-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathNavierStokes.m
298 lines (292 loc) · 10.6 KB
/
NavierStokes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
%% MATLAB CODE TO SOLVE THE TWO DIMENSIONAL STEADY STATE INCOMPRESSIBLE FORM OF THE NAVIER STOKES EQUATIONS
%%WITH MASS CONSERVATION COUPLING USING Semi-Implicit Method for Pressure
%%linked Coupling (SIMPLE) Algorithm
%% Author: R Surya Narayan
%% Date: 8th April 2020 | VERSION V1.0
%% Discretization pronciple: FVM (Finite Volume Method)
%% EQUATION SOLVED: grad.(<V>) = 0; (Continuity/mass conservation) and steady incompressible Navier Stokes- grad.(rho*Vj<V>)=-grad(P)+grad.(mu*grad(Vj))
%% STAGGERED GRID Scheme used to represent different control volumes for velocity and pressure
%% Interpolation method used for velocities: First order accurate upwinding scheme
%% Problem: Flow of liquid through a driven cavity
%% PREAMBLE
clear all; clc; close all;
%% Problem setup and Variable declaration
%% Boundary and Mesh Parameters
length = 1; %length along the positive x-directon of the flow domain
breadth = 1;%length along the positive y-direction of the flow domain
mesh_x = 60; %number of cells discretized along the x-direction
mesh_y = 60; %number of cells discretized along the y-direction
dx = length/mesh_x; %cell size along the x-direction
dy = breadth/mesh_y; %cell size along the y-direction
% fluid properties
mu = 1; %viscosity of the fluid
rho = 1000; %density of the fluid
%iteration parameters and relaxation factors
omega_u = 0.7; %relaxation parameter for u momentum
omega_v = 0.7; %relaxation parameter for v momentum
omega_p = 0.3; %relaxation parameter for pressure correction
outer_iterations = 1000; %number of times SIMPLE is going to be iterated through for convergence
iter_v = 10; %number of iterations for u and v momentum solvers
iter_p = 100; %number of iterations for pressure correction solver
%% Variables to solve for including coefficients
u = zeros(mesh_y+2,mesh_x+1);%u momentum
v = zeros(mesh_y+1,mesh_x+2);%v momentum
u_old = zeros(mesh_y+2,mesh_x+1); %guessed x-momentum on the cell centers
v_old = zeros(mesh_y+1,mesh_x+2); %guessed y-momentum on the cell centers
p_prime = zeros(mesh_y+2,mesh_x+2); %pressure correction
pressure = zeros(mesh_y+2,mesh_x+2);%pressure term
apu = ones(mesh_y+2,mesh_x+2);%coefficient of p-term in u momentum
apv = ones(mesh_y+2,mesh_x+2);%coefficient of p-term in v momentum
app = ones(mesh_y+2,mesh_x+2);%coefficient of p-term for pressure corrections
ae = zeros(mesh_y+2,mesh_x+2);%east coefficient for velocities
as = zeros(mesh_y+2,mesh_x+2);%south coefficient for velocities
an = zeros(mesh_y+2,mesh_x+2);%north coefficient for velocities
aw = zeros(mesh_y+2,mesh_x+2);%west coefficient for velocities
source = zeros(mesh_y+2,mesh_x+2); %source term at each stage to check mass conservation
%initialize variables for the driven cavity problem
u(mesh_y+2,:) = 5; %u velocity is fixed along the north boundary
%other four sides are the walls hence the velocity is zero, this happens to
%be our default declaration
u_old = u;
v_old = v;
%% Solver using SIMPLE-algorithm
%Main outer loop
for k = 1:outer_iterations
%X-Momentum solver
%initialize coefficients for the u-momentum the centers
for j = 2:mesh_x
for i=2:mesh_y+1
ae(i,j) = max(-0.5*rho*dy*(u_old(i,j)+u_old(i,j+1)),0) + mu*dy/dx;
aw(i,j) = max(0.5*rho*dy*(u_old(i,j)+u_old(i,j-1)),0) + mu*dy/dx;
an(i,j) = max(-0.5*rho*dx*(v_old(i,j)+v_old(i,j+1)),0) + mu*dx/dy;
as(i,j) = max(0.5*rho*dx*(v_old(i-1,j)+v_old(i-1,j+1)),0) + mu*dx/dy;
end
end
%correct the boundary values on the north and south boundary for the
%X-momentum
for j=2:mesh_x
an(mesh_x+1,j) = max(-0.5*rho*dx*(v_old(mesh_y+1,j)+v_old(mesh_y+1,j+1)),0) + mu*dx/(dy/2);
as(2,j) = max(0.5*rho*dx*(v_old(1,j)+v_old(1,j+1)),0) + mu*dx/(dy/2);
end
apu = ae+aw+as+an;
%apu(15,14) = 1e30; to block out cells
apu = apu/omega_u;
%iterate on the x-momentum equations
for var = 1:iter_v
for j = 2:mesh_x
for i = 2:mesh_y+1
u(i,j) = (1-omega_u)*u_old(i,j) + (1/apu(i,j))*...
