-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
ACS712.cpp
459 lines (367 loc) · 10.2 KB
/
ACS712.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//
// FILE: ACS712.cpp
// AUTHOR: Rob Tillaart, Pete Thompson
// VERSION: 0.3.10
// DATE: 2020-08-02
// PURPOSE: ACS712 library - current measurement
// URL: https://github.com/RobTillaart/ACS712
#include "ACS712.h"
// CONSTRUCTOR
ACS712::ACS712(uint8_t analogPin, float volts, uint16_t maxADC, float mVperAmpere)
{
_pin = analogPin;
_mVperAmpere = mVperAmpere;
_formFactor = ACS712_FF_SINUS;
_noisemV = ACS712_DEFAULT_NOISE; // 21mV according to datasheet
// set in setADC()
// keep it here until after experimental.
_maxADC = maxADC;
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000.0 for V -> mV
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
_midPoint = maxADC / 2;
// default ADC is internal.
setADC(NULL, volts, maxADC);
}
// MEASUREMENTS
float ACS712::mA_peak2peak(float frequency, uint16_t cycles)
{
uint16_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
for (uint16_t i = 0; i < cycles; i++)
{
int minimum, maximum;
// Better than using midPoint
minimum = maximum = _analogRead(_pin);
// find minimum and maximum
uint32_t start = micros();
while (micros() - start < period) // UNO ~180 samples...
{
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
// determine extremes
if (value < minimum) minimum = value;
else if (value > maximum) maximum = value;
}
sum += (maximum - minimum);
}
float peak2peak = sum * _mAPerStep;
if (cycles > 1) peak2peak /= cycles;
return peak2peak;
}
float ACS712::mA_AC(float frequency, uint16_t cycles)
{
uint16_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// remove float operation from loop.
uint16_t zeroLevel = round(_noisemV/_mVperStep);
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
uint16_t zeros = 0;
int minimum, maximum;
minimum = maximum = _analogRead(_pin);
// find minimum and maximum and count the zero-level "percentage"
uint32_t start = micros();
while (micros() - start < period) // UNO ~180 samples...
{
samples++;
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
// determine extremes
if (value < minimum) minimum = value;
else if (value > maximum) maximum = value;
// count zeros
if (abs(value - _midPoint) <= zeroLevel ) zeros++;
}
int peak2peak = maximum - minimum;
// automatic determine _formFactor / crest factor
float D = 0;
float FF = 0;
if (zeros > samples * 0.025) // more than 2% zero's
{
D = 1.0 - (1.0 * zeros) / samples; // % SAMPLES NONE ZERO
FF = sqrt(D) * _formFactor; // ASSUME NON ZERO PART ~ SINUS
}
else // # zeros is small => D --> 1 --> sqrt(D) --> 1
{
FF = _formFactor;
}
// value could be partially pre-calculated: C = 1000.0 * 0.5 * _mVperStep / _mVperAmpere;
// return 1000.0 * 0.5 * peak2peak * _mVperStep * _formFactor / _mVperAmpere);
sum += peak2peak * FF;
}
float mA = 0.5 * sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
float ACS712::mA_AC_sampling(float frequency, uint16_t cycles)
{
uint32_t period = round(1000000UL / frequency);
if (cycles == 0) cycles = 1;
float sum = 0;
// float noiseLevel = _noisemV/_mVperStep;
for (uint16_t i = 0; i < cycles; i++)
{
uint16_t samples = 0;
float sumSquared = 0;
uint32_t start = micros();
while (micros() - start < period)
{
samples++;
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
float current = value - _midPoint;
sumSquared += (current * current);
// not adding noise squared might be more correct for small currents.
// if (abs(current) > noiseLevel)
// {
// sumSquared += (current * current);
// }
}
sum += sqrt(sumSquared / samples);
}
float mA = sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
float ACS712::mA_DC(uint16_t cycles)
{
// read at least twice to stabilize the ADC
_analogRead(_pin);
if (cycles == 0) cycles = 1;
float sum = 0;
for (uint16_t i = 0; i < cycles; i++)
{
int value = _analogRead(_pin);
if (_suppresNoise) // average 2 samples.
{
value = (value + _analogRead(_pin))/2;
}
// for RTOS
if ((i & 0x0001) == 0x0001) // every 2nd iteration
{
yield();
}
sum += (value - _midPoint);
}
float mA = sum * _mAPerStep;
if (cycles > 1) mA /= cycles;
return mA;
}
// CALIBRATION MIDPOINT
uint16_t ACS712::setMidPoint(uint16_t midPoint)
{
if (midPoint <= _maxADC) _midPoint = (int) midPoint;
return _midPoint;
};
uint16_t ACS712::getMidPoint()
{
return _midPoint;
};
uint16_t ACS712::incMidPoint()
{
if (_midPoint < (int)(_maxADC)) _midPoint += 1;
return _midPoint;
};
uint16_t ACS712::decMidPoint()
{
if (_midPoint > 0) _midPoint -= 1;
return _midPoint;
};
// configure by sampling for 2 cycles of AC
// Also works for DC as long as no current flowing
// note this is blocking!
