forked from viveikjha/aperture_photometry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_notebook.py
1042 lines (772 loc) · 36.3 KB
/
final_notebook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
# ### Ganpati Bappa Morya
# Credits: ChatGPT THE GREAT
# In[1]:
import numpy as np
import matplotlib as mp
import math
import re
import matplotlib.pyplot as plt
import ccdproc,os,sys,time,random, csv
import astroalign as aa
from glob import glob
from astropy import units as u
from astropy.io import fits
from astropy.time import Time
from astropy.wcs import WCS
from astropy.nddata import CCDData
from astropy.stats import sigma_clipped_stats, SigmaClip
from astropy.visualization import ImageNormalize, LogStretch
from matplotlib.ticker import LogLocator
from astropy.stats import SigmaClip, mad_std
from photutils.background import Background2D, MeanBackground,SExtractorBackground
from photutils import find_peaks, CircularAperture, CircularAnnulus, aperture_photometry
from photutils.centroids import centroid_2dg
from photutils import Background2D, MedianBackground, DAOStarFinder
from photutils.utils import calc_total_error
from astropy.coordinates import SkyCoord
from astropy import coordinates as coord
from astropy import units as u
#from pyraf import iraf
# ### Creating master bias - working
# In[4]:
start = time.time()
## We load the bias files here using glob.
bias_files = sorted(glob(os.path.join('/home/aries/NGC2506_3/20211220_DFOT/bias*.fits')))
biaslist = []
print(bias_files)
for i in range (len(bias_files)):
data= ccdproc.CCDData.read(bias_files[i],unit='adu')
#data = ccdproc.create_deviation(data, gain=gain, readnoise=readnoise)
#data= data-(data.uncertainty.array)
print(data.data.shape)
biaslist.append(data)
masterbias = ccdproc.combine(biaslist,method='median',sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5,
sigma_clip_func=np.ma.median, sigma_clip_dev_func=mad_std)
masterbias.write('/home/aries/NGC2506_3/20211220_DFOT/masterbias.fits', overwrite=True)
mbias=ccdproc.CCDData.read('/home/aries/NGC2506_3/20211220_DFOT/masterbias.fits',unit='adu')
print('Master bias generated')
print(" Mean and median of the masterbias:", np.mean(masterbias), np.median(masterbias))
end = time.time()
print('Execution took:', end - start, 'seconds')
# ### Creating master flat - working
# In[8]:
start = time.time()
## We load the flat files here using glob.
flat_files=sorted(glob(os.path.join('/home/aries/NGC2506_3/20211220_DFOT/flat*.fits')))
flatlist=[]
for j in range(0,len(flat_files)):
flat=ccdproc.CCDData.read(flat_files[j],unit='adu')
mbias=ccdproc.CCDData.read('/home/aries/NGC2506_3/20211220_DFOT/masterbias.fits',unit='adu')
print(mbias.data.shape)
print(flat.data.shape)
flat_bias_removed=ccdproc.subtract_bias(flat,mbias) #flat - master bias
flatlist.append(flat_bias_removed)
def inv_median(a):
return 1 / np.median(a)
#scale=inv_median not used, instead norm_value = np.median(masterflat) used while division
masterflat = ccdproc.combine(flatlist,method='median',scale=inv_median ,sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, sigma_clip_func=np.ma.median, sigma_clip_dev_func=mad_std)
masterflat.write('/home/aries/NGC2506_3/20211220_DFOT/masterflat.fits', overwrite=True)
mflat=ccdproc.CCDData.read('/home/aries/NGC2506_3/20211220_DFOT/masterflat.fits',unit='adu')
print('Master flat generated')
print(" Mean and median of the masterflat: ",np.mean(masterflat), np.median(masterflat))
end = time.time()
print('Execution took:', end - start, 'seconds')
# ### Master bias substraction, master flat division - working
# In[10]:
#FINAL CODE FOR CLEANING:
start = time.time()
files=sorted(glob(os.path.join('/home/aries/NGC2506_3/20211220_DFOT/NGC2506*.fits')))
for i in range(0,len(files)): #(0,len(files))
print(files[i])
image=ccdproc.CCDData.read(files[i],unit='adu')
header=fits.getheader(files[i],0)
mbias=ccdproc.CCDData.read('/home/aries/NGC2506_3/20211220_DFOT/masterbias.fits',unit='adu')
mflat=ccdproc.CCDData.read('/home/aries/NGC2506_3/20211220_DFOT/masterflat.fits',unit='adu')
print(mbias.data.shape) #(2048, 2048)
print(mflat.data.shape) #(2048, 2048)
print(image.data.shape) #(2048, 2048)
bias_subtracted = ccdproc.subtract_bias(image, mbias)
flat_corrected = ccdproc.flat_correct(bias_subtracted, mflat)#, norm_value=np.median(masterflat))
cr_cleaned = ccdproc.cosmicray_lacosmic(flat_corrected,readnoise=10, sigclip=5, verbose=True)
print('Cosmic rays removed')
clean_file=files[i].replace('.fits','')
fits.writeto(clean_file+'_cleaned.fits',cr_cleaned, header=header,overwrite=True)
x= 1 + i
print('Image no-%x has been cleaned'%x)
print(" Mean and median of the masterflat: ",np.mean(cr_cleaned), np.median(cr_cleaned))
end = time.time()
print('Execution took:', end - start, 'seconds')
