forked from FAIR-Chem/fairchem
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
189 lines (151 loc) · 5.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import logging
import os
import time
import traceback
import sys
import torch
from yaml import dump
from ocpmodels.common import dist_utils
from ocpmodels.common.flags import flags
from ocpmodels.common.registry import registry
from ocpmodels.common.utils import (
JOB_ID,
auto_note,
build_config,
merge_dicts,
move_lmdb_data_to_slurm_tmpdir,
resolve,
setup_imports,
setup_logging,
update_from_sbatch_py_vars,
set_min_hidden_channels,
)
from ocpmodels.common.orion_utils import (
continue_orion_exp,
load_orion_exp,
sample_orion_hparams,
)
from ocpmodels.trainers import BaseTrainer
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
torch.multiprocessing.set_sharing_strategy("file_system")
def print_warnings():
warnings = [
"`max_num_neighbors` is set to 40. This should be tuned per model.",
"`tag_specific_weights` is not handled for "
+ "`regress_forces: direct_with_gradient_target` in compute_loss()",
]
print("\n" + "-" * 80 + "\n")
print("🛑 OCP-DR-Lab Warnings (nota benes):")
for warning in warnings:
print(f" • {warning}")
print("Remove warnings when they are fixed in the code/configs.")
print("\n" + "-" * 80 + "\n")
def wrap_up(args, start_time, error=None, signal=None, trainer=None):
total_time = time.time() - start_time
logging.info(f"Total time taken: {total_time}")
if trainer and trainer.logger is not None:
trainer.logger.log({"Total time": total_time})
if args.distributed:
print(
"\nWaiting for all processes to finish with dist_utils.cleanup()...",
end="",
)
dist_utils.cleanup()
print("Done!")
if "interactive" not in os.popen(f"squeue -hj {JOB_ID}").read():
print("\nSelf-canceling SLURM job in 32s", JOB_ID)
os.popen(f"sleep 32 && scancel {JOB_ID}")
if trainer and trainer.logger:
trainer.logger.finish(error or signal)
if __name__ == "__main__":
error = signal = orion_exp = orion_trial = trainer = None
orion_race_condition = False
hparams = {}
print()
setup_logging()
parser = flags.get_parser()
args, override_args = parser.parse_known_args()
args = update_from_sbatch_py_vars(args)
if args.logdir:
args.logdir = resolve(args.logdir)
# -- Build config
trainer_config = build_config(args, override_args)
if dist_utils.is_master():
trainer_config = move_lmdb_data_to_slurm_tmpdir(trainer_config)
dist_utils.synchronize()
trainer_config["dataset"] = dist_utils.broadcast_from_master(
trainer_config["dataset"]
)
# -- Initial setup
setup_imports()
print("\n🚩 All things imported.\n")
start_time = time.time()
try:
# -- Orion
if args.orion_exp_config_path and dist_utils.is_master():
orion_exp = load_orion_exp(args)
hparams, orion_trial = sample_orion_hparams(orion_exp, trainer_config)
if hparams.get("orion_race_condition"):
logging.warning("\n\n ⛔️ Orion race condition. Stopping here.\n\n")
wrap_up(args, start_time, error, signal)
sys.exit()
hparams = dist_utils.broadcast_from_master(hparams)
if hparams:
print("\n💎 Received hyper-parameters from Orion:")
print(dump(hparams), end="\n")
trainer_config = merge_dicts(trainer_config, hparams)
# -- Setup trainer
trainer_config = continue_orion_exp(trainer_config)
trainer_config = auto_note(trainer_config)
trainer_config = set_min_hidden_channels(trainer_config)
try:
cls = registry.get_trainer_class(trainer_config["trainer"])
trainer: BaseTrainer = cls(**trainer_config)
except Exception as e:
traceback.print_exc()
logging.warning(f"\n💀 Error in trainer initialization: {e}\n")
signal = "trainer_init_error"
if signal is None:
task = registry.get_task_class(trainer_config["mode"])(trainer_config)
task.setup(trainer)
print_warnings()
# -- Start Training
signal = task.run()
# -- End of training
# handle job preemption / time limit
if signal == "SIGTERM":
print("\nJob was preempted. Wrapping up...\n")
if trainer:
trainer.close_datasets()
dist_utils.synchronize()
objective = dist_utils.broadcast_from_master(
trainer.objective if trainer else None
)
if orion_exp is not None:
if objective is None:
if signal == "loss_is_nan":
objective = 1e12
print("Received NaN objective from worker. Setting to 1e12.")
if signal == "trainer_init_error":
objective = 1e12
print(
"Received trainer_init_error from worker.",
"Setting objective to 1e12.",
)
if objective is not None:
orion_exp.observe(
orion_trial,
[{"type": "objective", "name": "energy_mae", "value": objective}],
)
else:
print("Received None objective from worker. Skipping observation.")
except Exception:
error = True
print(traceback.format_exc())
finally:
wrap_up(args, start_time, error, signal, trainer=trainer)