-
Notifications
You must be signed in to change notification settings - Fork 4
/
utlis.py
314 lines (278 loc) · 12.9 KB
/
utlis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
import dgl
import numpy as np
import json
import pickle
import random
NODE_TYPE = {'entity': 0, 'root': 1, 'relation':2}
def write_txt(batch, seqs, w_file, args):
# converting the prediction to real text.
ret = []
for b, seq in enumerate(seqs):
txt = []
for token in seq:
# copy the entity
if token>=len(args.text_vocab):
ent_text = batch['raw_ent_text'][b][token-len(args.text_vocab)]
ent_text = filter(lambda x:x!='<PAD>', ent_text)
txt.extend(ent_text)
else:
if int(token) not in [args.text_vocab(x) for x in ['<PAD>', '<BOS>', '<EOS>']]:
txt.append(args.text_vocab(int(token)))
if int(token) == args.text_vocab('<EOS>'):
break
w_file.write(' '.join([str(x) for x in txt])+'\n')
ret.append([' '.join([str(x) for x in txt])])
return ret
def replace_ent(x, ent, V):
# replace the entity
mask = x>=V
if mask.sum()==0:
return x
nz = mask.nonzero()
fill_ent = ent[nz, x[mask]-V]
x = x.masked_scatter(mask, fill_ent)
return x
def len2mask(lens, device):
max_len = max(lens)
mask = torch.arange(max_len, device=device).unsqueeze(0).expand(len(lens), max_len)
mask = mask >= torch.LongTensor(lens).to(mask).unsqueeze(1)
return mask
def pad(var_len_list, out_type='list', flatten=False):
if flatten:
lens = [len(x) for x in var_len_list]
var_len_list = sum(var_len_list, [])
max_len = max([len(x) for x in var_len_list])
if out_type=='list':
if flatten:
return [x+['<PAD>']*(max_len-len(x)) for x in var_len_list], lens
else:
return [x+['<PAD>']*(max_len-len(x)) for x in var_len_list]
if out_type=='tensor':
if flatten:
return torch.stack([torch.cat([x, \
torch.zeros([max_len-len(x)]+list(x.shape[1:])).type_as(x)], 0) for x in var_len_list], 0), lens
else:
return torch.stack([torch.cat([x, \
torch.zeros([max_len-len(x)]+list(x.shape[1:])).type_as(x)], 0) for x in var_len_list], 0)
class Vocab(object):
def __init__(self, max_vocab=2**31, min_freq=-1, sp=['<PAD>', '<BOS>', '<EOS>', '<UNK>']):
self.i2s = []
self.s2i = {}
self.wf = {}
self.max_vocab, self.min_freq, self.sp = max_vocab, min_freq, sp
def __len__(self):
return len(self.i2s)
def __str__(self):
return 'Total ' + str(len(self.i2s)) + str(self.i2s[:10])
def update(self, token):
if isinstance(token, list):
for t in token:
self.update(t)
else:
self.wf[token] = self.wf.get(token, 0) + 1
def build(self):
self.i2s.extend(self.sp)
sort_kv = sorted(self.wf.items(), key=lambda x:x[1], reverse=True)
for k,v in sort_kv:
if len(self.i2s)<self.max_vocab and v>=self.min_freq and k not in self.sp:
self.i2s.append(k)
self.s2i.update(list(zip(self.i2s, range(len(self.i2s)))))
def __call__(self, x):
if isinstance(x, int):
return self.i2s[x]
else:
return self.s2i.get(x, self.s2i['<UNK>'])
def save(self, fname):
pass
def load(self, fname):
pass
def at_least(x):
# handling the illegal data
if len(x) == 0:
return ['<UNK>']
else:
return x
class Example(object):
def __init__(self, title, ent_text, ent_type, rel, text):
# one object corresponds to a data sample
self.raw_title = title.split()
self.raw_ent_text = [at_least(x.split()) for x in ent_text]
assert min([len(x) for x in self.raw_ent_text])>0, str(self.raw_ent_text)
self.raw_ent_type = ent_type.split() # <method> .. <>
self.raw_rel = []
for r in rel:
rel_list = r.split()
for i in range(len(rel_list)):
if i>0 and i<len(rel_list)-1 and rel_list[i-1]=='--' and rel_list[i]!=rel_list[i].lower() and rel_list[i+1]=='--':
self.raw_rel.append([rel_list[:i-1], rel_list[i-1]+rel_list[i]+rel_list[i+1], rel_list[i+2:]])
break
self.raw_text = text.split()
self.graph = self.build_graph()