## Cosmic ray cleaning using lacosmic.
# ### Aperture photometry
# In[13]:
def source(data, header):
sigma_clip = SigmaClip(sigma=3, maxiters=10)
bkg_estimator = SExtractorBackground()
bkg = Background2D(data, (10,10), filter_size=(3, 3),sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) # 2D background map
back=bkg.background
h = fits.open(filename)
wcs = WCS(h[0].header)
mask = data == 0
unit = u.electron / u.s
xdf_image = CCDData(data, unit=unit, meta=header, mask=mask)
norm_image = ImageNormalize(vmin=1e-4, vmax=5e-2, stretch=LogStretch(), clip=False)
xdf_image_clipped = np.clip(xdf_image, 1e-4, None)
mean, median, std = sigma_clipped_stats(xdf_image.data, sigma=3.0, maxiters=20, mask=xdf_image.mask)
daofind = DAOStarFinder(fwhm=4, threshold=5*std)
return daofind(data - back)#, mean, std
#files=sorted(glob(os.path.join('/home/aries/NGC2506_2/20210215_DFOT/try/NGC*cleaned.fits')))
#data_0,header_0=fits.getdata(files[0],header=True)
#source_0 =source(data_0, header_0)
#source_0['id', 'mag']
# In[14]:
def magnitude(data, apperture, an_ap ):
sigma_clip = SigmaClip(sigma=3, maxiters=10)
bkg_estimator = SExtractorBackground()
bkg = Background2D(data, (10,10), filter_size=(3, 3),sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) # 2D background map 2nd time. We will use only once.
back=bkg.background
exposure=header['EXPTIME']
effective_gain=exposure # Need to verify this one. Why effective gain= exposure?
error=calc_total_error(data,back,effective_gain)
phot_table = aperture_photometry(data-back, apertures,error=error)
phot_table2=aperture_photometry(data-back,an_ap)
bkg_mean = phot_table2['aperture_sum'] / an_ap.area
bkg_sum = bkg_mean * an_ap.area
final_sum0=phot_table['aperture_sum_0']-bkg_sum
final_sum1=phot_table['aperture_sum_1']-bkg_sum
final_sum2=phot_table['aperture_sum_2']-bkg_sum
final_sum3=phot_table['aperture_sum_3']-bkg_sum
final_sum4=phot_table['aperture_sum_4']-bkg_sum
mag_back=-2.5*np.log10(bkg_mean/exposure)
mag_0=-2.5*np.log10(final_sum0/exposure)
mag_1=-2.5*np.log10(final_sum1/exposure)
mag_2=-2.5*np.log10(final_sum2/exposure)
mag_3=-2.5*np.log10(final_sum3/exposure)
mag_4=-2.5*np.log10(final_sum4/exposure)
flux_err_0=phot_table['aperture_sum_err_0']
mag_err_0=1.09*flux_err_0/final_sum0
flux_err_1=phot_table['aperture_sum_err_1']
mag_err_1=1.09*flux_err_1/final_sum1
flux_err_2=phot_table['aperture_sum_err_2']
mag_err_2=1.09*flux_err_2/final_sum2
flux_err_3=phot_table['aperture_sum_err_3']
mag_err_3=1.09*flux_err_3/final_sum3
flux_err_4=phot_table['aperture_sum_err_4']
mag_err_4=1.09*flux_err_4/final_sum4
return mag_0 , mag_err_0 ,mag_1,mag_err_1,mag_2,mag_err_2 ,mag_3,mag_err_3,mag_4,mag_err_4
#radii = [4,5]
#positions = (source_0['xcentroid'][1], source_0['ycentroid'][1])
#apertures = [CircularAperture(positions, r=4)]#for r in radii]
#an_ap = CircularAnnulus(positions, r_in=14, r_out=14.5)
#magnitude(data_0, apertures,an_ap)
# In[34]:
# CREATING MAGNITUDE APERTURE FILE FOR single FRAME
files=sorted(glob(os.path.join('/home/aries/NGC2506_3/20211220_DFOT/cleaned_ngc/NGC*cleaned.fits')))
f = 0
filename=files[f]
start = time.time()
data_0,header_0=fits.getdata(files[f],header=True)
print(files[f])
source_0 = source(data_0 , header_0)
print('No. of sources: ',len(source_0))
print(source_0)
end = time.time()
print('Execution took:',end - start,' seconds')
radii = [5, 6, 7, 8, 9]
positions = [(source_0['xcentroid'][i], source_0['ycentroid'][i]) for i in range(len(source_0))]
apertures = [CircularAperture(positions, r=r) for r in radii] # Can we be flexible with variable apertures?
