-
Notifications
You must be signed in to change notification settings - Fork 0
/
postprocess_episodes.py
executable file
·175 lines (151 loc) · 7.85 KB
/
postprocess_episodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
import cv2
import h5py
import argparse
import time
from visualize_episodes import visualize_joints, visualize_timestamp, save_videos
import matplotlib.pyplot as plt
from constants import DT
import IPython
e = IPython.embed
JOINT_NAMES = ["waist", "shoulder", "elbow", "forearm_roll", "wrist_angle", "wrist_rotate"]
STATE_NAMES = JOINT_NAMES + ["gripper"]
MIRROR_STATE_MULTIPLY = np.array([-1, 1, 1, -1, 1, -1, 1]).astype('float32')
MIRROR_BASE_MULTIPLY = np.array([1, -1]).astype('float32')
def load_hdf5(dataset_dir, dataset_name):
dataset_path = os.path.join(dataset_dir, dataset_name + '.hdf5')
if not os.path.isfile(dataset_path):
print(f'Dataset does not exist at \n{dataset_path}\n')
exit()
with h5py.File(dataset_path, 'r') as root:
is_sim = root.attrs['sim']
compressed = root.attrs.get('compress', False)
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
action = root['/action'][()]
image_dict = dict()
for cam_name in root[f'/observations/images/'].keys():
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][()]
if 'base_action' in root.keys():
print('base_action exists')
base_action = root['/base_action'][()]
else:
base_action = None
if compressed:
compress_len = root['/compress_len'][()]
if compressed:
for cam_id, cam_name in enumerate(image_dict.keys()):
# un-pad and uncompress
padded_compressed_image_list = image_dict[cam_name]
image_list = []
for padded_compressed_image in padded_compressed_image_list: # [:1000] to save memory
image = cv2.imdecode(padded_compressed_image, 1)
image_list.append(image)
image_dict[cam_name] = np.array(image_list)
return qpos, qvel, action, base_action, image_dict, is_sim
def main(args):
dataset_dir = args['dataset_dir']
num_episodes = args['num_episodes']
start_idx = 0
for episode_idx in range(start_idx, start_idx + num_episodes):
dataset_name = f'episode_{episode_idx}'
qpos, qvel, action, base_action, image_dict, is_sim = load_hdf5(dataset_dir, dataset_name)
# process proprioception
qpos = np.concatenate([qpos[:, 7:] * MIRROR_STATE_MULTIPLY, qpos[:, :7] * MIRROR_STATE_MULTIPLY], axis=1)
qvel = np.concatenate([qvel[:, 7:] * MIRROR_STATE_MULTIPLY, qvel[:, :7] * MIRROR_STATE_MULTIPLY], axis=1)
action = np.concatenate([action[:, 7:] * MIRROR_STATE_MULTIPLY, action[:, :7] * MIRROR_STATE_MULTIPLY], axis=1)
if base_action is not None:
base_action = base_action * MIRROR_BASE_MULTIPLY
# mirror image obs
if 'left_wrist' in image_dict.keys():
image_dict['left_wrist'], image_dict['right_wrist'] = image_dict['right_wrist'][:, :, ::-1], image_dict['left_wrist'][:, :, ::-1]
elif 'cam_left_wrist' in image_dict.keys():
image_dict['cam_left_wrist'], image_dict['cam_right_wrist'] = image_dict['cam_right_wrist'][:, :, ::-1], image_dict['cam_left_wrist'][:, :, ::-1]
else:
raise Exception('No left_wrist or cam_left_wrist in image_dict')
if 'top' in image_dict.keys():
image_dict['top'] = image_dict['top'][:, :, ::-1]
elif 'cam_high' in image_dict.keys():
image_dict['cam_high'] = image_dict['cam_high'][:, :, ::-1]
else:
raise Exception('No top or cam_high in image_dict')
# saving
data_dict = {
'/observations/qpos': qpos,
'/observations/qvel': qvel,
'/action': action,
'/base_action': base_action,
} if base_action is not None else {
'/observations/qpos': qpos,
'/observations/qvel': qvel,
'/action': action,
}
for cam_name in image_dict.keys():
data_dict[f'/observations/images/{cam_name}'] = image_dict[cam_name]
max_timesteps = len(qpos)
COMPRESS = True
if COMPRESS:
# JPEG compression
t0 = time.time()
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 50] # tried as low as 20, seems fine
compressed_len = []
for cam_name in image_dict.keys():
image_list = data_dict[f'/observations/images/{cam_name}']
compressed_list = []
compressed_len.append([])
for image in image_list:
result, encoded_image = cv2.imencode('.jpg', image, encode_param) # 0.02 sec # cv2.imdecode(encoded_image, 1)
compressed_list.append(encoded_image)
compressed_len[-1].append(len(encoded_image))
data_dict[f'/observations/images/{cam_name}'] = compressed_list
print(f'compression: {time.time() - t0:.2f}s')
# pad so it has same length
t0 = time.time()
compressed_len = np.array(compressed_len)
padded_size = compressed_len.max()
for cam_name in image_dict.keys():
compressed_image_list = data_dict[f'/observations/images/{cam_name}']
padded_compressed_image_list = []
for compressed_image in compressed_image_list:
padded_compressed_image = np.zeros(padded_size, dtype='uint8')
image_len = len(compressed_image)
padded_compressed_image[:image_len] = compressed_image
padded_compressed_image_list.append(padded_compressed_image)
data_dict[f'/observations/images/{cam_name}'] = padded_compressed_image_list
print(f'padding: {time.time() - t0:.2f}s')
# HDF5
t0 = time.time()
dataset_path = os.path.join(dataset_dir, f'mirror_episode_{episode_idx}')
with h5py.File(dataset_path + '.hdf5', 'w', rdcc_nbytes=1024 ** 2 * 2) as root:
root.attrs['sim'] = is_sim
root.attrs['compress'] = COMPRESS
obs = root.create_group('observations')
image = obs.create_group('images')
for cam_name in image_dict.keys():
if COMPRESS:
_ = image.create_dataset(cam_name, (max_timesteps, padded_size), dtype='uint8',
chunks=(1, padded_size), )
else:
_ = image.create_dataset(cam_name, (max_timesteps, 480, 640, 3), dtype='uint8',
chunks=(1, 480, 640, 3), )
qpos = obs.create_dataset('qpos', (max_timesteps, 14))
qvel = obs.create_dataset('qvel', (max_timesteps, 14))
action = root.create_dataset('action', (max_timesteps, 14))
if base_action is not None:
base_action = root.create_dataset('base_action', (max_timesteps, 2))
for name, array in data_dict.items():
root[name][...] = array
if COMPRESS:
_ = root.create_dataset('compress_len', (len(image_dict.keys()), max_timesteps))
root['/compress_len'][...] = compressed_len
print(f'Saving {dataset_path}: {time.time() - t0:.1f} secs\n')
if episode_idx == start_idx:
save_videos(image_dict, DT, video_path=os.path.join(dataset_dir, dataset_name + '_mirror_video.mp4'))
# visualize_joints(qpos, action, plot_path=os.path.join(dataset_dir, dataset_name + '_mirror_qpos.png'))
# visualize_timestamp(t_list, dataset_path) # TODO addn timestamp back
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_dir', action='store', type=str, help='Dataset dir.', required=True)
parser.add_argument('--num_episodes', action='store', type=int, help='Number of episodes.', required=True)
main(vars(parser.parse_args()))