forked from Uehwan/SimVODIS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_depth_custom.py
241 lines (180 loc) · 8.59 KB
/
evaluate_depth_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from __future__ import absolute_import, division, print_function
import os
import cv2
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import scipy.io
from layers import disp_to_depth
from options import MonodepthOptions
import networks
from maskrcnn_benchmark.config import cfg
cv2.setNumThreads(0) # This speeds up evaluation 5x on our unix systems (OpenCV 3.3.1)
splits_dir = os.path.join(os.path.dirname(__file__), "splits")
# Models which were trained with stereo supervision were trained with a nominal
# baseline of 0.1 units. The KITTI rig has a baseline of 54cm. Therefore,
# to convert our stereo predictions to real-world scale we multiply our depths by 5.4.
STEREO_SCALE_FACTOR = 5.4
def pil_loader(path):
# open path as file to avoid ResourceWarning
# (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def compute_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
def batch_post_process_disparity(l_disp, r_disp):
"""Apply the disparity post-processing method as introduced in Monodepthv1
"""
_, h, w = l_disp.shape
m_disp = 0.5 * (l_disp + r_disp)
l, _ = np.meshgrid(np.linspace(0, 1, w), np.linspace(0, 1, h))
l_mask = (1.0 - np.clip(20 * (l - 0.05), 0, 1))[None, ...]
r_mask = l_mask[:, :, ::-1]
return r_mask * l_disp + l_mask * r_disp + (1.0 - l_mask - r_mask) * m_disp
def evaluate(opt):
"""Evaluates a pretrained model using a specified test set
"""
MIN_DEPTH = 1e-3
MAX_DEPTH = 80
height, width = 192, 640
assert sum((opt.eval_mono, opt.eval_stereo)) == 1, \
"Please choose mono or stereo evaluation by setting either --eval_mono or --eval_stereo"
opt.load_weights_folder = os.path.expanduser(opt.load_weights_folder)
assert os.path.isdir(opt.load_weights_folder), \
"Cannot find a folder at {}".format(opt.load_weights_folder)
print("-> Loading weights from {}".format(opt.load_weights_folder))
encoder_path = os.path.join(opt.load_weights_folder, "encoder.pth")
decoder_path = os.path.join(opt.load_weights_folder, "depth.pth")
encoder_dict = torch.load(encoder_path)
data_images = sorted(os.listdir(os.path.join(opt.data_path, 'image')))
config_file = "./configs/e2e_mask_rcnn_R_50_FPN_1x.yaml"
cfg.merge_from_file(config_file)
cfg.freeze()
normalize_transform = transforms.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
to_bgr_transform = transforms.Lambda(lambda x: x * 255)
transform_simvodis = transforms.Compose(
[
# transforms.ToPILImage(),
transforms.Resize((height * 2, width * 2)),
transforms.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
maskrcnn_path = "./e2e_mask_rcnn_R_50_FPN_1x.pth"
encoder = networks.ResnetEncoder(cfg, maskrcnn_path)
depth_decoder = networks.DepthDecoder(scales=opt.scales)
model_dict = encoder.state_dict()
encoder.load_state_dict({k: v for k, v in encoder_dict.items() if k in model_dict})
depth_decoder.load_state_dict(torch.load(decoder_path))
encoder.cuda()
encoder.eval()
depth_decoder.cuda()
depth_decoder.eval()
pred_disps, depths_gt = [], []
print("-> Computing predictions with size {}x{}".format(
encoder_dict['width'], encoder_dict['height']))
if 'RGBD' in opt.data_path:
pairing = open(os.path.join(opt.data_path, 'association.txt')).readlines()
pairing = [item.split()[1:4:2] for item in pairing]
pairing = {item[0][4:]: item[1][6:] for item in pairing}
with torch.no_grad():
for one_image in data_images:
file_path_img = os.path.join(opt.data_path, 'image', one_image)
img_mat = pil_loader(file_path_img)
if '7Scenes' in file_path_img:
img_mat = img_mat.crop((0, int((480 - 192)/2), 640, int((480 + 192)/2)))
depth_mat = cv2.imread(os.path.join(opt.data_path, 'depth', one_image.split('.')[0] + '.depth.png'),
cv2.IMREAD_ANYDEPTH)
depth_mat = depth_mat[int((480-192)/2):int((480+192)/2), :]
mask = (depth_mat != 65535)
depth_mat = (depth_mat * mask) / 1000
gt_depth = np.expand_dims(depth_mat, axis=0)
depths_gt.append(gt_depth)
elif 'Make3D' in file_path_img:
img_mat = img_mat.crop((0, int((2272 - 511)/2), 1704, int((2272 + 511)/2)))
mat = scipy.io.loadmat(os.path.join(opt.data_path, "depth", "depth_sph_corr-{}.mat".format(one_image[4:-4])))
ratio = 4.4
depth_new_height = 55 / ratio
gt_depth = mat["Position3DGrid"][:, :, 3][int((55 - depth_new_height) / 2):int((55 + depth_new_height) / 2)]
gt_depth = np.expand_dims(gt_depth, axis=0)
depths_gt.append(gt_depth)
elif 'RGBD' in file_path_img:
img_mat = img_mat.crop((0, int((480 - 192) / 2), 640, int((480 + 192) / 2)))
depth_mat = cv2.imread(os.path.join(opt.data_path, 'depth', pairing[one_image]),
cv2.IMREAD_ANYDEPTH)
depth_mat = depth_mat[int((480 - 192) / 2):int((480 + 192) / 2), :]
mask = (depth_mat != 65535)
depth_mat = (depth_mat * mask) / 1000
gt_depth = np.expand_dims(depth_mat, axis=0)
depths_gt.append(gt_depth)
input_color = transform_simvodis(img_mat).cuda()
input_color = input_color.unsqueeze(0)
if opt.post_process:
# Post-processed results require each image to have two forward passes
input_color = torch.cat((input_color, torch.flip(input_color, [3])), 0)
output = depth_decoder(encoder(input_color))
pred_disp, _ = disp_to_depth(output[("disp", 0)], opt.min_depth, opt.max_depth)
pred_disp = pred_disp.cpu()[:, 0].numpy()
if opt.post_process:
N = pred_disp.shape[0] // 2
pred_disp = batch_post_process_disparity(pred_disp[:N], pred_disp[N:, :, ::-1])
pred_disps.append(pred_disp)
pred_disps = np.concatenate(pred_disps)
if opt.save_pred_disps:
output_path = os.path.join(
opt.load_weights_folder, "disps_{}_split.npy".format(opt.eval_split))
print("-> Saving predicted disparities to ", output_path)
np.save(output_path, pred_disps)
if opt.no_eval:
print("-> Evaluation disabled. Done.")
quit()
print("-> Evaluating")
print(" Mono evaluation - using median scaling")
errors = []
ratios = []
gt_depths = np.concatenate(depths_gt)
for i in range(pred_disps.shape[0]):
gt_depth = gt_depths[i]
gt_height, gt_width = gt_depth.shape[:2]
pred_disp = pred_disps[i]
pred_disp = cv2.resize(pred_disp, (gt_width, gt_height))
pred_depth = 1 / pred_disp
mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH)
pred_depth = pred_depth[mask]
gt_depth = gt_depth[mask]
pred_depth *= opt.pred_depth_scale_factor
if not opt.disable_median_scaling:
ratio = np.median(gt_depth) / np.median(pred_depth)
ratios.append(ratio)
pred_depth *= ratio
pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH
pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH
errors.append(compute_errors(gt_depth, pred_depth))
if not opt.disable_median_scaling:
ratios = np.array(ratios)
med = np.median(ratios)
print(" Scaling ratios | med: {:0.3f} | std: {:0.3f}".format(med, np.std(ratios / med)))
mean_errors = np.array(errors).mean(0)
print("\n " + ("{:>8} | " * 7).format("abs_rel", "sq_rel", "rmse", "rmse_log", "a1", "a2", "a3"))
print(("&{: 8.3f} " * 7).format(*mean_errors.tolist()) + "\\\\")
print("\n-> Done!")
if __name__ == "__main__":
options = MonodepthOptions()
evaluate(options.parse())