(ae(i,j)*u(i,j+1) + aw(i,j)*u(i,j-1) + an(i,j)*u(i+1,j)+ as(i,j)*u(i-1,j) + dy*(pressure(i,j)-pressure(i,j+1)));
end
end
end
%Y-momentum solver
%write the values of coefficients
for j = 2:mesh_x+1
for i = 2:mesh_y
ae(i,j) = max(-0.5*rho*dy*(u_old(i+1,j)+u_old(i,j)),0)+ mu*dy/dx;
aw(i,j) = max(0.5*rho*dy*(u_old(i+1,j-1)+u_old(i,j-1)),0) + mu*dy/dx;
an(i,j) = max(-0.5*rho*dx*(v_old(i,j)+v_old(i+1,j)),0) + mu*dx/dy;
as(i,j) = max(0.5*rho*dx*(v_old(i,j)+v_old(i-1,j)),0) + mu*dx/dy;
end
end
%overwrite east west boundary values
for i = 2:mesh_y
ae(i,mesh_y+1) = max(-0.5*rho*dy*(u_old(i+1,mesh_y+1)+u_old(i,mesh_y+1)),0) + mu*dy/(dx/2);
aw(i,2) = max(0.5*rho*dy*(u_old(i+1,1)+u_old(i,1)),0) + mu*dy/(dx/2);
end
apv = ae+aw+as+an;
%iterative solver
apv = apv/omega_v;
for var = 1:iter_v
for j = 2:mesh_x+1
for i = 2:mesh_y
v(i,j) = v_old(i,j)*(1-omega_v) + (1/apv(i,j))*...
(ae(i,j)*v(i,j+1) + aw(i,j)*v(i,j-1) + as(i,j)*v(i-1,j)+ an(i,j)*v(i+1,j) + dx*(pressure(i,j)-pressure(i+1,j)));
end
end
end
%pressure correction equation
%assign values to the coeffi+cients
for i = 2:mesh_y+1
for j = 2:mesh_x+1
ae(i,j) = (rho*dy^2)/apu(i,j);
aw(i,j) = (rho*dy^2)/apu(i,j-1);
as(i,j) = (rho*dx^2)/apv(i-1,j);
an(i,j) = (rho*dx^2)/apv(i,j);
end
end
%pressure corrections shouldn't be applied on the boundary velocities
%hence set the values to zero
ae(:,mesh_x+1) = 0;
aw(:,2) = 0;
an(mesh_y+1,:)=0;
as(2,:) = 0;
app = ae+aw+as+an;
app(2,2) = 1e30;
%compute the source term
source=0;
for i = 2:mesh_y+1
for j = 2:mesh_x+1
source(i,j) = rho*dy*(u(i,j)-u(i,j-1)) + rho*dx*(v(i,j)-v(i-1,j));
end
end
if rem(k,100)==0
fprintf('%0.4f',total);
fprintf('\n');
end
%SOR iterations for pressure correction
for var = 1:1100
for j = 2:mesh_x+1
for i = 2:mesh_y+1
p_prime(i,j) = p_prime(i,j) + (1.7/app(i,j))*...
(ae(i,j)*p_prime(i,j+1) + aw(i,j)*p_prime(i,j-1)...
+ an(i,j)*p_prime(i+1,j) + as(i,j)*p_prime(i-1,j)...
