-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPoint2D.h
327 lines (281 loc) · 9.54 KB
/
Point2D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//
// Created by Ryan.Zurrin001 on 12/16/2021.
//
#ifndef PHYSICSFORMULA_POINT2D_H
#define PHYSICSFORMULA_POINT2D_H
/**
* @class Point2D
* @details driver class for solving complex physics problems
* @author Ryan Zurrin
* @dateBuilt 11/22/21
* @lastEdit 11/22/21
*/
#include "Vector2D.h"
#include <iostream>
static int pointObjectCount = 0;
template <typename NumericType>
class Point2D
{
Vector2D points;
static auto countIncrease() { pointObjectCount += 1; }
static auto countDecrease() { pointObjectCount -= 1; }
public:
/// <summary>
/// Initializes a new instance of the <see cref="Point2D"/> class.
/// </summary>
Point2D() :points(0,0)
{ countIncrease(); }
/// <summary>
/// Initializes a new instance of the <see cref="Point2D"/> class.
/// </summary>
/// <param name="x_val">The x value.</param>
/// <param name="y_val">The y value.</param>
Point2D(NumericType x_val, NumericType y_val)
{
if (x_val == NAN || x_val == INFINITY || y_val == NAN || y_val == INFINITY)
{
throw std::invalid_argument("Coordinates must be finite");
}
points.setX(x_val);
points.setY(y_val);
countIncrease();
}
/// <summary>
/// Initializes a new instance of the <see cref="Point2D"/> class.
/// </summary>
/// <param name="p">The p.</param>
Point2D(const Point2D& p)
{
points.setX(p.getX());
points.setY(p.getY());
countIncrease();
}
/// <summary>
/// Initializes a new instance of the <see cref="Point2D"/> class.
/// </summary>
/// <param name="p">The p.</param>
Point2D(Point2D&& p) noexcept
{
points.setX(p.getX());
points.setY(p.getY());
countIncrease();
}
/// <summary>
/// Operator=s the specified p.
/// </summary>
/// <param name="p">The p.</param>
/// <returns></returns>
Point2D& operator=(Point2D&& p) noexcept
{
if (this != &p)
{
points.setX(p.getX());
points.setY(p.getY());
countIncrease();
}
return *this;
}
/// <summary>
/// Operator=s the specified other.
/// </summary>
/// <param name="other">The other.</param>
/// <returns></returns>
Point2D& operator=(Point2D other)
{
points.setX(other.getX());
points.setY(other.getY());
return *this;
}
/// <summary>
/// Finalizes an instance of the <see cref="Point2D"/> class.
/// </summary>
~Point2D() = default;
static void show_objectCount()
{
std::cout << "\n template object count: "
<< pointObjectCount << std::endl;
}
/// <summary>
/// Gets the Point2D object count.
/// </summary>
/// <returns>number of Point2D objects instantiated</returns>
static int get_objectCount() { return pointObjectCount; }
/// <summary>
/// Sets the x.
/// </summary>
/// <param name="xVar">The x variable.</param>
/// <returns>void</returns>
auto setX(NumericType xVar) { points.setX(xVar); }
/// <summary>
/// Sets the y.
/// </summary>
/// <param name="yVar">The y variable.</param>
/// <returns>void</returns>
auto setY(NumericType yVar) { points.setY(yVar); }
/// <summary>
/// returns the x instance.
/// </summary>
/// <returns>the x-coordinate</returns>
[[nodiscard]] auto getX() const { return points.getX(); }
/// <summary>
/// returns the y instance.
/// </summary>
/// <returns>the y-coordinate</returns>
[[nodiscard]] auto getY() const { return points.getY(); }
/// <summary>
/// the polar radius of this point.
/// </summary>
/// <returns>the polar radius of this point in polar coordinates: sqrt(x*x + y*y)</returns>
auto r() { return points.square(); }
/// <summary>
/// the angle of this point in polar coordinates.
/// </summary>
/// <returns>the angle (in radians) of this point in polar coordinates (between –π and π)</returns>
auto theta() { return atan2(points.getY(), points.getX()); }
/// <summary>
/// the angle between this point and that point.
/// </summary>
/// <param name="that">The that.</param>
/// <returns>the angle in radians (between –π and π) between this point and that point (0 if equal)</returns>
auto angleTo(Point2D<NumericType> that);
/// <summary>
/// twice the signed area of the triangle a-b-c.
/// </summary>
/// <param name="a">a first point.</param>
/// <param name="b">b second point</param>
/// <param name="c">c third point</param>
/// <returns>twice the signed area of the triangle a-b-c</returns>
static auto area2(Point2D<NumericType>a, Point2D<NumericType> b, Point2D<NumericType> c);
/// <summary>
/// Returns true if a→b→c is a counterclockwise turn.
