-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4).Eye_Gaze_Detection2.py
148 lines (109 loc) · 6 KB
/
4).Eye_Gaze_Detection2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import cv2
import numpy as np
import dlib
from math import hypot
# we used the detector to detect the frontal face
detector = dlib.get_frontal_face_detector()
# it will dectect the facial landwark points
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
font = cv2.FONT_HERSHEY_PLAIN
#We create a function that we will need later on to detect the medium point.
#On this function we simply put the coordinates of two points and will return the medium point
#(the points in the middle between the two points).
def midpoint(p1 ,p2):
return int((p1.x + p2.x)/2), int((p1.y + p2.y)/2)
def get_blinking_ratio(eye_points, facial_landmarks):
# to detect the left_side of a left eye
left_point = (facial_landmarks.part(eye_points[0]).x, facial_landmarks.part(eye_points[0]).y)
# to detect the right_side of the left eye
right_point = (facial_landmarks.part(eye_points[3]).x, facial_landmarks.part(eye_points[3]).y)
# to detect the mid point for the center of top in left eye
center_top = midpoint(facial_landmarks.part(eye_points[1]), facial_landmarks.part(eye_points[2]))
# to detect the mid point for the center of the bottom in left eye
center_bottom = midpoint(facial_landmarks.part(eye_points[5]), facial_landmarks.part(eye_points[4]))
# to calculate horizontal line distance
hor_line_lenght = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
# to calculate vertical line distance
ver_line_lenght = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
# to calculate ratio
ratio = hor_line_lenght / ver_line_lenght
return ratio
def get_gaze_ratio(eye_points, facial_landmarks):
# Gaze detection
# getting the area from the frame of the left eye only
left_eye_region = np.array([(facial_landmarks.part(eye_points[0]).x, facial_landmarks.part(eye_points[0]).y),
(facial_landmarks.part(eye_points[1]).x, facial_landmarks.part(eye_points[1]).y),
(facial_landmarks.part(eye_points[2]).x, facial_landmarks.part(eye_points[2]).y),
(facial_landmarks.part(eye_points[3]).x, facial_landmarks.part(eye_points[3]).y),
(facial_landmarks.part(eye_points[4]).x, facial_landmarks.part(eye_points[4]).y),
(facial_landmarks.part(eye_points[5]).x, facial_landmarks.part(eye_points[5]).y)],
np.int32)
# cv2.polylines(frame, [left_eye_region], True, 255, 2)
height, width, _ = frame.shape
# create the mask to extract xactly the inside of the left eye and exclude all the sorroundings.
mask = np.zeros((height, width), np.uint8)
cv2.polylines(mask, [left_eye_region], True, 255, 2)
cv2.fillPoly(mask, [left_eye_region], 255)
eye = cv2.bitwise_and(gray, gray, mask=mask)
# We now extract the eye from the face and we put it on his own window.Onlyt we need to keep in mind that wecan only cut
# out rectangular shapes from the image, so we take all the extremes points of the eyes to get the rectangle
min_x = np.min(left_eye_region[:, 0])
max_x = np.max(left_eye_region[:, 0])
min_y = np.min(left_eye_region[:, 1])
max_y = np.max(left_eye_region[:, 1])
gray_eye = eye[min_y: max_y, min_x: max_x]
# threshold to seperate iris and pupil from the white part of the eye.
_, threshold_eye = cv2.threshold(gray_eye, 70, 255, cv2.THRESH_BINARY)
# dividing the eye into 2 parts .left_side and right_side.
height, width = threshold_eye.shape
left_side_threshold = threshold_eye[0: height, 0: int(width / 2)]
left_side_white = cv2.countNonZero(left_side_threshold)
right_side_threshold = threshold_eye[0: height, int(width / 2): width]
right_side_white = cv2.countNonZero(right_side_threshold)
if left_side_white == 0:
gaze_ratio = 1
elif right_side_white == 0:
gaze_ratio = 5
else:
gaze_ratio = left_side_white / right_side_white
return (gaze_ratio)
# to open webcab to capture the image
cap = cv2.VideoCapture(0)
while True:
_, frame = cap.read()
# showing direction
new_frame = np.zeros((500, 500, 3), np.uint8)
# change the color of the frame captured by webcam to grey
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# to detect faces from grey color frame
faces = detector(gray)
for face in faces:
# to detect the landmarks of a face
landmarks = predictor(gray, face)
left_eye_ratio = get_blinking_ratio([36, 37, 38, 39, 40, 41], landmarks)
right_eye_ratio = get_blinking_ratio([42, 43, 44, 45, 46, 47], landmarks)
blinking_ratio = (left_eye_ratio + right_eye_ratio) / 2
if blinking_ratio > 5.7:
cv2.putText(frame, "BLINKING", (50, 150), font, 7, (255, 0, 0))
# threshold_eye = cv2.resize(threshold_eye,None ,fx = 5,fy = 5)
# eye = cv2.resize(gray_eye, None,fx = 5,fy = 5)
gaze_ratio_left_eye = get_gaze_ratio([36, 37, 38, 39, 40, 41], landmarks)
gaze_ratio_right_eye = get_gaze_ratio([42, 43, 44, 45, 46, 47], landmarks)
gaze_ratio = (gaze_ratio_right_eye + gaze_ratio_left_eye) / 2
if gaze_ratio <= 1:
cv2.putText(frame, "RIGHT", (50, 100), font, 2, (0, 0, 255), 3)
new_frame[:] = (0, 0, 255) # blue
elif 1 < gaze_ratio < 1.7:
cv2.putText(frame, "CENTER", (50, 100), font, 2, (0, 0, 255), 3) # black
else:
new_frame[:] = (255, 0, 0) # red
cv2.putText(frame, "LEFT", (50, 100), font, 2, (0, 0, 255), 3)
# cv2.putText(frame,str(gaze_ratio),(50,100),font, 2, (0,0,255), 3)
cv2.imshow("Frame", frame)
cv2.imshow("NEW_Frame", new_frame)
key = cv2.waitKey(1)
# close the webcam when escape key is pressed
if key == 27:
break
cap.release()
cv2.destroyAllWindows()