Skip to content

Latest commit

 

History

History
124 lines (105 loc) · 6.44 KB

Douban.md

File metadata and controls

124 lines (105 loc) · 6.44 KB

Experimental setting

Source domain dataset: Douban-Books

Target domain dataset: Douban-Music

Evaluation: all users in target dataset, ratio-based 8:1:1, full sort

Metrics: Recall, Precision, NDCG, MRR, Hit

Topk: 10, 20, 50

Properties:

field_separator: "\t"
source_domain:
  dataset: DoubanBook
  USER_ID_FIELD: user_id
  ITEM_ID_FIELD: item_id
  RATING_FIELD: rating
  TIME_FIELD: timestamp
  NEG_PREFIX: neg_
  LABEL_FIELD: label
  load_col:
    inter: [user_id, item_id, rating]
  user_inter_num_interval: "[5,inf)"
  item_inter_num_interval: "[5,inf)"
  val_interval:
    rating: "[3,inf)"
  drop_filter_field: True

target_domain:
  dataset: DoubanMovie
  USER_ID_FIELD: user_id
  ITEM_ID_FIELD: item_id
  RATING_FIELD: rating
  TIME_FIELD: timestamp
  NEG_PREFIX: neg_
  LABEL_FIELD: label
  load_col:
    inter: [user_id, item_id, rating]
  user_inter_num_interval: "[5,inf)"
  item_inter_num_interval: "[5,inf)"
  val_interval:
    rating: "[3,inf)"
  drop_filter_field: True

epochs: 500
train_batch_size: 4096
eval_batch_size: 409600
valid_metric: NDCG@10

For fairness, we restrict users' and items' embedding dimension as following. Please adjust the name of the corresponding args of different models.

embedding_size: 64

Dataset Statistics

Dataset #Users #items #Interactions Sparsity
Douban-Book 18085 33067 809248 99.86%
Douban-Movie 22041 25802 2552305 99.55%

Number of Overlapped User: 15434

Number of Overlapped Item: 0

Evaluation Results

Method Recall@10 Precesion@10 NDCG@10 MRR@10 Hit@10
CoNet 0.1034 0.058 0.1011 0.1538 0.3224
CLFM 0.0885 0.0515 0.0861 0.1328 0.2948
DTCDR 0.0937 0.0582 0.0956 0.1487 0.3126
DeepAPF 0.067 0.0471 0.0737 0.1218 0.2626
BiTGCF 0.1124 0.063 0.109 0.1651 0.3485
CMF 0.0976 0.0588 0.0985 0.1531 0.3246
EMCDR 0.1169 0.067 0.1169 0.177 0.3568
NATR 0.081 0.0481 0.0757 0.1141 0.2774
SSCDR 0.1068 0.0614 0.1021 0.1483 0.3299
DCDCSR 0.0948 0.0531 0.0928 0.1464 0.3101
Method Recall@20 Precesion@20 NDCG@20 MRR@20 Hit@20
CoNet 0.1581 0.0477 0.1108 0.1606 0.42
CLFM 0.1393 0.0434 0.096 0.1396 0.3937
DTCDR 0.149 0.0481 0.105 0.1555 0.4117
DeepAPF 0.1063 0.0393 0.0799 0.1277 0.3481
BiTGCF 0.1734 0.0522 0.1207 0.1721 0.4503
CMF 0.1521 0.0489 0.1086 0.1598 0.4216
EMCDR 0.1793 0.0545 0.1276 0.1838 0.4564
NATR 0.1341 0.042 0.0874 0.1213 0.3813
SSCDR 0.1695 0.0529 0.1153 0.1559 0.4408
DCDCSR 0.1458 0.0434 0.102 0.1529 0.4044
Method Recall@50 Precesion@50 NDCG@50 MRR@50 Hit@50
CoNet 0.2687 0.0351 0.1332 0.1653 0.5653
CLFM 0.2433 0.033 0.1182 0.1442 0.5372
DTCDR 0.2591 0.0359 0.1272 0.1601 0.5551
DeepAPF 0.1943 0.0301 0.0977 0.1318 0.4771
BiTGCF 0.2891 0.0387 0.1452 0.1766 0.5903
CMF 0.262 0.0368 0.132 0.1643 0.561
EMCDR 0.2936 0.0393 0.1504 0.1883 0.5943
NATR 0.2359 0.0324 0.1098 0.126 0.5262
SSCDR 0.291 0.0404 0.1412 0.1609 0.5927
DCDCSR 0.2471 0.0319 0.1235 0.1574 0.5424

Hyper-parameters

Method Best hyper-parameters
CoNet learning_rate=0.005
mlp_hidden_size=[64,32,16,8]
reg_weight=0.01
CLFM learning_rate=0.0005
share_embedding_size=48
alpha=0.1
reg_weight=0.0001
DTCDR learning_rate=0.0005
mlp_hidden_size=[64,64]
dropout_prob=0.2
alpha=0.1
base_model=NeuMF
DeepAPF learning_rate=0.0005
BiTGCF learning_rate=0.0005
n_layers=2
concat_way=mean
lambda_source=0.8
lambda_target=0.8
drop_rate=0.1
reg_weight=0.01
CMF learning_rate=0.0005
lambda=0.9
gamma=0.1
alpha=0.1
EMCDR learning_rate=0.001
mapping_function=non_linear
mlp_hidden_size=[64]
overlap_batch_size=100
reg_weight=0.01
latent_factor_model=BPR
loss_type=BPR
NATR learning_rate=0.001
max_inter_length=100
reg_weight=1e-5
SSCDR learning_rate=0.0005
lambda=0
margin=0.2
overlap_batch_size=1024
DCDCSR learning_rate=0.0005
mlp_hidden_size=[128]
k=10