an_ap = CircularAnnulus(positions, r_in=14, r_out=15) # Is it needed if we get the 2D backgound map?
start = time.time()
mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4 = magnitude(data_0, apertures, an_ap)
jd = header_0['JD']
jd_list = [jd] * len(source_0['xcentroid'])
h = fits.open(files[f])
wcs = WCS(h[0].header)
ra , dec = wcs.all_pix2world(source_0['xcentroid'],source_0['ycentroid'],0)
print(ra, dec)
#data = np.array([jd_list, ra,dec, mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4])
#transposed_data = np.transpose(data)
with open(f"/home/aries/NGC2506_3/20211220_DFOT/zipped_data_{f}.csv", 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['JD', 'RA', 'DEC', 'Magnitude0', 'Magnitude_error0', 'Magnitude1', 'Magnitude_error1', 'Magnitude2', 'Magnitude_error2', 'Magnitude3', 'Magnitude_error3', 'Magnitude4', 'Magnitude_error4'])
writer.writerows(zip(jd_list, ra,dec, mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4))
end = time.time()
print('Execution took:', end - start, 'seconds')
# In[20]:
# PLOTING TO CHOSE OPTIMUM APERTURE SIZE
x=radii
start = time.time()
plt.figure(figsize = (8,8))
for i in range(0,350):
y=[]
y.append(mag_0[i])
y.append(mag_1[i])
y.append(mag_2[i])
y.append(mag_3[i])
y.append(mag_4[i])
plt.plot(x,y, 'r--',lw=0.5)
plt.xlabel('Aperture diameter (pixels)', fontsize=15)
plt.ylabel('Largest aperture mag - aperture mag', fontsize = 15)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.show()
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[22]:
# CREATING MAGNITUDE APERTURE FILE FOR ALL FRAMES
files=sorted(glob(os.path.join('/home/aries/NGC2506_3/20211220_DFOT/cleaned_ngc/NGC*cleaned.fits')))
radii = [5,6,7,8,9]
start = time.time()
for f in range(len(files)):
filename=files[f]
data_0,header_0=fits.getdata(files[f],header=True)
print(files[f])
source_0 = source(data_0 , header_0)
print('No. of sources:',len(source_0))
positions = [(source_0['xcentroid'][i], source_0['ycentroid'][i]) for i in range(len(source_0))]
apertures = [CircularAperture(positions, r=r) for r in radii]
an_ap = CircularAnnulus(positions, r_in=14, r_out=15)
start = time.time()
mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4 = magnitude(data_0, apertures, an_ap)
jd = header_0['JD']
jd_list = [jd] * len(source_0['xcentroid'])
h = fits.open(files[f])
wcs = WCS(h[0].header)
ra , dec = wcs.all_pix2world(source_0['xcentroid'],source_0['ycentroid'],0)
#print(ra, dec)
#data = np.array([jd_list, ra,dec, mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4])
#transposed_data = np.transpose(data)
with open(f"/home/aries/NGC2506_3/20211220_DFOT/zipped_five_mag_{f}.csv", 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['JD' ,'RA', 'DEC', 'Magnitude0', 'Magnitude_error0', 'Magnitude1', 'Magnitude_error1', 'Magnitude2', 'Magnitude_error2', 'Magnitude3', 'Magnitude_error3', 'Magnitude4', 'Magnitude_error4'])
writer.writerows(zip(jd_list, ra,dec, mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4))
print('file',f,'generated')
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[21]:
#SIMBAD CODE
import astropy.units as u
import csv
from astropy.coordinates import SkyCoord
from astroquery.simbad import Simbad
start = time.time()
# Read RA and DEC from the text file
star_coordinates = []
with open('zipped_data_0.csv', 'r') as file: #
reader = csv.reader(file)
next(reader) # Skip the header row
for row in reader:
ra, dec = row[1], row[2]
star_coordinates.append((float(ra), float(dec)))
# Query Simbad for magnitudes of stars
Simbad.reset_votable_fields()
Simbad.add_votable_fields('flux(R)', 'flux_error(R)')
ra_list = []
dec_list = []
magnitude_list = []
magnitude_error_list = []
for ra, dec in star_coordinates:
coords = SkyCoord(ra=ra, dec=dec, unit=u.deg, frame='icrs')
result_table = Simbad.query_region(coords, radius=5 * u.arcsec)
if result_table is not None:
magnitude = result_table['FLUX_R'][0]
magnitude_error = result_table['FLUX_ERROR_R'][0]
ra_list.append(ra)
dec_list.append(dec)
magnitude_list.append(magnitude)
magnitude_error_list.append(magnitude_error)
else:
ra_list.append(ra)
dec_list.append(dec)
magnitude_list.append('Notfound')
magnitude_error_list.append('Notfound')
# Save the retrieved magnitudes to a .csv file
output_file = 'simbad_magnitudes3.csv'
with open(output_file, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['RA', 'DEC', 'Magnitude', 'Magnitude_error'])
writer.writerows(zip(ra_list, dec_list, magnitude_list, magnitude_error_list))
print(f"Star magnitudes saved to '{output_file}'.")
