-
Notifications
You must be signed in to change notification settings - Fork 24
198 lines (195 loc) · 7.86 KB
/
release.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
name: CI
on:
push:
pull_request:
# branches:
# - main
jobs:
format:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: psf/black@stable
lint:
name: Lint with flake8
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install flake8
run: pip install flake8 flake8-bugbear
- name: Lint with flake8
run: flake8 src
# legacy testing of t-test
run-tutorial-ttest:
name: Run - random_small - t-test
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_small task=encode_data --cfg job
move-dl data=random_small task=encode_data
# - name: Identify associations - t-test
# at least 4 refits needed for t-test
- name: Identify associations - t-test
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_ttest --cfg job
move-dl data=random_small task=random_small__id_assoc_ttest task.training_loop.num_epochs=30 task.num_refits=4
# categorical dataset pertubation - single and multiprocessed
run-tutorial-cat-pert-single:
name: Run - random_small - singleprocess
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_small task=encode_data --cfg job
move-dl data=random_small task=encode_data
- name: Train model and analyze latent space
run: |
cd tutorial
move-dl data=random_small task=random_small__latent --cfg job
move-dl data=random_small task=random_small__latent task.training_loop.num_epochs=100
- name: Identify associations - bayes factors
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_bayes --cfg job
move-dl data=random_small task=random_small__id_assoc_bayes task.training_loop.num_epochs=100 task.num_refits=2
- name: Identify associations - bayes factors - w/o training
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_bayes --cfg job
move-dl data=random_small task=random_small__id_assoc_bayes task.training_loop.num_epochs=100 task.num_refits=2
run-tutorial-cat-pert-multi:
name: Run - random_small - multiprocess
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_small task=encode_data --cfg job
move-dl data=random_small task=encode_data
- name: Train model and analyze latent space - multiprocess
run: |
cd tutorial
move-dl data=random_small task=random_small__latent --cfg job
move-dl data=random_small task=random_small__latent task.training_loop.num_epochs=100 task.multiprocess=true
- name: Identify associations - bayes factors - multiprocess
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_bayes --cfg job
move-dl data=random_small task=random_small__id_assoc_bayes task.training_loop.num_epochs=100 task.num_refits=2 task.multiprocess=true
- name: Identify associations - bayes factors - multiprocess w/o training
run: |
cd tutorial
move-dl data=random_small task=random_small__id_assoc_bayes --cfg job
move-dl data=random_small task=random_small__id_assoc_bayes task.training_loop.num_epochs=100 task.num_refits=2 task.multiprocess=true
# continous dataset perturbation - single and multiprocessed
run-tutorial-cont-pert-multi:
name: Run - random_continuous - multiprocess
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_continuous task=encode_data --cfg job
move-dl data=random_continuous task=encode_data
- name: Train model and analyze latent space - multiprocess
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__latent task.multiprocess=true --cfg job
move-dl data=random_continuous task=random_continuous__latent task.multiprocess=true
- name: Identify associations - bayes factors - multiprocess
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.multiprocess=true --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.num_refits=1 task.multiprocess=true
- name: Identify associations - bayes factors - multiprocess w/o training
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.multiprocess=true --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.num_refits=1 task.multiprocess=true
run-tutorial-cont-pert-single:
name: Run - random_continuous - singleprocess
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: pip install .
- name: Prepare tutorial data
run: |
cd tutorial
move-dl data=random_continuous task=encode_data
- name: Train model and analyze latent space
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__latent --cfg job
move-dl data=random_continuous task=random_continuous__latent
- name: Identify associations - bayes factors
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_bayes --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.num_refits=1
- name: Identify associations - bayes factors - w/o training (repeat)
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_bayes --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_bayes task.num_refits=1
# this reuses the same model trained in analyze latent space
- name: Identify associations - KS
run: |
cd tutorial
move-dl data=random_continuous task=random_continuous__id_assoc_ks --cfg job
move-dl data=random_continuous task=random_continuous__id_assoc_ks task.num_refits=1
publish:
name: Publish package
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags')
needs:
- format
- lint
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install twine and build
run: python -m pip install --upgrade twine build
- name: Build
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}