-source(i,j) - (p_prime(i,j)*app(i,j)));
end
end
end
%apply the pressure corrections
for j = 2:mesh_x+1
for i = 2:mesh_y+1
pressure(i,j) = pressure(i,j)+omega_p*p_prime(i,j);
end
end
%apply these corrections to get new velocities
%u-momentum
for i = 2 :mesh_y+1
for j = 2:mesh_x
u(i,j) = u(i,j) + (dy/apu(i,j))*(p_prime(i,j)-p_prime(i,j+1));
end
end
%v-momentum
for i = 2:mesh_y
for j = 2:mesh_y+1
v(i,j) = v(i,j)+(dx/apv(i,j))*(p_prime(i,j)-p_prime(i+1,j));
end
end
%update velocities
u_old = u;
v_old = v;
%recompute source term to check mass conservation
for i = 2:mesh_y+1
for j = 2:mesh_x+1
source(i,j) = rho*dy*(u(i,j)-u(i,j-1)) + rho*dx*(v(i,j)-v(i-1,j));
end
end
total = sqrt(sum(source.^2,'all'));
%monitor mass conservation
if rem(k,100)==0
fprintf('%0.4f',total);
fprintf('\n');
end
end
%END of the NAVIER STOKES SOLVER
%% POST PROCESSING AND DISPLAY PLOTS
%quiver-plot: a type of plot where the velocities are represented with
%arrows give (x,y) components at a given coordinate or (u,v) at (x,y)
%hence interpolate staggered mesh-velocities to the corners of the main
%control volume after computing X, Y vectors as cell corner coordinates
%X-coordinates computation
X = [];
for i = 1:mesh_y+1
x = (i-1)*dx;
X = [X,x];
end
%Y-coordinates computation
Y = [];
for j = 1:mesh_x+1
y = (j-1)*dy;
Y = [Y,y];
end
%% X-velocity at grid-points computation
%interior grid points
for i = 2:mesh_y
for j = 2:mesh_x
U(i,j) = (u(i+1,j)+u(i,j))/2;
end
end
%boundaries excluding corners
%north boundary
U(mesh_y+1,2:mesh_x) = u(mesh_y+2,2:mesh_x);
%south boundary
U(1,2:mesh_x) = u(1,2:mesh_x);
%east boundary
U(2:mesh_y,mesh_x+1) = (u(2:mesh_y,mesh_x+1)+ u(3:mesh_y+1,mesh_x+1))/2;
%west boundary
U(2:mesh_y,1) = (u(2:mesh_y,1)+ u(3:mesh_y+1,1))/2;
%corner points
%south-west
U(1,1) = 0;
%south-east
U(mesh_x+1,1) = 0;
%north-west
U(mesh_y+1,1)=0;
%north-east
U(mesh_y+1,mesh_x+1) = 0;
%% Y-velocity at grid-points computation
%interior grid points
for i = 2:mesh_y
for j = 2:mesh_x
V(i,j) = (v(i,j+1)+v(i,j))/2;
end
end
%boundaries excluding the corners
%north
V(mesh_y+1,2:mesh_x) = 0.5*(v(mesh_y+1,2:mesh_x)+ v(mesh_y+1,3:mesh_x+1));
%south
V(1,2:mesh_x) = 0.5*(v(1,2:mesh_x)+ v(1,3:mesh_x+1));
%east
V(2:mesh_y,mesh_x+1) = 0.5*(v(2:mesh_y,mesh_x+1)+v(3:mesh_y+1,mesh_x+1));
%west
V(2:mesh_y,1) = 0.5*(v(2:mesh_y,1)+v(3:mesh_y+1,1));
%corner grid-points
%southwest
V(1,1) = 0;
%southeast
V(1,mesh_x+1) = 0;
%northwest
V(mesh_y+1,1) = 0;
%northeast
V(mesh_y+1,mesh_x+1) = 0;
%quiverplot for velocities
figure(1);
quiver(X,Y,U,V,'Color','k','LineWidth',2);
%% pressure terms computation
P = ones(mesh_y+1,mesh_x+1);
%interior points
for i = 2:mesh_y
for j=2:mesh_x
P(i,j) = 0.25*(pressure(i,j) + pressure(i+1,j) + pressure(i,j+1) + pressure(i+1,j+1));
end
end
%boundaries except corners
%west boundary
P(2:mesh_y,1) = 0.5*(pressure(2:mesh_y,1)+ pressure(3:mesh_y+1,1));
%east
P(2:mesh_y,mesh_x+1) = 0.5*(pressure(2:mesh_y,mesh_x+1) + pressure(3:mesh_y+1,mesh_x+1));
%north
P(mesh_y+1,2:mesh_x) = 0.5*(pressure(mesh_y+1,2:mesh_x) + pressure(mesh_y+1,3:mesh_x+1));
%south
P(1,2:mesh_x) = 0.5*(pressure(1,2:mesh_x) + pressure(1,3:mesh_x+1));
%corner points
%southwest
P(1,1) = pressure(2,2);
%southeast
P(1,mesh_x+1) = pressure(2,mesh_x+1);
%northeast
P(mesh_y+1,mesh_x+1) = pressure(mesh_y+1,mesh_x+1);
%northwest
P(mesh_y+1,1) = pressure(mesh_y+1,2);
figure(2);
contourf(X,Y,U,'ShowText','off','LineColor','none','LevelStep',0.01);
colormap(jet);
title('X-velocity Contours for lid-driven cavity flow');
figure(3);
contourf(X,Y,V,'ShowText','off','LineColor','none','LevelStep',0.01);
colormap(jet);
title('Y-velocity Contours for lid-driven cavity flow');
figure(4);
contourf(X,Y,P,'ShowText','off','LineColor','none','LevelStep',0.01);
colormap(jet);
title('Pressure Contours for lid-driven cavity flow');