Skip to content

Latest commit

 

History

History
363 lines (306 loc) · 11.6 KB

0056.合并区间.md

File metadata and controls

363 lines (306 loc) · 11.6 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

56. 合并区间

力扣题目链接

给出一个区间的集合,请合并所有重叠的区间。

示例 1:

  • 输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
  • 输出: [[1,6],[8,10],[15,18]]
  • 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

  • 输入: intervals = [[1,4],[4,5]]
  • 输出: [[1,5]]
  • 解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。
  • 注意:输入类型已于2019年4月15日更改。 请重置默认代码定义以获取新方法签名。

思路

大家应该都感觉到了,此题一定要排序,那么按照左边界排序,还是右边界排序呢?

都可以!

那么我按照左边界排序,排序之后局部最优:每次合并都取最大的右边界,这样就可以合并更多的区间了,整体最优:合并所有重叠的区间。

局部最优可以推出全局最优,找不出反例,试试贪心。

那有同学问了,本来不就应该合并最大右边界么,这和贪心有啥关系?

有时候贪心就是常识!哈哈

按照左边界从小到大排序之后,如果 intervals[i][0] < intervals[i - 1][1] 即intervals[i]左边界 < intervals[i - 1]右边界,则一定有重复,因为intervals[i]的左边界一定是大于等于intervals[i - 1]的左边界。

即:intervals[i]的左边界在intervals[i - 1]左边界和右边界的范围内,那么一定有重复!

这么说有点抽象,看图:(注意图中区间都是按照左边界排序之后了

56.合并区间

知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?

其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

C++代码如下:

class Solution {
public:
    // 按照区间左边界从小到大排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0];
    }
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result;
        sort(intervals.begin(), intervals.end(), cmp);
        bool flag = false; // 标记最后一个区间有没有合并
        int length = intervals.size();

        for (int i = 1; i < length; i++) {
            int start = intervals[i - 1][0];    // 初始为i-1区间的左边界
            int end = intervals[i - 1][1];      // 初始i-1区间的右边界
            while (i < length && intervals[i][0] <= end) { // 合并区间
                end = max(end, intervals[i][1]);    // 不断更新右区间
                if (i == length - 1) flag = true;   // 最后一个区间也合并了
                i++;                                // 继续合并下一个区间
            }
            // start和end是表示intervals[i - 1]的左边界右边界,所以最优intervals[i]区间是否合并了要标记一下
            result.push_back({start, end});
        }
        // 如果最后一个区间没有合并,将其加入result
        if (flag == false) {
            result.push_back({intervals[length - 1][0], intervals[length - 1][1]});
        }
        return result;
    }
};

当然以上代码有冗余一些,可以优化一下,如下:(思路是一样的)

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result;
        // 排序的参数使用了lambda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        result.push_back(intervals[0]);
        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 合并区间
                result.back()[1] = max(result.back()[1], intervals[i][1]);
            } else {
                result.push_back(intervals[i]);
            }
        }
        return result;
    }
};
  • 时间复杂度:O(nlog n) ,有一个快排
  • 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

总结

对于贪心算法,很多同学都是:如果能凭常识直接做出来,就会感觉不到自己用了贪心, 一旦第一直觉想不出来, 可能就一直想不出来了

跟着「代码随想录」刷题的录友应该感受过,贪心难起来,真的难。

那应该怎么办呢?

正如我贪心系列开篇词关于贪心算法,你该了解这些!中讲解的一样,贪心本来就没有套路,也没有框架,所以各种常规解法需要多接触多练习,自然而然才会想到。

「代码随想录」会把贪心常见的经典题目覆盖到,大家只要认真学习打卡就可以了。

其他语言版本

Java

/**
时间复杂度 : O(NlogN) 排序需要O(NlogN)
空间复杂度 : O(logN)  java 的内置排序是快速排序 需要 O(logN)空间

*/
class Solution {
    public int[][] merge(int[][] intervals) {
        List<int[]> res = new LinkedList<>();
        //按照左边界排序
        Arrays.sort(intervals, (x, y) -> Integer.compare(x[0], y[0]));
        //initial start 是最小左边界
        int start = intervals[0][0];
        int rightmostRightBound = intervals[0][1];
        for (int i = 1; i < intervals.length; i++) {
            //如果左边界大于最大右边界
            if (intervals[i][0] > rightmostRightBound) {
                //加入区间 并且更新start
                res.add(new int[]{start, rightmostRightBound});
                start = intervals[i][0];
                rightmostRightBound = intervals[i][1];
            } else {
                //更新最大右边界
                rightmostRightBound = Math.max(rightmostRightBound, intervals[i][1]);
            }
        }
        res.add(new int[]{start, rightmostRightBound});
        return res.toArray(new int[res.size()][]);
    }
}

