-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
369 lines (273 loc) · 13.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import tensorflow as tf
import dataIO
import numpy as np
from datetime import datetime
from model import model
from parameters import *
# preprocess input data
def prepareDataTraining(seg_data, somae_data_raw):
somae_data = seg_data.copy()
somae_data[somae_data_raw==0]=0
seg_data = seg_data[:,:network_size,:network_size]
somae_data = somae_data[:,:network_size,:network_size]
# create object to hold elements for 3D input tensors of depth(*2)+1
seg_deep = np.zeros((seg_data.shape[0],seg_data.shape[1],seg_data.shape[2],depth*2+1), dtype=np.uint8)
# populate deep segmentation tensor
seg_deep[:,:,:,depth]=seg_data
for d in range(1,depth+1):
seg_deep[:-d,:,:,depth+d]=seg_data[d:,:,:]
seg_deep[d:,:,:,depth-d]=seg_data[:-d,:,:]
# cut training and validation dataset
valid_seg = seg_deep[:val_data_size,:,:,:]
valid_mask = somae_data[:val_data_size,:,:]
train_seg = seg_deep[val_data_size:,:,:,:]
train_mask = somae_data[val_data_size:,:,:]
# shuffle both training and validation data
valid_ids = np.random.permutation(valid_seg.shape[0])
train_ids = np.random.permutation(train_seg.shape[0])
valid_seg[:,:,:] = valid_seg[valid_ids,:,:,:]
valid_mask[:,:,:] = valid_mask[valid_ids,:,:]
train_seg[:,:,:] = train_seg[train_ids,:,:,:]
train_mask[:,:,:] = train_mask[train_ids,:,:]
return train_seg, train_mask, valid_seg, valid_mask
# preprocess input data
def prepareDataPrediction(seg_data):
seg_data = seg_data[:,:network_size,:network_size]
# create object to hold elements for 3D input tensors of depth(*2)+1
seg_deep = np.zeros((seg_data.shape[0],seg_data.shape[1],seg_data.shape[2],depth*2+1), dtype=np.uint8)
# populate deep segmentation tensor
seg_deep[:,:,:,depth]=seg_data
for d in range(1,depth+1):
seg_deep[:-d,:,:,depth+d]=seg_data[d:,:,:]
seg_deep[d:,:,:,depth-d]=seg_data[:-d,:,:]
# cut training and validation dataset
valid_seg = seg_deep[:,:,:,:]
return valid_seg
# define the weighted loss function
class WeightedBinaryCrossEntropy(tf.losses.Loss):
"""
Args:
pos_weight: Scalar to affect the positive labels of the loss function.
weight: Scalar to affect the entirety of the loss function.
from_logits: Whether to compute loss form logits or the probability.
reduction: Type of tf.losses.Reduction to apply to loss.
name: Name of the loss function.
"""
def __init__(self, pos_weight, weight, from_logits=False,
reduction=tf.losses.Reduction.AUTO,
name='weighted_binary_crossentropy'):
super(WeightedBinaryCrossEntropy, self).__init__(reduction=reduction,
name=name)
self.pos_weight = pos_weight
self.weight = weight
self.from_logits = from_logits
def call(self, y_true, y_pred):
if not self.from_logits:
# Manually calculate the weighted cross entropy.
# Formula is qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
# where z are labels, x is logits, and q is the weight.
# Since the values passed are from sigmoid (assuming in this case)
# sigmoid(x) will be replaced by y_pred
# qz * -log(sigmoid(x)) 1e-6 is added as an epsilon to stop passing a zero into the log
x_1 = y_true * self.pos_weight * -tf.math.log(y_pred + 1e-6)
# (1 - z) * -log(1 - sigmoid(x)). Epsilon is added to prevent passing a zero into the log
x_2 = (1 - y_true) * -tf.math.log(1 - y_pred + 1e-6)
return tf.add(x_1, x_2) * self.weight
# Use built in function
return tf.nn.weighted_cross_entropy_with_logits(y_true, y_pred, self.pos_weight) * self.weight
# model weights
class model_weights:
def __init__(self, shapes):
self.values = []
self.checkpoint_path = './ckpt_'+ datetime.now().strftime("%Y%m%d-%H%M%S")+'/'
initializer = tf.initializers.RandomNormal()
def get_weight( shape , name ):
return tf.Variable( initializer( shape ) , name=name , trainable=True , dtype=tf.float32 )
for i in range( len( shapes ) ):
self.values.append( get_weight( shapes[ i ] , 'weight{}'.format( i ) ) )
self.ckpt = tf.train.Checkpoint(**{f'values{i}': v for i, v in enumerate(self.values)})