def __str__(self):
return '\n'.join([str(k)+':\t'+str(v) for k, v in self.__dict__.items()])
def __len__(self):
return len(self.raw_text)
@staticmethod
def from_json(json_data):
return Example(json_data['title'], json_data['entities'], json_data['types'], json_data['relations'], json_data['abstract'])
def build_graph(self):
graph = dgl.DGLGraph()
ent_len = len(self.raw_ent_text)
rel_len = len(self.raw_rel) # treat the repeated relation as different nodes, refer to the author's code
graph.add_nodes(ent_len, {'type': torch.ones(ent_len) * NODE_TYPE['entity']})
graph.add_nodes(1, {'type': torch.ones(1) * NODE_TYPE['root']})
graph.add_nodes(rel_len*2, {'type': torch.ones(rel_len*2) * NODE_TYPE['relation']})
graph.add_edges(ent_len, torch.arange(ent_len))
graph.add_edges(torch.arange(ent_len), ent_len)
graph.add_edges(torch.arange(ent_len+1+rel_len*2), torch.arange(ent_len+1+rel_len*2))
adj_edges = []
for i, r in enumerate(self.raw_rel):
assert len(r)==3, str(r)
st, rt, ed = r
st_ent, ed_ent = self.raw_ent_text.index(st), self.raw_ent_text.index(ed)
# according to the edge_softmax operator, we need to reverse the graph
adj_edges.append([ent_len+1+2*i, st_ent])
adj_edges.append([ed_ent, ent_len+1+2*i])
adj_edges.append([ent_len+1+2*i+1, ed_ent])
adj_edges.append([st_ent, ent_len+1+2*i+1])
if len(adj_edges)>0:
graph.add_edges(*list(map(list, zip(*adj_edges))))
return graph
def get_tensor(self, ent_vocab, rel_vocab, text_vocab, ent_text_vocab, title_vocab):
if hasattr(self, '_cached_tensor'):
return self._cached_tensor
else:
title_data = ['<BOS>'] + self.raw_title + ['<EOS>']
title = [title_vocab(x) for x in title_data]
ent_text = [[ent_text_vocab(y) for y in x] for x in self.raw_ent_text]
ent_type = [text_vocab(x) for x in self.raw_ent_type] # for inference
rel_data = ['--root--'] + sum([[x[1],x[1]+'_INV'] for x in self.raw_rel], [])
rel = [rel_vocab(x) for x in rel_data]
text_data = ['<BOS>'] + self.raw_text + ['<EOS>']
text = [text_vocab(x) for x in text_data]
tgt_text = []
# the input text and decoding target are different since the consideration of the copy mechanism.
for i, str1 in enumerate(text_data):
if str1[0]=='<' and str1[-1]=='>' and '_' in str1:
a, b = str1[1:-1].split('_')
text[i] = text_vocab('<'+a+'>')
tgt_text.append(len(text_vocab)+int(b))
else:
tgt_text.append(text[i])
self._cached_tensor = {'title': torch.LongTensor(title), 'ent_text': [torch.LongTensor(x) for x in ent_text], \
'ent_type': torch.LongTensor(ent_type), 'rel': torch.LongTensor(rel), \
'text': torch.LongTensor(text[:-1]), 'tgt_text': torch.LongTensor(tgt_text[1:]), 'graph': self.graph, 'raw_ent_text': self.raw_ent_text}
return self._cached_tensor
def update_vocab(self, ent_vocab, rel_vocab, text_vocab, ent_text_vocab, title_vocab):
ent_vocab.update(self.raw_ent_type)
ent_text_vocab.update(self.raw_ent_text)
title_vocab.update(self.raw_title)
rel_vocab.update(['--root--']+[x[1] for x in self.raw_rel]+[x[1]+'_INV' for x in self.raw_rel])
text_vocab.update(self.raw_ent_type)
text_vocab.update(self.raw_text)
class BucketSampler(torch.utils.data.Sampler):
def __init__(self, data_source, batch_size=32, bucket=3):
self.data_source = data_source
self.bucket = bucket
self.batch_size = batch_size
def __iter__(self):
# the magic number comes from the author's code
perm = torch.randperm(len(self.data_source))
lens = torch.Tensor([len(x) for x in self.data_source])
lens = lens[perm]
t1 = []
t2 = []
t3 = []
for i, l in enumerate(lens):
if (l<100):
t1.append(perm[i])
elif (l>100 and l<220):
t2.append(perm[i])
else:
t3.append(perm[i])
datas = [t1,t2,t3]
random.shuffle(datas)
idxs = sum(datas, [])
batch = []
