-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
158 lines (134 loc) · 6.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import os
import sys
import argparse
import matplotlib.pyplot as plt
import torch
from torch import nn
import torchvision.transforms as transforms
from losses import FocalLoss, mIoULoss
from model import UNet
from dataloader import segDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, required=True, help='path to your dataset')
parser.add_argument('--test', type=str, help='path to your test dataset')
parser.add_argument('--meta', type=str, required=True, help='path to your metadata')
parser.add_argument('--name', type=str, default="unet", help='name to be appended to checkpoints')
parser.add_argument('--num_epochs', type=int, default=100, help='dnumber of epochs')
parser.add_argument('--batch', type=int, default=1, help='batch size')
parser.add_argument('--loss', type=str, default='focalloss', help='focalloss | iouloss | crossentropy')
return parser.parse_args()
def acc(label, predicted):
seg_acc = (y.cpu() == torch.argmax(pred_mask, axis=1).cpu()).sum() / torch.numel(y.cpu())
return seg_acc
if __name__ == '__main__':
args = get_args()
N_EPOCHS = args.num_epochs
BACH_SIZE = args.batch
color_shift = transforms.ColorJitter(.1,.1,.1,.1)
blurriness = transforms.GaussianBlur(3, sigma=(0.1, 2.0))
t = transforms.Compose([color_shift, blurriness])
dataset = segDataset(args.data, args.meta, training = True, transform= t)
n_classes = len(dataset.bin_classes)+1
print('Number of data : '+ str(len(dataset)))
if not args.test :
dataset = segDataset(args.data, args.meta, training = True, transform= t)
n_classes = len(dataset.bin_classes)+1
print('Number of data : '+ str(len(dataset)))
test_num = int(0.1 * len(dataset))
print(f'Test data : {test_num}')
print(f"Number of classes : {n_classes}")
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [len(dataset)-test_num, test_num], generator=torch.Generator().manual_seed(101))
N_DATA, N_TEST = len(train_dataset), len(test_dataset)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=BACH_SIZE, shuffle=True, num_workers=2)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=BACH_SIZE, shuffle=False, num_workers=1)
else :
dataset = segDataset(args.data, args.meta, training = True, transform= t)
dataset2 = segDataset(args.test, args.meta, training = False, transform= t)
n_classes = len(dataset.bin_classes)+1
print('Number of train data : '+ str(len(dataset)))
test_num = len(dataset2)
print(f'Test data : {test_num}')
print(f"Number of classes : {n_classes}")
N_DATA, N_TEST = len(dataset), len(dataset2)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=BACH_SIZE, shuffle=True, num_workers=2)
test_dataloader = torch.utils.data.DataLoader(dataset2, batch_size=BACH_SIZE, shuffle=False, num_workers=1)
if args.loss == 'focalloss':
criterion = FocalLoss(gamma=3/4).to(device)
elif args.loss == 'iouloss':
criterion = mIoULoss(n_classes=n_classes).to(device)
elif args.loss == 'crossentropy':
criterion = nn.CrossEntropyLoss().to(device)
else:
print('Loss function not found!')
model = UNet(n_channels=3, n_classes=n_classes, bilinear=True).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.5)
min_loss = torch.tensor(float('inf'))
os.makedirs('./saved_models', exist_ok=True)
plot_losses = []
scheduler_counter = 0
for epoch in range(N_EPOCHS):
# training
model.train()
loss_list = []
acc_list = []
for batch_i, (x, y) in enumerate(train_dataloader):
pred_mask = model(x.to(device))
loss = criterion(pred_mask, y.to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.cpu().detach().numpy())
acc_list.append(acc(y,pred_mask).numpy())
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [Loss: %f (%f)]"
% (
epoch,
N_EPOCHS,
batch_i,
len(train_dataloader),
loss.cpu().detach().numpy(),
np.mean(loss_list),
)
)
scheduler_counter += 1
# testing
model.eval()
val_loss_list = []
val_acc_list = []
for batch_i, (x, y) in enumerate(test_dataloader):
with torch.no_grad():
pred_mask = model(x.to(device))
val_loss = criterion(pred_mask, y.to(device))
val_loss_list.append(val_loss.cpu().detach().numpy())
val_acc_list.append(acc(y,pred_mask).numpy())
print(' epoch {} - loss : {:.5f} - acc : {:.2f} - val loss : {:.5f} - val acc : {:.2f}'.format(epoch,
np.mean(loss_list),
np.mean(acc_list),
np.mean(val_loss_list),
np.mean(val_acc_list)))
plot_losses.append([epoch, np.mean(loss_list), np.mean(val_loss_list)])
compare_loss = np.mean(val_loss_list)
is_best = compare_loss < min_loss
if is_best == True:
scheduler_counter = 0
min_loss = min(compare_loss, min_loss)
torch.save(model.state_dict(), './saved_models/{}_epoch_{}_{:.5f}.pt'.format(args.name,epoch,np.mean(val_loss_list)))
if scheduler_counter > 5:
lr_scheduler.step()
print(f"lowering learning rate to {optimizer.param_groups[0]['lr']}")
scheduler_counter = 0
# plot loss
plot_losses = np.array(plot_losses)
plt.figure(figsize=(12,8))
plt.plot(plot_losses[:,0], plot_losses[:,1], color='b', linewidth=4)
plt.plot(plot_losses[:,0], plot_losses[:,2], color='r', linewidth=4)
plt.title(args.loss, fontsize=20)
plt.xlabel('epoch',fontsize=20)
plt.ylabel('loss',fontsize=20)
plt.grid()
plt.legend(['training', 'validation']) # using a named size
plt.savefig('loss_plots.png')