失(dB/cm)
gamc = np.log(10**(gac*1E-5)) # 導波路損失(/um)
Sc = [0 for a in range(div)]
Sfc = [0 for a in range(div)]
Smaxc = 0
i = 0
while i < div:
Sc[i] = (gamc + 2*g*np.exp(-(gamc+2*g)*z[i]))/(gamc+2*g)
Sfc[i] = 10*np.log10(Sc[i])
if Smaxc > Sfc[i]:
Smaxc = Sfc[i]
zmaxc = z[i]
i += 1
#-----------------------------------------------------------------------------
# 3
gad = a[3] # 導波路損失(dB/cm)
gamd = np.log(10**(gad*1E-5)) # 導波路損失(/um)
Sd = [0 for a in range(div)]
Sfd = [0 for a in range(div)]
Smaxd = 0
i = 0
while i < div:
Sd[i] = (gamd + 2*g*np.exp(-(gamd+2*g)*z[i]))/(gamd+2*g)
Sfd[i] = 10*np.log10(Sd[i])
if Smaxd > Sfd[i]:
Smaxd = Sfd[i]
zmaxd = z[i]
i += 1
#-----------------------------------------------------------------------------
# 4
gae = a[4] # 導波路損失(dB/cm)
game = np.log(10**(gae*1E-5)) # 導波路損失(/um)
Se = [0 for a in range(div)]
Sfe = [0 for a in range(div)]
Smaxe = 0
'''
H = game/(game+2*g) # 飽和したときのsqueezingレベル
Hf = 10*np.log10(H)
print("S(r->inf) = {} dB (loss = {} dB/cm)".format(Hf, a[4]))
'''
i = 0
while i < div:
Se[i] = (game + 2*g*np.exp(-(game+2*g)*z[i]))/(game+2*g)
Sfe[i] = 10*np.log10(Se[i])
if Smaxe > Sfe[i]:
Smaxe = Sfe[i]
zmaxe = z[i]
i += 1
print("Smax = {} dB (loss = {} dB/cm) Zmax = {} um".format(Smaxa, a[0], zmaxa))
print("Smax = {} dB (loss = {} dB/cm) Zmax = {} um".format(Smaxb, a[1], zmaxb))
print("Smax = {} dB (loss = {} dB/cm) Zmax = {} um".format(Smaxc, a[2], zmaxc))
print("Smax = {} dB (loss = {} dB/cm) Zmax = {} um".format(Smaxd, a[3], zmaxd))
print("Smax = {} dB (loss = {} dB/cm) Zmax = {} um".format(Smaxe, a[4], zmaxe))
#グラフを描く
plt.plot(z, Sfa, color='purple', label=str(a[0])+' dB/cm')
plt.plot(z, Sfb, color='red', label=str(a[1])+' dB/cm')
plt.plot(z, Sfc, color='orange', label=str(a[2])+' dB/cm')
plt.plot(z, Sfd, color='green', label=str(a[3])+' dB/cm')
plt.plot(z, Sfe, color='blue', label=str(a[4])+' dB/cm')
plt.xlabel('distance(um)')
plt.ylabel('squeezing level(dB)')
plt.legend()#loc='best')
plt.gca().xaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True)
plt.gca().yaxis.set_tick_params(which='both', direction='in',bottom=True, top=True, left=True, right=True)
#plt.xlim([0, 7000])
#plt.ylim([-35, 0])
plt.show()