forked from AILab-CVC/YOLO-World
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
166 lines (145 loc) · 6.19 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Tencent Inc. All rights reserved.
import argparse
import os.path as osp
from functools import partial
import cv2
import torch
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from torchvision.ops import nms
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmengine.runner.amp import autocast
from mmengine.dataset import Compose
from mmdet.datasets import CocoDataset
from mmyolo.registry import RUNNERS
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def parse_args():
parser = argparse.ArgumentParser(description='YOLO-World Demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def run_image(runner,
image,
text,
max_num_boxes,
score_thr,
nms_thr,
image_path='./work_dirs/demo.png'):
image.save(image_path)
texts = [[t.strip()] for t in text.split(',')] + [[' ']]
data_info = dict(img_id=0, img_path=image_path, texts=texts)
data_info = runner.pipeline(data_info)
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
data_samples=[data_info['data_samples']])
with autocast(enabled=False), torch.no_grad():
output = runner.model.test_step(data_batch)[0]
pred_instances = output.pred_instances
keep = nms(pred_instances.bboxes, pred_instances.scores, iou_threshold=nms_thr)
pred_instances = pred_instances[keep]
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
if len(pred_instances.scores) > max_num_boxes:
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
pred_instances = pred_instances[indices]
pred_instances = pred_instances.cpu().numpy()
detections = sv.Detections(
xyxy=pred_instances['bboxes'],
class_id=pred_instances['labels'],
confidence=pred_instances['scores']
)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
image = Image.fromarray(image)
return image
def demo(runner, args):
with gr.Blocks(title="YOLO-World") as demo:
with gr.Row():
gr.Markdown('<h1><center>YOLO-World: Real-Time Open-Vocabulary '
'Object Detector</center></h1>')
with gr.Row():
with gr.Column(scale=0.3):
with gr.Row():
image = gr.Image(type='pil', label='input image')
input_text = gr.Textbox(
lines=7,
label='Enter the classes to be detected, '
'separated by comma',
value=', '.join(CocoDataset.METAINFO['classes']),
elem_id='textbox')
with gr.Row():
submit = gr.Button('Submit')
clear = gr.Button('Clear')
max_num_boxes = gr.Slider(minimum=1,
maximum=300,
value=100,
step=1,
interactive=True,
label='Maximum Number Boxes')
score_thr = gr.Slider(minimum=0,
maximum=1,
value=0.05,
step=0.001,
interactive=True,
label='Score Threshold')
nms_thr = gr.Slider(minimum=0,
maximum=1,
value=0.7,
step=0.001,
interactive=True,
label='NMS Threshold')
with gr.Column(scale=0.7):
output_image = gr.Image(type='pil',
label='output image')
submit.click(partial(run_image, runner),
[image, input_text, max_num_boxes, score_thr, nms_thr],
[output_image])
clear.click(lambda: [[], '', ''], None,
[image, input_text, output_image])
demo.launch(server_name='0.0.0.0', server_port=8080) # port 80 does not work for me
if __name__ == '__main__':
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if args.work_dir is not None:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if 'runner_type' not in cfg:
runner = Runner.from_cfg(cfg)
else:
runner = RUNNERS.build(cfg)
runner.call_hook('before_run')
runner.load_or_resume()
pipeline = cfg.test_dataloader.dataset.pipeline
runner.pipeline = Compose(pipeline)
runner.model.eval()
demo(runner, args)