end = time.time()
print('Execution took: ',end - start,' seconds')
# NOTE: RUNNING SIMBAD CODE IS LUCK, SOMETIMES IT DOESN'T WORK AND MANYTIMES IT WORKS BUT BELOW CODE DON'T GIVE LINEAR PLOT! BE PATIENT...!
# In[ ]:
# In[20]:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Read the CSV files
file1 = pd.read_csv('zipped_data_0.csv') #reference frame file
file2 = pd.read_csv('simbad_magnitudes.csv') #simbad code generated file
# Extract the desired columns
x_values0 = file1['Magnitude0'] # Replace 'desired_column_name' with the actual column name from file1
x_error0 = file1['Magnitude_error0']
y_values = file2['Magnitude'] # Assuming the third column in file2 is named 'Column3'
y_error = file2['Magnitude_error'] # Assuming the fourth column in file2 is named 'Column4'
x_values1 = file1['Magnitude1'] # Replace 'desired_column_name' with the actual column name from file1
x_error1 = file1['Magnitude_error1']
x_values2 = file1['Magnitude2'] # Replace 'desired_column_name' with the actual column name from file1
x_error2 = file1['Magnitude_error2']
x_values3 = file1['Magnitude3'] # Replace 'desired_column_name' with the actual column name from file1
x_error3 = file1['Magnitude_error3']
x_values4 = file1['Magnitude4'] # Replace 'desired_column_name' with the actual column name from file1
x_error4 = file1['Magnitude_error4']
# Convert y_values and y_error to numeric, handling invalid or missing values
y_values = pd.to_numeric(y_values, errors='coerce')
y_error = pd.to_numeric(y_error, errors='coerce')
# Filter out invalid or missing values from x_values, y_values, and y_error
valid_indices = (~np.isnan(x_values0)) & (~np.isnan(y_values)) & (~np.isnan(y_error))
x_values0 = x_values0[valid_indices]
x_values1 = x_values1[valid_indices]
x_values2 = x_values2[valid_indices]
x_values3 = x_values3[valid_indices]
x_values4 = x_values4[valid_indices]
y_values = y_values[valid_indices]
y_error = y_error[valid_indices]
x_error0 = x_error0[valid_indices]
x_error1 = x_error1[valid_indices]
x_error2 = x_error2[valid_indices]
x_error3 = x_error3[valid_indices]
x_error4 = x_error4[valid_indices]
# Plotting
# plt.errorbar(x_values0, y_values,xerr=x_error0, yerr=y_error, fmt='.', )
# plt.errorbar(x_values1, y_values,xerr=x_error1, yerr=y_error, fmt='.', )
plt.errorbar(x_values2, y_values,xerr=x_error2, yerr=y_error, color='blue',fmt='.', label='Data')
# plt.errorbar(x_values3, y_values,xerr=x_error3, yerr=y_error, fmt='.', )
# plt.errorbar(x_values4, y_values,xerr=x_error4, yerr=y_error, fmt='.',)
# Calculate the best-fit line parameters
# slope0, intercept0 = np.polyfit(x_values0, y_values, 1)
# best_fit_line0 = slope0 * x_values0 + intercept0
# Plot the best-fit line
# plt.plot(x_values0, best_fit_line0, color='r', label='Best Fit Line 0')
# equation0 = f'y = {slope0:.2f}x + {intercept0:.2f}'
# slope1, intercept1 = np.polyfit(x_values1, y_values, 1)
# best_fit_line1 = slope1 * x_values1 + intercept1
# # Plot the best-fit line
# plt.plot(x_values1, best_fit_line1, color='g', label='Best Fit Line 1')
# equation1 = f'y = {slope1:.2f}x + {intercept1:.2f}'
slope2, intercept2 = np.polyfit(x_values2, y_values, 1)
best_fit_line2 = slope2 * x_values2 + intercept2
# Plot the best-fit line
plt.plot(x_values2, best_fit_line2, color='blue', label='Best Fit Line 2')
equation2 = f'y = {slope2:.2f}x + {intercept2:.2f}'
# slope3, intercept3 = np.polyfit(x_values3, y_values, 1)
# best_fit_line3 = slope3 * x_values3 + intercept3
# # Plot the best-fit line
# plt.plot(x_values3, best_fit_line3, color='black', label='Best Fit Line 3')
# equation3 = f'y = {slope3:.2f}x + {intercept3:.2f}'
# slope4, intercept4 = np.polyfit(x_values4, y_values, 1)
# best_fit_line4 = slope4 * x_values4 + intercept4
# # Plot the best-fit line
# plt.plot(x_values4, best_fit_line4, color='purple', label='Best Fit Line 4')
# equation4 = f'y = {slope4:.2f}x + {intercept4:.2f}'
# Add equation annotation to the plot
# plt.text(0.5, 0.95, equation0, color = 'r',ha='center', va='center', transform=plt.gca().transAxes)
# plt.text(0.5, 0.9, equation1,color = 'g', ha='center', va='center', transform=plt.gca().transAxes)
plt.text(0.5, 0.85, equation2,color = 'blue', ha='center', va='center', transform=plt.gca().transAxes)
