-
Notifications
You must be signed in to change notification settings - Fork 2
/
defects.py
72 lines (59 loc) · 2.54 KB
/
defects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as np
import math
cap=cv2.VideoCapture(0)
while(cap.isOpened()):
ret, img = cap.read()
img=cv2.flip(img, 1)
cv2.rectangle(img,(20,20),(250,250),(255,0,0),3)
crop_img = img[20:250, 20:250]
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key = lambda x: cv2.contourArea(x))
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(crop_img,(x,y),(x+w,y+h),(0,0,255),0)
hull = cv2.convexHull(cnt)
drawing = np.zeros(crop_img.shape,np.uint8)
cv2.drawContours(drawing,[cnt],0,(0,255,0),0)
cv2.drawContours(drawing,[hull],0,(0,0,255),0)
hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)
count_defects = 0
cv2.drawContours(thresh1, contours, -1, (0,255,0), 3)
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57
if angle <= 90:
count_defects += 1
cv2.circle(crop_img,far,1,[0,0,255],-1)
cv2.line(crop_img,start,end,[0,255,0],2)
if count_defects == 1:
cv2.putText(img,"Number : 2", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 2:
cv2.putText(img, "Number : 3", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 3:
cv2.putText(img,"Number : 4", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 4:
cv2.putText(img,"Number : 5", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
elif count_defects == 5:
cv2.putText(img,"Number : 6", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
else:
cv2.putText(img,"Number : 1", (50,450), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 1)
cv2.imshow('Gesture', img)
cv2.imshow('Contours', drawing)
cv2.imshow('Defects', crop_img)
cv2.imshow('Binary Image', thresh1)
k = cv2.waitKey(10)
if k == 27:
break
cap.release()
cv2.destroyAllWindows()