lens = torch.Tensor([len(x) for x in self.data_source])
for idx in idxs:
batch.append(idx)
mlen = max([0]+[lens[x] for x in batch])
if (mlen<100 and len(batch) == 32) or (mlen>100 and mlen<220 and len(batch) >= 24) or (mlen>220 and len(batch)>=8) or len(batch)==32:
yield batch
batch = []
if len(batch) > 0:
yield batch
def __len__(self):
return (len(self.data_source)+self.batch_size-1)//self.batch_size
class GWdataset(torch.utils.data.Dataset):
def __init__(self, exs, ent_vocab=None, rel_vocab=None, text_vocab=None, ent_text_vocab=None, title_vocab=None, device=None):
super(GWdataset, self).__init__()
self.exs = exs
self.ent_vocab, self.rel_vocab, self.text_vocab, self.ent_text_vocab, self.title_vocab, self.device = \
ent_vocab, rel_vocab, text_vocab, ent_text_vocab, title_vocab, device
def __iter__(self):
return iter(self.exs)
def __getitem__(self, index):
return self.exs[index]
def __len__(self):
return len(self.exs)
def batch_fn(self, batch_ex):
batch_title, batch_ent_text, batch_ent_type, batch_rel, batch_text, batch_tgt_text, batch_graph = \
[], [], [], [], [], [], []
batch_raw_ent_text = []
for ex in batch_ex:
ex_data = ex.get_tensor(self.ent_vocab, self.rel_vocab, self.text_vocab, self.ent_text_vocab, self.title_vocab)
batch_title.append(ex_data['title'])
batch_ent_text.append(ex_data['ent_text'])
batch_ent_type.append(ex_data['ent_type'])
batch_rel.append(ex_data['rel'])
batch_text.append(ex_data['text'])
batch_tgt_text.append(ex_data['tgt_text'])
batch_graph.append(ex_data['graph'])
batch_raw_ent_text.append(ex_data['raw_ent_text'])
batch_title = pad(batch_title, out_type='tensor')
batch_ent_text, ent_len = pad(batch_ent_text, out_type='tensor', flatten=True)
batch_ent_type = pad(batch_ent_type, out_type='tensor')
batch_rel = pad(batch_rel, out_type='tensor')
batch_text = pad(batch_text, out_type='tensor')
batch_tgt_text = pad(batch_tgt_text, out_type='tensor')
batch_graph = dgl.batch(batch_graph)
batch_graph.to(self.device)
return {'title': batch_title.to(self.device), 'ent_text': batch_ent_text.to(self.device), 'ent_len': ent_len, \
'ent_type': batch_ent_type.to(self.device), 'rel': batch_rel.to(self.device), 'text': batch_text.to(self.device), \
'tgt_text': batch_tgt_text.to(self.device), 'graph': batch_graph, 'raw_ent_text': batch_raw_ent_text}
def get_datasets(fnames, min_freq=-1, sep=';', joint_vocab=True, device=None, save='tmp.pickle'):
# min_freq : not support now since it's very sensitive to the final results, but you can set it via passing min_freq to the Vocab class.
# sep : not support now
# joint_vocab : not support now
ent_vocab = Vocab(sp=['<PAD>', '<UNK>'])
title_vocab = Vocab(min_freq=5)
rel_vocab = Vocab(sp=['<PAD>', '<UNK>'])
text_vocab = Vocab(min_freq=5)
ent_text_vocab = Vocab(sp=['<PAD>', '<UNK>'])
datasets = []
for fname in fnames:
exs = []
json_datas = json.loads(open(fname).read())
for json_data in json_datas:
# construct one data example
ex = Example.from_json(json_data)
if fname == fnames[0]: # only training set
ex.update_vocab(ent_vocab, rel_vocab, text_vocab, ent_text_vocab, title_vocab)
exs.append(ex)
datasets.append(exs)
ent_vocab.build()
rel_vocab.build()
text_vocab.build()
ent_text_vocab.build()
title_vocab.build()
datasets = [GWdataset(exs, ent_vocab, rel_vocab, text_vocab, ent_text_vocab, title_vocab, device) for exs in datasets]
with open(save, 'wb') as f:
pickle.dump(datasets, f)
return datasets
if __name__ == '__main__' :
ds = get_datasets(['data/unprocessed.val.json', 'data/unprocessed.val.json', 'data/unprocessed.test.json'])
print(ds[0].exs[0])
print(ds[0].exs[0].get_tensor(ds[0].ent_vocab, ds[0].rel_vocab, ds[0].text_vocab, ds[0].ent_text_vocab, ds[0].title_vocab))