# plt.text(0.5, 0.8, equation3, color = 'black',ha='center', va='center', transform=plt.gca().transAxes)
# plt.text(0.5, 0.75, equation4,color = 'purple', ha='center', va='center', transform=plt.gca().transAxes)
plt.xlabel('Magnitude from code') # Replace with the desired X axis label
plt.ylabel('Magnitude from simbad') # Replace with the desired Y axis label
plt.title('Calibration of magnitude') # Replace with the desired plot title
plt.legend()
plt.show()
mag=y_values - x_values2
plt.hist(mag)
plt.xlabel('Calibration Magnitude')
plt.title('Histogram to correctly pick calibration magnitude')
plt.show()
# In[39]:
#Calibrating reference frame (single)
files=sorted(glob(os.path.join('/home/aries/NGC2506_2/20210215_DFOT/try/NGC*cleaned.fits')))
f = 0
filename=files[f]
start = time.time()
data_0,header_0=fits.getdata(files[f],header=True)
print(files[f])
source_0 = source(data_0 , header_0)
print('No. of sources: ',len(source_0))
end = time.time()
print('Execution took: ',end - start,' seconds')
intercept= 22.10
radii = [7]
positions = [(source_0['xcentroid'][i], source_0['ycentroid'][i]) for i in range(len(source_0))]
apertures = [CircularAperture(positions, r=r) for r in radii]
an_ap = CircularAnnulus(positions, r_in=14, r_out=15)
start = time.time()
mag_0, mag_err_0 = magnitude(data_0, apertures, an_ap)
calibrated_mag = mag_0 + intercept
jd = header_0['JD']
jd_list = [jd] * len(source_0['xcentroid'])
h = fits.open(files[f])
wcs = WCS(h[0].header)
ra , dec = wcs.all_pix2world(source_0['xcentroid'],source_0['ycentroid'],0)
print(ra, dec)
data = np.array([jd_list, ra,dec, mag_0, mag_err_0])
transposed_data = np.transpose(data)
with open(f"Calibrated_zipped_data_{f}.csv", 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['JD', 'RA', 'DEC', 'Calibrated_Magnitude', 'Magnitude_error0'])
writer.writerows(zip(jd_list, ra,dec, calibrated_mag, mag_err_0))
end = time.time()
print('Execution took:', end - start, 'seconds')
# In[45]:
#PLOTING HISTOGRAM ALONG WITH BRIGHT SOURCE BOUNDARY
import pandas as pd
import matplotlib.pyplot as plt
# Read the CSV file
data = pd.read_csv('Calibrated_zipped_data_0.csv')
# Extract the data from the 3rd column
column_3_data = data['Calibrated_Magnitude'] # Replace 'Column3' with the actual column name from your CSV file
# Plotting the histogram
plt.hist(column_3_data, bins=10) # You can adjust the number of bins as per your preference
plt.axvline(x=17, color='r', linestyle='--', label='x=17')
# Add labels and title to the plot
plt.xlabel('Values') # Replace with the desired label for the x-axis
plt.ylabel('Frequency') # Replace with the desired label for the y-axis
plt.title('Histogram of CALIBRATED magnitude (ref) Data') # Replace with the desired title for the plot
plt.legend()
# Display the histogram
plt.show()
# In[48]:
# CREATING MAGNITUDE APERTURE FILE FOR ALL FRAMES
files=sorted(glob(os.path.join('/home/aries/NGC2506_2/20210215_DFOT/try/NGC*cleaned.fits')))
radii = [7]
intercept= 22.10
start = time.time()
for f in range(1,len(files)):
filename=files[f]
data_0,header_0=fits.getdata(files[f],header=True)
print(files[f])
source_0 = source(data_0 , header_0)
print('No. of sources: ',len(source_0))
positions = [(source_0['xcentroid'][i], source_0['ycentroid'][i]) for i in range(len(source_0))]
apertures = [CircularAperture(positions, r=r) for r in radii]
an_ap = CircularAnnulus(positions, r_in=14, r_out=15)
mag_0, mag_err_0 = magnitude(data_0, apertures, an_ap)
calibrated_mag = mag_0 + intercept
jd = header_0['JD']
jd_list = [jd]*len(source_0['xcentroid'])
h = fits.open(files[f])
wcs = WCS(h[0].header)
ra , dec = wcs.all_pix2world(source_0['xcentroid'],source_0['ycentroid'],0)
