forked from LouieYang/deep-photo-styletransfer-tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
executable file
·79 lines (62 loc) · 3.05 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import tensorflow as tf
import numpy as np
import time
import inspect
class Vgg19:
def __init__(self, vgg19_npy_path=None):
if vgg19_npy_path is None:
path = inspect.getfile(Vgg19)
path = os.path.abspath(os.path.join(path, os.pardir))
path = os.path.join(path, "vgg19.npy")
vgg19_npy_path = path
self.data_dict = np.load(vgg19_npy_path, encoding='latin1').item()
def build(self, bgr, clear_data=True):
"""
load variable from npy to build the VGG
"""
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self.max_pool(self.conv1_2, 'pool1')
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.max_pool(self.conv2_2, 'pool2')
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.conv3_4 = self.conv_layer(self.conv3_3, "conv3_4")
self.pool3 = self.max_pool(self.conv3_4, 'pool3')
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.conv4_4 = self.conv_layer(self.conv4_3, "conv4_4")
self.pool4 = self.max_pool(self.conv4_4, 'pool4')
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
#self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
#self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
#self.conv5_4 = self.conv_layer(self.conv5_3, "conv5_4")
#self.pool5 = self.max_pool(self.conv5_4, 'pool5')
if clear_data:
self.data_dict = None
def get_all_layers(self):
return [self.conv1_1, self.conv1_2, self.pool1,\
self.conv2_1, self.conv2_2, self.pool2, \
self.conv3_1, self.conv3_2, self.conv3_3, self.conv3_4, self.pool3, \
self.conv4_1, self.conv4_2, self.conv4_3, self.conv4_4, self.pool4, \
self.conv5_1]
def avg_pool(self, bottom, name):
return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name="biases")