-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathObjectDetection.py
178 lines (164 loc) · 6.85 KB
/
ObjectDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import PreProcessingModule as ppm
test_weight = 0
def detect(original_img, activation_weight_threshhold = 3000, max_weight_threshhold = 8000,
stride_size = 100):
curr_img = ppm.normalize_image(original_img)
#Store the position of all of the bounding boxes
objectList = []
global MAX_X_AXIS
global MAX_Y_AXIS
global test_weight
#Initialize the max index for the X axis
MAX_X_AXIS = curr_img.shape[1]
#Initialize the max index for the Y axis
MAX_Y_AXIS = curr_img.shape[0]
#The starting and ending position of where the sliding windows is at
start_x = 0;
start_y = 0;
end_x = 0;
end_y = 0;
#Start sliding windows
while(start_y < MAX_Y_AXIS):
#Check to make sure that start_y is smaller than the largest y index
if(start_y + stride_size < MAX_Y_AXIS):
end_y += stride_size
else:
end_y += (MAX_Y_AXIS - start_y)
while(start_x < MAX_X_AXIS):
#Check to make sure that start_x is smaller than the largest x index
if(end_x + stride_size < MAX_X_AXIS):
end_x += stride_size
else:
end_x += (MAX_X_AXIS - start_x);
#Calculate the current weight for the current sliding window position
curr_weight = find_weight(curr_img, start_x, end_x, start_y, end_y)
if(curr_weight < activation_weight_threshhold):
objectList.extend(find_object(original_img, curr_img, max_weight_threshhold, start_x, end_x, start_y, end_y))
objectList.remove([])
#Set the start X position to the end poistion of the previous iteration
start_x = end_x
#Reset start_x and end_x back to 0
start_x = 0
end_x = 0
#Set the start_y position to end_y
start_y = end_y
return objectList
#Find the weight for the specific poistion
def find_weight(img, start_x, end_x, start_y, end_y):
return np.sum(img[start_y:end_y,start_x:end_x])
#Check if there a possible object within the given position
def find_object(original_img, curr_img, max_weight_threshhold, start_x, end_x, start_y, end_y):
possible_locations = [[]]
global test_weight
x = 0
y = 0
width = 0
length = 0
for curr_y_axis in range(start_y, end_y):
if(find_weight(curr_img, start_x, end_x, curr_y_axis, curr_y_axis + 1) > 0):
for curr_x in range(start_x, end_x):
if(curr_img[curr_y_axis][curr_x] == 1):
all_positions = find_y_axis_down(curr_img, curr_x, curr_y_axis)
all_positions.extend(find_y_axis_up(curr_img, curr_x, curr_y_axis))
if(test_weight < max_weight_threshhold):
x, y, width, length, curr_img = remove_object(original_img, curr_img, all_positions)
possible_locations.append([x,y,width,length])
test_weight = 0
else:
remove_object(original_img, curr_img, all_positions)
test_weight = 0
return possible_locations
#Find the rest of the object below the starting y position
def find_y_axis_down(curr_img, start_x, start_y):
curr_y = start_y
curr_x_start = start_x
curr_x_end = get_end_x_position(curr_img, start_x, curr_y)
indexList = [[curr_y, curr_x_start, curr_x_end]]
while True:
curr_y += 1
if(curr_y + 1 < MAX_Y_AXIS and np.sum(curr_img[curr_y][curr_x_start:curr_x_end]) > 0):
curr_x_start = get_start_x_position(curr_img, curr_x_start, curr_x_end, curr_y)
curr_x_end = get_end_x_position(curr_img, curr_x_start, curr_y) + 1
indexList.append([curr_y, curr_x_start, curr_x_end])
else:
break
return indexList
#Find the rest of the object above the starting y position
def find_y_axis_up(curr_img, start_x, start_y):
curr_y = start_y
curr_x_start = start_x
curr_x_end = get_end_x_position(curr_img, start_x, curr_y)
indexList = [[curr_y, curr_x_start, curr_x_end]]
while True:
curr_y -= 1
if(curr_y > 0 and np.sum(curr_img[curr_y][curr_x_start:curr_x_end]) > 0):
curr_x_start = get_start_x_position(curr_img, curr_x_start, curr_x_end, curr_y)
curr_x_end = get_end_x_position(curr_img, curr_x_end, curr_y)
indexList.append([curr_y, curr_x_start, curr_x_end])
else:
break
return indexList
#Get the starting X position
def get_start_x_position(curr_img, start_x, end_x, curr_y):
curr_x_position = start_x
if(curr_img[curr_y][curr_x_position] == 1):
while True:
#Check to make sure is in a valid index
if(curr_x_position - 1 > 0):
if(curr_img[curr_y][curr_x_position - 1] == 0):
break;
else:
curr_x_position -= 1
else:
break
elif(np.sum(curr_img[curr_y][start_x:end_x]) > 0):
while True:
#Check to make sure is in a valid index
if(curr_x_position + 1 < MAX_X_AXIS):
if(curr_img[curr_y][curr_x_position + 1] == 1):
curr_x_position += 1
break;
else:
curr_x_position += 1
else:
break
return curr_x_position
#Get the ending X position
def get_end_x_position(curr_img, curr_x_end, curr_y):
global test_weight
curr_x_position = curr_x_end
#Try to find where the X axis will end
while True:
if(curr_x_position == MAX_X_AXIS - 1 or curr_img[curr_y][curr_x_position + 1] == 0):
break
else:
curr_x_position += 1
test_weight += curr_x_position - curr_x_end
return curr_x_position
#Remove the object form the current image
def remove_object(original_img, curr_img, index_list):
y_list, start_x_list, end_x_list = zip(*index_list)
smallestX = np.min(start_x_list)
biggestX = np.max(end_x_list)
smallestY = np.min(y_list)
biggestY = np.max(y_list)
for y, start_x, end_x in index_list:
temp_end_x = end_x
if(np.sum(curr_img[y][end_x:biggestX]) != 0):
if(y > 0 and y < MAX_Y_AXIS - 1):
while(True):
if(temp_end_x == MAX_X_AXIS - 1):
break;
elif(original_img[y + 1][temp_end_x] == 0 or original_img[y-1][temp_end_x] == 0):
temp_end_x +=1
else:
break;
else:
temp_end_x = biggestX
curr_img[y][start_x:temp_end_x + 1] = curr_img[y][start_x:temp_end_x + 1] * 0
if(smallestX > 5):
smallestX -= 5
if(smallestY > 5):
smallestY -= 5
return smallestX, smallestY, biggestX - smallestX + 10, biggestY - smallestY + 10, curr_img