-
Notifications
You must be signed in to change notification settings - Fork 0
/
00_setup.py
87 lines (67 loc) · 2.11 KB
/
00_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from datetime import datetime, timedelta
import duckdb
import pandas as pd
import random
def extract():
"""
Extract sample maritime transaction data from a CSV file.
"""
print("Extracting data...")
df = pd.read_csv(
"https://raw.githubusercontent.com/PrefectHQ/write-workflows-course/refs/heads/main/data/maritime_transactions_2024-10-04.csv"
)
return df
def transform(df: pd.DataFrame):
"""
Transform the extracted data.
"""
print("Transforming data...")
# Currency conversion rates
rates = {"EUR": 1.1, "USD": 1.0, "GBP": 1.3, "JPY": 0.009, "CNY": 0.15}
# Convert all amounts to USD
df["amount_usd"] = df.apply(
lambda row: row["transaction_amount"] * rates[row["currency"]], axis=1
)
print(df.head())
return df
def load(df: pd.DataFrame):
"""
Create a DuckDB database and load the data into it.
"""
print("Loading data into DuckDB database")
# Connect to DuckDB (this will create a new database if it doesn't exist)
conn = duckdb.connect("maritime_transactions.db")
try:
# Create table if it doesn't exist
conn.execute(
"""
CREATE TABLE IF NOT EXISTS maritime_transactions (
transaction_id VARCHAR,
ship_name VARCHAR,
transaction_amount FLOAT,
transaction_date DATE,
port VARCHAR,
currency VARCHAR,
amount_usd FLOAT,
)
"""
)
# Insert data into the table
conn.execute("INSERT INTO maritime_transactions SELECT * FROM df")
# Commit the transaction
conn.commit()
print("Data successfully loaded into DuckDB")
except Exception as e:
print(f"An error occurred while loading data: {e}")
finally:
conn.close()
def etl_flow():
"""
Main flow that orchestrates the extract, transform, and load tasks.
"""
raw_data = extract()
transformed_data = transform(raw_data)
load(transformed_data)
print("ETL process completed.")
if __name__ == "__main__":
etl_flow()