#data = np.array([jd_list, ra,dec, mag_0, mag_err_0, mag_1, mag_err_1, mag_2, mag_err_2, mag_3, mag_err_3, mag_4, mag_err_4])
#transposed_data = np.transpose(data)
with open(f"Calibrated_zipped_data_{f}.csv", 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['JD' ,'RA', 'DEC', 'Calibrated_Magnitude', 'Magnitude_error0'])
writer.writerows(zip(jd_list, ra,dec, calibrated_mag, mag_err_0))
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[16]:
#Sorting calibrated magnitude files wrt calibrated magnitude
import pandas as pd
f=0
csv_file = f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{f}.csv'
# Read the CSV file
data = pd.read_csv(csv_file)
# Sort the data based on column 4
sorted_data = data.sort_values(by='Calibrated_Magnitude')
# Save the sorted data to a new CSV file
sorted_data.to_csv( f"Calibrated_zipped_data_{f}.csv", index=False)
print("CSV file sorted successfully.")
# ### Ploting light curves
# In[3]:
#Ploting light curve for single star
import pandas as pd
import matplotlib.pyplot as plt
#f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{i}.csv'
start = time.time()
# Read the reference file
reference_file = pd.read_csv('/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_0.csv')
# Get the RA and DEC values from the reference file
reference_ra = reference_file['RA'].iloc[0]
reference_dec = reference_file['DEC'].iloc[0]
# Initialize lists to store the matching target files' JD and magnitude values
matching_jd = []
matching_magnitude = []
# Iterate over the target files
for i in range(1, 375): # Assuming your target files are named as 'target_2.csv', 'target_3.csv', ..., 'target_375.csv'
target_file = pd.read_csv(f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{i}.csv')
# Check if any RA and DEC values in the target file match with the reference values within the tolerance
matches = ((target_file['RA'] - reference_ra).abs() <= 0.0001) & ((target_file['DEC'] - reference_dec).abs() <= 0.0001)
# If there is a match, append the JD and magnitude values to the respective lists
if matches.any():
matching_jd.append(target_file.loc[matches, 'JD'].iloc[0])
matching_magnitude.append(target_file.loc[matches, 'Calibrated_Magnitude'].iloc[0])
# Plot the magnitudes of the matching target files against their JD values
plt.plot(matching_jd, matching_magnitude, 'o')
plt.xlabel('JD')
plt.ylabel('Magnitude')
plt.title('Light curve for 1st star')
plt.show()
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[7]:
#Ploting light cuves for desired number of stars
import pandas as pd
import matplotlib.pyplot as plt
# Read the reference file
reference_file = pd.read_csv('/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_0.csv')
start = time.time()
start_index = 0 # Index of the first row to consider
end_index = 10 # Index of the last row to consider
# Iterate over the RA and DEC values in the reference file
for index, row in reference_file.iloc[start_index:end_index].iterrows():
reference_ra = row['RA']
reference_dec = row['DEC']
# Initialize lists to store the matching target files' JD and magnitude values
matching_jd = []
matching_magnitude = []
# Iterate over the target files
for i in range(1, 375): # Assuming your target files are named as 'target_2.csv', 'target_3.csv', ..., 'target_375.csv'
target_file = pd.read_csv(f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{i}.csv')
# Check if any RA and DEC values in the target file match with the reference values within the tolerance
matches = (
(target_file['RA'] - reference_ra).abs() <= 0.0001
) & (
(target_file['DEC'] - reference_dec).abs() <= 0.0001
)
# If there is a match, append the JD and magnitude values to the respective lists
if matches.any():
matching_jd.append(target_file.loc[matches, 'JD'].iloc[0])
matching_magnitude.append(target_file.loc[matches, 'Calibrated_Magnitude'].iloc[0])
# Plot the magnitudes of the matching target files against their JD values
plt.plot(matching_jd, matching_magnitude, 'o')
plt.xlabel('JD')
plt.ylabel('Magnitude')
