-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
65 lines (41 loc) · 1.77 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import moviepy.editor
import os
import torchaudio
from torchaudio.transforms import Resample
import librosa
import soundfile as sf
def ExtractAudio(video_file_path):
file_name, _ = os.path.splitext(video_file_path)
video = moviepy.editor.VideoFileClip(file_name + ".mp4")
audio = video.audio
audiofilename = file_name + ".mp3"
audio.write_audiofile(audiofilename)
return audiofilename
def convert_audio(input_path, output_path, target_sr=16000):
# Load the audio file using librosa
audio, sr = librosa.load(input_path, sr=target_sr, mono=True)
# Export the processed audio to a WAV file using soundfile
sf.write(output_path, audio, target_sr)
def preprocess_for_asr(input_path, output_path):
# Load the WAV file using torchaudio
waveform, sample_rate = torchaudio.load(input_path)
# Check if the waveform is loaded successfully
if waveform.numel() == 0:
print("Error: Unable to load audio file.")
return
# Save the preprocessed audio to a new WAV file in the same directory
torchaudio.save(output_path, waveform, sample_rate)
def Video2Wav(input,output_dir,output_filename): #Converting Video(MP4) to .WAV
temp_ext_mp3 = ExtractAudio(input)
temp_wav_path = os.path.join(output_dir, "temp_audio.wav")
convert_audio(temp_ext_mp3, temp_wav_path)
preprocess_for_asr(temp_wav_path, output_filename)
os.remove(temp_wav_path)
os.remove(temp_ext_mp3)
return output_filename
def MP32Wav(input,output_dir,output_filename): #Converting .MP3 to .WAV
temp_wav_path = os.path.join(output_dir, "temp_audio.wav")
convert_audio(input, temp_wav_path)
preprocess_for_asr(temp_wav_path, output_filename)
os.remove(temp_wav_path)
return output_filename