def saveWeights(self):
self.ckpt.save(self.checkpoint_path)
def restoreWeights(self, ckpt_restore):
print("restoring weights from: " + str(ckpt_restore))
status = self.ckpt.restore(ckpt_restore)
status.assert_consumed() # Optional check
def initializeModel(restore, ckpt_restore):
# filters for the UNET layers:
# filters = [depth*2+1,64,128,256,512,1024,1] #original UNET
filters = [depth*2+1, 16,32, 64, 128,256,1] # modified, lighter UNET
# shapes of the weight tensors
shapes = [
[ 3, 3, filters[0], filters[1]], #L11 -> L12
[ 3, 3, filters[1], filters[1]], #L12 -> L13
[ 3, 3, filters[1], filters[2]], #L21 -> L22
[ 3, 3, filters[2], filters[2]], #L22 -> L23
[ 3, 3, filters[2], filters[3]], #L31 -> L32
[ 3, 3, filters[3], filters[3]], #L32 -> L33
[ 3, 3, filters[3], filters[4]], #L41 -> L42
[ 3, 3, filters[4], filters[4]], #L42 -> L43
[ 3, 3, filters[4], filters[5]], #L51 -> L52
[ 3, 3, filters[5], filters[5]], #L52 -> L53
[ 2, 2, filters[4], filters[5]], #L53 -> L44
[ 3, 3, 2*filters[4], filters[4]], #L44 -> L45
[ 3, 3, filters[4], filters[4]], #L45 -> L46
[ 2, 2, filters[3], filters[4]], #L46 -> L34
[ 3, 3, 2*filters[3], filters[3]], #L34 -> L35
[ 3, 3, filters[3], filters[3]], #L35 -> L36
[ 2, 2, filters[2], filters[3]], #L36 -> L24
[ 3, 3, 2*filters[2], filters[2]], #L24 -> L25
[ 3, 3, filters[2], filters[2]], #L25 -> L26
[ 2, 2, filters[1], filters[2]], #L25 -> L14
[ 3, 3, 2*filters[1], filters[1]], #L14 -> L15
[ 3, 3, filters[1], filters[1]], #L15 -> L16
[ 1, 1, filters[1], filters[6]], #L16 -> L17
]
weights = model_weights(shapes)
if restore:
weights.restoreWeights(ckpt_restore)
# initialize loss
w_loss = WeightedBinaryCrossEntropy(12, 1)
# initialize optimizer
optimizer = tf.optimizers.Adam(learning_rate)
# initialize accuracy objects
train_acc = tf.metrics.BinaryAccuracy()
valid_acc = tf.metrics.BinaryAccuracy()
train_loss = tf.metrics.Mean()
valid_loss = tf.metrics.Mean()
TP = tf.keras.metrics.TruePositives()
FP = tf.keras.metrics.FalsePositives()
TN = tf.keras.metrics.TrueNegatives()
FN = tf.keras.metrics.FalseNegatives()
return weights, w_loss, optimizer, train_acc, valid_acc, train_loss, valid_loss, TP, FP, TN, FN
# define train step
def train_step(model, weights, inputs, gt, optimizer, w_loss, train_loss, train_acc):
with tf.GradientTape() as tape:
pred = model(inputs, weights)
current_loss = w_loss( gt, pred)
grads = tape.gradient(current_loss, weights.values )
optimizer.apply_gradients(zip(grads , weights.values ) )
train_loss.update_state(current_loss)
train_acc.update_state(gt, pred)
return optimizer
#define prediction step
def predict_step(model, weights, inputs, gt, w_loss, valid_loss, valid_acc, TP, FP, TN, FN): #TODO remove paqssing of model here
pred = model(inputs, weights)
current_loss = w_loss( gt, pred)
valid_loss.update_state(current_loss)
valid_acc.update_state(gt, pred)
TP.update_state(gt,pred)
FP.update_state(gt,pred)
TN.update_state(gt,pred)
FN.update_state(gt,pred)
return pred
def trainOnEpochs(train_seg, train_mask, valid_seg, valid_mask, weights, w_loss, optimizer, train_acc, valid_acc, train_loss, valid_loss, TP, FP, TN, FN):
current_time = datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = 'logs/gradient_tape/' + current_time + '/train'
valid_log_dir = 'logs/gradient_tape/' + current_time + '/valid'
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
valid_summary_writer = tf.summary.create_file_writer(valid_log_dir)
valid_loss_best = 1000000000
for epoch in range(epochs):
print("TP: ")
print(TP.result().numpy())
print("FN: ")
print(FN.result().numpy())
print("FP: ")
print(FP.result().numpy())
print("TN: ")
print(TN.result().numpy())
TPR = TP.result().numpy()/(TP.result().numpy()+FN.result().numpy())
FPR = FP.result().numpy()/(FP.result().numpy()+TN.result().numpy())
print("TPR: ")
print(TPR)
print("FPR: ")
print(FPR)
with train_summary_writer.as_default():
tf.summary.scalar('loss', train_loss.result(), step=epoch)
tf.summary.scalar('accuracy', train_acc.result(), step=epoch)
with valid_summary_writer.as_default():