plt.title(f'Magnitudes of star with RA={reference_ra} and DEC={reference_dec}')
plt.show()
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[5]:
#Ploting light curves
import pandas as pd
import matplotlib.pyplot as plt
start = time.time()
#f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{i}.csv'
# Read the reference file
reference_file = pd.read_csv('/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_0.csv')
for n in range(0,10):
# Get the RA and DEC values from the reference file
reference_ra = reference_file['RA'].iloc[n]
reference_dec = reference_file['DEC'].iloc[n]
# Initialize lists to store the matching target files' JD and magnitude values
matching_jd = []
matching_magnitude = []
# Iterate over the target files
for i in range(1, 375): # Assuming your target files are named as 'target_2.csv', 'target_3.csv', ..., 'target_375.csv'
target_file = pd.read_csv(f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data/Calibrated_zipped_data_{i}.csv')
# Check if any RA and DEC values in the target file match with the reference values within the tolerance
matches = ((target_file['RA'] - reference_ra).abs() <= 0.0001) & ((target_file['DEC'] - reference_dec).abs() <= 0.0001)
# If there is a match, append the JD and magnitude values to the respective lists
if matches.any():
matching_jd.append(target_file.loc[matches, 'JD'].iloc[0])
matching_magnitude.append(target_file.loc[matches, 'Calibrated_Magnitude'].iloc[0])
mag_mean = np.mean(matching_magnitude)
plt.axhline(y=mag_mean, color='r', linestyle='--', label='mean')
# Plot the magnitudes of the matching target files against their JD values
plt.plot(matching_jd, matching_magnitude, 'o')
plt.xlabel('JD')
plt.ylabel('Magnitude')
plt.title(f'Light curve for {n} star' )
plt.show()
end = time.time()
print('Execution took: ',end - start,' seconds')
# In[ ]:
#PLOTING LIGHT CURVE AND HISTOGRAM OF DEVIATION FROM MEAN - FOR ANY SINGLE STAR
import random
csv_files = [f for f in os.listdir(directory_path) if f.startswith('Mag_file_star_')]
csv_files.sort(key=lambda x: int(x.split('_')[3].split('.')[0]))
random_number = random.randint(0, 375)
df = pd.read_csv(csv_files[80])
print(random_number)
magni_tude = [df.iloc[:,1]]
print(np.mean(magni_tude))
#print(magni_tude)
diff1=[]
for i in range(374):
diff =(df.iloc[i, 1] - np.mean(magni_tude))
diff1.append(diff)
plt.plot(df.iloc[:, 0], df.iloc[:, 1], 'o')
# Adjust the width and height as needed
plt.xlabel('JD')
plt.ylabel('Magnitude')
plt.title('Light curve')
plt.axhline(y=np.mean(magni_tude), color='r', linestyle='--', label='mean')
plt.legend()
plt.show()
plt.hist(diff1, bins=50)
plt.xlabel('values')
plt.ylabel('frequency')
plt.title('Deviation from mean')
#plt.axvline(x=np.mean(magni_tude), color='r', linestyle='--',label='mean')
plt.show()
# ### Transpose of data: now as many files as stars (not frames)
# In[95]:
import pandas as pd
import numpy as np
# Read the reference file
reference_file = pd.read_csv('/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data2/Calibrated_zipped_sorted_0.csv')
# Filter reference file by 'Calibrated_magnitude' < 17
reference_file = reference_file[reference_file['Calibrated_Magnitude'] < 17]
start = time.time()
# Iterate through each row in the reference file
start_index = 0 # Index of the first row to consider
end_index = 2000 # Index of the last row to consider
# Iterate over the RA and DEC values in the reference file
for index, row in reference_file.iloc[start_index:end_index].iterrows():
reference_ra = row['RA']
reference_dec = row['DEC']
# Create an empty DataFrame to store the results for each matching file
matching_results = pd.DataFrame(columns=['JD', 'Calibrated_Magnitude', 'Magnitude_error0'])
# Iterate through each file (excluding the reference file)
for i in range(1, 375):
filename = f'/home/aries/NGC2506_2/20210215_DFOT/try/calibrated_zipped_data2/Calibrated_zipped_sorted_{i}.csv' # Assuming the file names are in the format '1.csv', '2.csv', ...