uint16_t ACS712::autoMidPoint(float frequency, uint16_t cycles)
{
uint16_t twoPeriods = round(2000000UL / frequency);
if (cycles == 0) cycles = 1;
uint32_t total = 0;
for (uint16_t i = 0; i < cycles; i++)
{
uint32_t subTotal = 0;
uint32_t samples = 0;
uint32_t start = micros();
while (micros() - start < twoPeriods)
{
uint16_t reading = _analogRead(_pin);
subTotal += reading;
samples++;
// Delaying prevents overflow
// since we'll perform a maximum of 40,000 reads @ 50 Hz.
delayMicroseconds(1);
}
total += (subTotal / samples);
}
_midPoint = (total + (cycles/2))/ cycles; // rounding.
return _midPoint;
}
uint16_t ACS712::autoMidPointDC(uint16_t cycles)
{
if (cycles == 0) cycles = 1;
uint32_t total = 0;
for (uint16_t i = 0; i < cycles; i++)
{
total += analogRead(_pin);
}
_midPoint = (total + (cycles/2))/ cycles; // rounding.
return _midPoint;
}
uint16_t ACS712::resetMidPoint()
{
_midPoint = _maxADC / 2;
return _midPoint;
};
// CALIBRATION FORM FACTOR
void ACS712::setFormFactor(float formFactor)
{
_formFactor = formFactor;
};
float ACS712::getFormFactor()
{
return _formFactor;
};
// CALIBRATION NOISE
// noise defaults 21 datasheet
void ACS712::setNoisemV(uint8_t noisemV)
{
_noisemV = noisemV;
};
uint8_t ACS712::getNoisemV()
{
return _noisemV;
};
float ACS712::mVNoiseLevel(float frequency, uint16_t cycles)
{
float mA = mA_peak2peak(frequency, cycles);
// divide by 2 as the level is half of the peak to peak range
return mA * _mVperAmpere * 0.001 / 2;
}
void ACS712::suppressNoise(bool flag)
{
_suppresNoise = flag;
}
// CALIBRATION mV PER AMP
// Adjusting resolution AC and DC
void ACS712::setmVperAmp(float mVperAmpere)
{
_mVperAmpere = mVperAmpere;
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
};
float ACS712::getmVperAmp()
{
return _mVperAmpere;
};
float ACS712::getmAPerStep()
{
return _mAPerStep;
};
float ACS712::getAmperePerStep()
{
return _mAPerStep * 0.001;
};
// FREQUENCY DETECTION
// uses oversampling and averaging to minimize variation
// blocks for substantial amount of time, depending on minimalFrequency
float ACS712::detectFrequency(float minimalFrequency)
{
int maximum = 0;
int minimum = 0;
maximum = minimum = _analogRead(_pin);
// determine maxima
uint32_t timeOut = round(1000000.0 / minimalFrequency);
uint32_t start = micros();
while (micros() - start < timeOut)
{
int value = _analogRead(_pin);
if (value > maximum) maximum = value;
if (value < minimum) minimum = value;
}
// calculate quarter points
// using quarter points is less noise prone than using one single midpoint
int Q1 = (3 * minimum + maximum ) / 4;
int Q3 = (minimum + 3 * maximum ) / 4;
// 10x passing Quantile points
// wait for the right moment to start
// to prevent endless loop a timeout is checked.
timeOut *= 10;
start = micros();
// casting to int to keep compiler happy.
while ((int(_analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
while ((int(_analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
start = micros();
for (int i = 0; i < 10; i++)
{
while ((int(_analogRead(_pin)) > Q1) && ((micros() - start) < timeOut));
while ((int(_analogRead(_pin)) <= Q3) && ((micros() - start) < timeOut));
}
uint32_t stop = micros();
// calculate frequency
float wavelength = stop - start;
float frequency = 1e7 / wavelength;
if (_microsAdjust != 1.0) frequency *= _microsAdjust;
return frequency;
}
// timing for FREQUENCY DETECTION
void ACS712::setMicrosAdjust(float factor)
{
_microsAdjust = factor;
};
float ACS712::getMicrosAdjust()
{
return _microsAdjust;
};
// DEBUG
uint16_t ACS712::getMinimum(uint16_t milliSeconds)
{
uint16_t minimum = _analogRead(_pin);
// find minimum
uint32_t start = millis();
while (millis() - start < milliSeconds)
{
uint16_t value = _analogRead(_pin);
if (value < minimum) minimum = value;
}
return minimum;
}
uint16_t ACS712::getMaximum(uint16_t milliSeconds)
{
uint16_t maximum = _analogRead(_pin);
// find maximum
uint32_t start = millis();
while (millis() - start < milliSeconds)
{
uint16_t value = _analogRead(_pin);
if (value > maximum) maximum = value;
}
return maximum;
}
void ACS712::setADC(uint16_t (* f)(uint8_t), float volts, uint16_t maxADC)
{
_readADC = f;
_maxADC = maxADC;
_mVperStep = 1000.0 * volts / maxADC; // 1x 1000 for V -> mV
_mAPerStep = 1000.0 * _mVperStep / _mVperAmpere;
_midPoint = maxADC / 2;
}
//////////////////////////////////////////////////////////////////////
//
// PRIVATE
//
uint16_t ACS712::_analogRead(uint8_t pin)
{
// if external ADC is defined use it.
if (_readADC != NULL) return _readADC(pin);
return analogRead(pin);
}
// -- END OF FILE --