/// </summary>
/// <param name="a">a first point</param>
/// <param name="b">b second point</param>
/// <param name="c">c third point</param>
/// <returns>{ -1, 0, +1 } if a→b→c is a { clockwise, collinear; counterclockwise } turn.</returns>
static int ccw(Point2D<NumericType> a, Point2D<NumericType> b, Point2D<NumericType> c);
/// <summary>
/// the Euclidean distance between this point and that point.
/// </summary>
/// <param name="that">that the other point</param>
/// <returns>the Euclidean distance between this point and that point</returns>
auto distanceTo(Point2D<NumericType> that);
/// <summary>
/// the square of the Euclidean distance between this point and that point.
/// </summary>
/// <param name="that">that the other point</param>
/// <returns>the square of the Euclidean distance between this point and that point</returns>
auto distanceSquaredTo(Point2D<NumericType> that);
/// <summary>
/// Compares two points by x-coordinate
/// </summary>
/// <param name="other">The other.</param>
/// <returns></returns>
auto compareByX(Point2D<NumericType> other);
/// <summary>
/// Compares two points by y-coordinate.
/// </summary>
/// <param name="other">The other.</param>
/// <returns></returns>
auto compareByY(Point2D<NumericType> other);
/// <summary>
/// Compares two points by polar radius.
/// </summary>
/// <param name="other">The other.</param>
/// <returns></returns>
auto compareByR(Point2D<NumericType> other);
/// <summary>
/// To the string.
/// </summary>
/// <returns></returns>
auto display() { std::cout << "(" << this->getX() << ", " << this->getY() << ")"; }
template<typename T>
friend ostream& operator<<(ostream& os, const Point2D<NumericType>& p);
template<typename T>
friend istream& operator>>(istream& is, Point2D<NumericType> p);
};
#endif //PHYSICSFORMULA_POINT2D_H
template<typename NumericType>
inline auto Point2D<NumericType>::angleTo(Point2D<NumericType> that)
{
auto dx = that.x_ - this->x_;
auto dy = that.y_ - this->y_;
return atan2(dy, dx);
}
template<typename NumericType>
inline auto Point2D<NumericType>::area2(Point2D<NumericType> a, Point2D<NumericType> b, Point2D<NumericType> c)
{
return (b.points.getX() - a.points.getX()) *
(c.points.getY() - a.points.getY()) -
(b.points.getY() - a.points.getY()) *
(c.points.getX() - a.points.getX());
}
template<typename NumericType>
inline int Point2D<NumericType>::ccw(Point2D<NumericType> a, Point2D<NumericType> b, Point2D<NumericType> c)
{
double area2 = area2(a, b, c);
if (area2 < 0)
return -1;
else if (area2 > 0)
return +1;
else
return 0;
}
template<typename NumericType>
inline auto Point2D<NumericType>::distanceTo(Point2D<NumericType> that)
{
double dx = this->points.getX() - that.points.getX();
double dy = this->points.getY() - that.points.getY();
return sqrt(dx * dx + dy * dy);
}
template<typename NumericType>
inline auto Point2D<NumericType>::distanceSquaredTo(Point2D<NumericType> that)
{
auto dx = this->points.getX() - that.points.getX();
auto dy = this->points.getY() - that.points.getY();
return dx * dx + dy * dy;
}
template <typename NumericType>
inline auto Point2D<NumericType>::compareByX(Point2D<NumericType> other)
{
if (this->points.getX() > other.points.getX())
return 1;
else if (this->x_ < other->x_)
return -1;
else
return 0;
}
template <typename NumericType>
inline auto Point2D<NumericType>::compareByY(Point2D<NumericType> other)
{
if (this->points.getY() > other.points.getY())
return 1;
else if (this->y_ < other->y_)
return -1;
else
return 0;
}
template<typename NumericType>
inline auto Point2D<NumericType>::compareByR(Point2D other)
{
const double delta = this->r() - other.r();
if (delta < 0)
return -1;
else if (delta > 0)
return 1;
else
return 0;
}
template<typename T>
inline ostream& operator<<(ostream& os, const Point2D<T>& p)
{
os << "(" << p.x_ << ", " << p.y_ << ")" << std::endl;
return os;
}
template<typename T>
inline istream& operator>>(istream& is, Point2D<T> p)
{
std::cout << "\nEnter the x and y values of this point seperated by a space\n";;
is >> p.x_ >> p.y_;
return is;
}