file_data = pd.read_csv(filename)
# Filter the file data based on matching 'RA' and 'DEC' values with the reference file
matching_data = file_data[(np.isclose(file_data['RA'], reference_ra, atol=0.00001)) &
(np.isclose(file_data['DEC'], reference_dec, atol=0.00001))]
# Append the matching data to the results DataFrame
matching_results = pd.concat([matching_results, matching_data[['JD', 'Calibrated_Magnitude', 'Magnitude_error0']]], ignore_index=True)
# Save the matching results to a CSV file
matching_results.to_csv(f'Mag_file_star_{index}.csv', index=False)
end = time.time()
print('Execution took: ',end - start,' seconds')
# ### Minimum difference using transposed data
# In[ ]:
#TO CHECK IF ALL TRANSPOSED STAR FILES HAVE SAME jd COLUMN: hence to DIRECTLY PLOT MAG/ MAG_DIFF WITH jd
import csv
import os
def check_first_column(csv_files):
first_column_values = set()
for file in csv_files:
with open(file, 'r') as csv_fil:
reader = csv.reader(csv_fil)
for row in reader:
first_column_values.add(row[0])
break # Only check the first row
return len(first_column_values) == 1
# Directory path containing the CSV files
directory_path = '/home/aries/NGC2506_2/20210215_DFOT/try/sortjd_cal_star/'
# Get all CSV files in the directory
#csv_files = [f for f in os.listdir(directory_path) if f.startswith('Mag_') and f.endswith('.csv')]
csv_files =[]
for filename in os.listdir(directory_path):
if filename.startswith('Mag_file_star') and filename.endswith('.csv'):
file_path = os.path.join(directory_path, filename)
csv_files.append(file_path)
# Check if all CSV files have the same first column
if check_first_column(csv_files):
print("All CSV files have the same first column.")
else:
print("CSV files have different values in the first column.")
# In[ ]:
# sorting calibrated_zipped_data wrt any column
import pandas as pd
import os
# Directory containing the CSV files
directory = '/home/aries/NGC2506_2/20210215_DFOT/try/'
output_directory = '/home/aries/NGC2506_2/20210215_DFOT/try/sortjd_cal_star'
os.makedirs(output_directory, exist_ok=True)
# Iterate over each file in the directory
for filename in os.listdir(directory):
if filename.startswith('Mag_file_star') and filename.endswith('.csv'):
file_path = os.path.join(directory, filename)
print('here')
# Read the CSV file
df = pd.read_csv(file_path)
# Sort the DataFrame based on the first column
sorted_df = df.sort_values(by=df.columns[0])
# Generate the new file name
new_filename = os.path.splitext(filename)[0] + '_sorted.csv'
new_file_path = os.path.join(output_directory, new_filename)
# Write the sorted DataFrame to the new file
sorted_df.to_csv(new_file_path, index=False)
# In[8]:
#TO FILTER STAR THAT LIE IN MAG RANGE (+-1)
import pandas as pd
import glob
# Step 1: Read all CSV files
file_list =glob.glob('/home/aries/NGC2506_2/20210215_DFOT/try/Mag_file_star_*.csv')
file_list = sorted(file_list, key=lambda x: int(x.split('_')[5].split('.')[0]))
df_list = []
start = time.time()
for file_name in file_list:
df = pd.read_csv(file_name)
df_list.append(df)
selected_file = file_list[30] # can change this as per center of bin
# Step 3: Read selected file to get the first value in Calibrated_Magnitude column (x)
selected_df = pd.read_csv(selected_file)
x = selected_df['Calibrated_Magnitude'].iloc[0]
print(x)
# Step 4: Filter files where all values in Calibrated_Magnitude lie within range (x-1, x+1)
filtered_files = []
for file_name in file_list:
df = pd.read_csv(file_name)
min_val = df['Calibrated_Magnitude'].min()
max_val = df['Calibrated_Magnitude'].max()
if min_val >= (x - 1) and max_val <= (x + 1):
filtered_files.append(file_name)
print(filtered_files)
# In[5]:
#TO Find the minimum difference between Calibrated_Magnitude of two files
min_diff = float('inf')
min_diff_files = []
for i in range(len(filtered_files)):
for j in range(i + 1, len(filtered_files)):
if i!=j:
file1 = filtered_files[i]
file2 = filtered_files[j]
df1 = pd.read_csv(file1)
df2 = pd.read_csv(file2)
if len(df1)==len(df2)==374:
#print(file2)
diff = abs(df1['Calibrated_Magnitude'].values[:len(df2)] - df2['Calibrated_Magnitude'].values)
if diff.min() < min_diff:
min_diff = diff.min()
min_diff_files = [file1, file2]
print(min_diff_files)
# Step 6: Print the filenames and the minimum difference
for file_name in min_diff_files:
df = pd.read_csv(file_name)
print("File Name:", file_name)
print("Calibrated Magnitude:", df['Calibrated_Magnitude'])
print()
print("Minimum Difference:", min_diff)
# ### PLOTING DIFFERENTIAL LIGHT CURVES (within +-1 range)
# In[25]:
#PLOTING LIGHT CURVES OF STARS WITH MAG RANGE (+-1)
import pandas as pd
import matplotlib.pyplot as plt
start = time.time()