-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript-evaluate.py
66 lines (54 loc) · 2.48 KB
/
script-evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pyiqa
import torch
import numpy as np
from PIL import Image
import cv2
import argparse, os, sys, glob
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def compute_folder(metric,out_folder,ref_folder=""):
if metric.metric_name=='fid':
score=metric(out_folder, dataset_name="FFHQ", dataset_res=1024, dataset_split="trainval70k")
elif metric.metric_mode=='FR':
ref_list=os.listdir(ref_folder)
out_list=os.listdir(out_folder)
score=np.zeros(len(out_list))
for num in range(len(score)):
ref_name=ref_folder+ref_list[num]
out_name=out_folder+out_list[num]
score[num]=metric(ref_name,out_name)
elif metric.metric_mode=='NR':
out_list=os.listdir(out_folder)
score=np.zeros(len(out_list))
for num in range(len(score)):
out_name=out_folder+out_list[num]
score[num]=metric(out_name)
return score
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_weight", type=str, default="./Weight/",help="Weight of TOPIQ")
parser.add_argument("--target", type=str, default="real",help="The model you want to evaluate")
parser.add_argument("--target_path", type=str, default="",help="Self designed distorted path, remain empty")
parser.add_argument("--gt_path", type=str, default="",help="Self designed groung truth path, remain empty")
opt = parser.parse_args()
print('------Evaluating '+opt.target+'------')
fr_pref = pyiqa.create_metric('topiq_fr', device=device,pretrained_model_path=opt.model_weight+"topiq-fr.pth")
nr_pref = pyiqa.create_metric('topiq_nr', device=device,pretrained_model_path=opt.model_weight+"topiq-nr.pth")
modes=['full','image','pixel','text']
frs=[]
nrs=[]
for mode in modes:
out_folder='./Result/'+opt.target+'/'+mode+'/'
if not os.path.exists(out_folder):
print(mode+' does not exist. Jumped!')
continue
gt_folder='./GT/'
print('-------------------'+mode+'-------------------')
score=compute_folder(fr_pref,out_folder,gt_folder)
frs.append(np.mean(score))
print('FR: '+'{:.4f}'.format(np.mean(score)),end='\t')
score=compute_folder(nr_pref,out_folder,gt_folder)
nrs.append(np.mean(score))
print('NR: '+'{:.4f}'.format(np.mean(score)))
print('Overall: '+'{:.4f}'.format(np.mean(frs)*2/3+np.mean(nrs)/3))
if __name__ == "__main__":
main()