From 39250fd6ff74c7a89d013568aa9cdb4441dcd6de Mon Sep 17 00:00:00 2001 From: Tim Hoffmann <2836374+timhoffm@users.noreply.github.com> Date: Sun, 5 Jan 2025 23:26:57 +0100 Subject: [PATCH] DOC: Improve log scale example - Remove https://matplotlib.org/stable/gallery/scales/semilogx_demo.html It is redundant to the other log scale example. - Explain that semilogx/semilogy/loglog are shortcuts. - Tune data/visualization --- galleries/examples/scales/log_demo.py | 94 +++++++++++++++------- galleries/examples/scales/semilogx_demo.py | 23 ------ 2 files changed, 65 insertions(+), 52 deletions(-) delete mode 100644 galleries/examples/scales/semilogx_demo.py diff --git a/galleries/examples/scales/log_demo.py b/galleries/examples/scales/log_demo.py index debbad258bc6..ce0c77551c0a 100644 --- a/galleries/examples/scales/log_demo.py +++ b/galleries/examples/scales/log_demo.py @@ -1,47 +1,83 @@ """ -======== -Log Demo -======== +========= +Log scale +========= Examples of plots with logarithmic axes. + +You can set the x/y axes to be logarithmic by passing "log" to `~.Axes.set_xscale` / +`~.Axes.set_yscale`. + +Convenience functions ``semilogx``, ``semilogy``, and ``loglog`` +---------------------------------------------------------------- +Since plotting data on semi-logarithmic or double-logarithmic scales is very common, +the functions `~.Axes.semilogx`, `~.Axes.semilogy`, and `~.Axes.loglog` are shortcuts +for setting the scale and plotting data; e.g. ``ax.semilogx(x, y)`` is equivalent to +``ax.set_xscale('log'); ax.plot(x, y)``. """ import matplotlib.pyplot as plt import numpy as np -# Data for plotting -t = np.arange(0.01, 20.0, 0.01) - -# Create figure -fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) - -# log y axis -ax1.semilogy(t, np.exp(-t / 5.0)) -ax1.set(title='semilogy') +fig, (ax1, ax2, ax3) = plt.subplots(1, 3, layout='constrained', figsize=(7, 7/3)) +# log x axis +t = np.arange(0.01, 10.0, 0.01) +ax1.semilogx(t, np.sin(2 * np.pi * t)) +ax1.set(title='semilogx') ax1.grid() +ax1.grid(which="minor", color="0.9") -# log x axis -ax2.semilogx(t, np.sin(2 * np.pi * t)) -ax2.set(title='semilogx') +# log y axis +x = np.arange(4) +ax2.semilogy(4*x, 10**x, 'o--') +ax2.set(title='semilogy') ax2.grid() +ax2.grid(which="minor", color="0.9") # log x and y axis -ax3.loglog(t, 20 * np.exp(-t / 10.0)) -ax3.set_xscale('log', base=2) -ax3.set(title='loglog base 2 on x') +x = np.array([1, 10, 100, 1000]) +ax3.loglog(x, 5 * x, 'o--') +ax3.set(title='loglog') ax3.grid() +ax3.grid(which="minor", color="0.9") + +# %% +# Logarithms with other bases +# --------------------------- +# By default, the log scale is to the base 10. One can change this via the *base* +# parameter. +fig, ax = plt.subplots() +ax.bar(["L1 cache", "L2 cache", "L3 cache", "RAM", "SSD"], + [32, 1_000, 32_000, 16_000_000, 512_000_000]) +ax.set_yscale('log', base=2) +ax.set_yticks([1, 2**10, 2**20, 2**30], labels=['kB', 'MB', 'GB', 'TB']) +ax.set_title("Typical memory sizes") +ax.yaxis.grid() + +# %% +# Dealing with negative values +# ---------------------------- +# Non-positive values cannot be displayed on a log scale. The scale has two options +# to handle these. Either mask the values so that they are ignored, or clip them +# to a small positive value. Which one is more suited depends on the type of the +# data and the visualization. +# +# The following example contains errorbars going negative. If we mask these values, +# the bar vanishes, which is not desirable. In contrast, clipping makes the value +# small positive (but well below the used scale) so that the error bar is drawn +# to the edge of the Axes. +x = np.linspace(0.0, 2.0, 10) +y = 10**x +yerr = 1.75 + 0.75*y -# With errorbars: clip non-positive values -# Use new data for plotting -x = 10.0**np.linspace(0.0, 2.0, 20) -y = x**2.0 +fig, (ax1, ax2) = plt.subplots(1, 2, layout="constrained", figsize=(6, 3)) +fig.suptitle("errorbars going negative") +ax1.set_yscale("log", nonpositive='mask') +ax1.set_title('nonpositive="mask"') +ax1.errorbar(x, y, yerr=yerr, fmt='o', capsize=5) -ax4.set_xscale("log", nonpositive='clip') -ax4.set_yscale("log", nonpositive='clip') -ax4.set(title='Errorbars go negative') -ax4.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y) -# ylim must be set after errorbar to allow errorbar to autoscale limits -ax4.set_ylim(bottom=0.1) +ax2.set_yscale("log", nonpositive='clip') +ax2.set_title('nonpositive="clip"') +ax2.errorbar(x, y, yerr=yerr, fmt='o', capsize=5) -fig.tight_layout() plt.show() diff --git a/galleries/examples/scales/semilogx_demo.py b/galleries/examples/scales/semilogx_demo.py deleted file mode 100644 index 00c708a03479..000000000000 --- a/galleries/examples/scales/semilogx_demo.py +++ /dev/null @@ -1,23 +0,0 @@ -""" -======== -Log Axis -======== - -.. redirect-from:: /gallery/scales/log_test - -This is an example of assigning a log-scale for the x-axis using -`~.axes.Axes.semilogx`. -""" - -import matplotlib.pyplot as plt -import numpy as np - -fig, ax = plt.subplots() - -dt = 0.01 -t = np.arange(dt, 20.0, dt) - -ax.semilogx(t, np.exp(-t / 5.0)) -ax.grid() - -plt.show()