tf.summary.scalar('loss', valid_loss.result(), step=epoch)
tf.summary.scalar('accuracy', valid_acc.result(), step=epoch)
tf.summary.scalar('TPR', TPR, step=epoch)
tf.summary.scalar('FPR', FPR, step=epoch)
train_acc.reset_states()
valid_acc.reset_states()
train_loss.reset_states()
valid_loss.reset_states()
print("---------------------")
print("Epoch: " + str(epoch))
for k in np.arange(0,train_seg.shape[0],batch_size):
image = train_seg[k:k+batch_size,:,:,:].copy()
mask = train_mask[k:k+batch_size,:,:,None].copy()
# choose random ID
ids_present = np.unique(mask)
if ids_present[0]==0: ids_present=ids_present[1:]
id_rand = np.random.choice(ids_present)
# binarize
image[image!=id_rand]=0
image[image==id_rand]=1
mask[mask!=id_rand]=0
mask[mask==id_rand]=1
image = tf.convert_to_tensor(image, dtype=tf.float32 )
mask_gt = tf.convert_to_tensor(mask, dtype=tf.float32 )
optimizer = train_step(model, weights, image, mask_gt, optimizer, w_loss, train_loss, train_acc)
for j in np.arange(0,valid_seg.shape[0],batch_size):
image = valid_seg[j:j+batch_size,:,:,:].copy()
mask = valid_mask[j:j+batch_size,:,:,None].copy()
# choose random ID
ids_present = np.unique(mask)
if ids_present[0]==0: ids_present=ids_present[1:]
id_rand = np.random.choice(ids_present)
# binarize
image[image!=id_rand]=0
image[image==id_rand]=1
mask[mask!=id_rand]=0
mask[mask==id_rand]=1
image = tf.convert_to_tensor( image , dtype=tf.float32 )
mask_gt = tf.convert_to_tensor( mask , dtype=tf.float32 )
mask_pred = predict_step(model, weights, image, mask_gt, w_loss, valid_loss, valid_acc, TP, FP, TN, FN).numpy()
if epoch%10==0:
with valid_summary_writer.as_default():
tf.summary.image("valid-epoch"+str(epoch)+"j-"+str(j), tf.concat([tf.expand_dims(image[:,:,:,depth],3), mask_gt, mask_pred],axis=1), step=epoch, max_outputs=5)
print("Train loss: " + str(train_loss.result().numpy()))
print("Train accu: " + str(train_acc.result().numpy()))
print("Valid loss: " + str(valid_loss.result().numpy()))
print("Valid accu: " + str(valid_acc.result().numpy()))
weights.saveWeights()
print("Weights saved ------------------")
def Train(restore, ckpt_restore):
# Mouse
seg_filepath = train_seg_in_filepath
somae_filepath = train_somae_in_filepath
seg_data = dataIO.ReadH5File(seg_filepath, [1])
somae_data = dataIO.ReadH5File(somae_filepath, [1])
train_seg, train_mask, valid_seg, valid_mask = prepareDataTraining(seg_data, somae_data)
weights, w_loss, optimizer, train_acc, valid_acc, train_loss, valid_loss, TP, FP, TN, FN = initializeModel(restore=restore, ckpt_restore=ckpt_restore)
trainOnEpochs(train_seg, train_mask, valid_seg, valid_mask, weights, w_loss, optimizer, train_acc, valid_acc, train_loss, valid_loss, TP, FP, TN, FN)
def Predict(ckpt_restore):
# Zebrafinch
seg_filepath = predict_seg_in_filepath
seg_data = dataIO.ReadH5File(seg_filepath, [1])
seg_data = seg_data[:,:network_size,:network_size]
somae_mask_out = np.zeros((seg_data.shape[0],seg_data.shape[1],seg_data.shape[2]), dtype=np.float64)
weights, w_loss, optimizer, train_acc, valid_acc, train_loss, valid_loss, TP, FP, TN, FN = initializeModel(restore=True, ckpt_restore=ckpt_restore)
seg_data_prep = prepareDataPrediction(seg_data)
unique_ids = np.unique(seg_data)
for ID in unique_ids:
print("Processind ID " + str(ID))
seg_data_filtered = seg_data_prep.copy()
seg_data_filtered[seg_data_filtered!=ID]=0
# mask the data to be binary
seg_data_filtered[seg_data_filtered>0]=1
for j in np.arange(0,seg_data_filtered.shape[0],batch_size):
image = seg_data_filtered[j:j+batch_size,:,:,:]
image = tf.convert_to_tensor( image , dtype=tf.float32 )
if np.max(image[:,:,:,depth])!=0:
mask_pred = tf.squeeze(model(image, weights)).numpy()
mask_pred[mask_pred<=0.5]=0
mask_pred[mask_pred>0.5]=1
mask_pred = image[:,:,:,depth]*mask_pred
somae_mask_out[j:j+batch_size,:,:] = somae_mask_out[j:j+batch_size,:,:]+mask_pred[:,:,:]
del seg_data_filtered
somae_mask_out = somae_mask_out.astype(np.uint64)
dataIO.WriteH5File(somae_mask_out, somae_prediction_out_filepath, "main")