}
// 版本2
class Solution {
    public int[][] merge(int[][] intervals) {
        LinkedList<int[]> res = new LinkedList<>();
        Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));
        res.add(intervals[0]);
        for (int i = 1; i < intervals.length; i++) {
            if (intervals[i][0] <= res.getLast()[1]) {
                int start = res.getLast()[0];
                int end = Math.max(intervals[i][1], res.getLast()[1]);
                res.removeLast();
                res.add(new int[]{start, end});
            }
            else {
                res.add(intervals[i]);
            }         
        }
        return res.toArray(new int[res.size()][]);
    }
}

Python

class Solution:
    def merge(self, intervals: List[List[int]]) -> List[List[int]]:
        if len(intervals) == 0: return intervals
        intervals.sort(key=lambda x: x[0])
        result = []
        result.append(intervals[0])
        for i in range(1, len(intervals)):
            last = result[-1]
            if last[1] >= intervals[i][0]:
                result[-1] = [last[0], max(last[1], intervals[i][1])]
            else:
                result.append(intervals[i])
        return result

Go

func merge(intervals [][]int) [][]int {
    sort.Slice(intervals, func(i, j int) bool {
        return intervals[i][0] < intervals[j][0]
    })
    res := make([][]int, 0, len(intervals))
    left, right := intervals[0][0], intervals[0][1]
    for i := 1; i < len(intervals); i++ {
        if right < intervals[i][0] {
            res = append(res, []int{left, right})
            left, right = intervals[i][0], intervals[i][1]
        } else {
            right = max(right, intervals[i][1])
        }
    }
    res = append(res, []int{left, right})  // 将最后一个区间放入
    return res
}
func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

Javascript

var merge = function (intervals) {
    intervals.sort((a, b) => a[0] - b[0]);
    let prev = intervals[0]
    let result = []
    for(let i =0; i<intervals.length; i++){
        let cur = intervals[i]
        if(cur[0] > prev[1]){
            result.push(prev)
            prev = cur
        }else{
            prev[1] = Math.max(cur[1],prev[1])
        }
    }
    result.push(prev)
    return result
};

版本二:左右区间

/**
 * @param {number[][]} intervals
 * @return {number[][]}
 */
var merge = function(intervals) {
    let n = intervals.length;
    if ( n < 2) return intervals;
    intervals.sort((a, b) => a[0]- b[0]);
    let res = [],
        left = intervals[0][0],
        right = intervals[0][1];
    for (let i = 1; i < n; i++) {
        if (intervals[i][0] > right) {
            res.push([left, right]);
            left = intervals[i][0];
            right = intervals[i][1];
        } else {
            right = Math.max(intervals[i][1], right);
        }
    }
    res.push([left, right]);
    return res;
};

TypeScript

function merge(intervals: number[][]): number[][] {
    const resArr: number[][] = [];
    intervals.sort((a, b) => a[0] - b[0]);
    resArr[0] = [...intervals[0]];  // 避免修改原intervals
    for (let i = 1, length = intervals.length; i < length; i++) {
        let interval: number[] = intervals[i];
        let last: number[] = resArr[resArr.length - 1];
        if (interval[0] <= last[1]) {
            last[1] = Math.max(interval[1], last[1]);
        } else {
            resArr.push([...intervals[i]]);
        }
    }
    return resArr;
};

Scala

object Solution {
  import scala.collection.mutable
  def merge(intervals: Array[Array[Int]]): Array[Array[Int]] = {
    var res = mutable.ArrayBuffer[Array[Int]]()

    // 排序
    var interval = intervals.sortWith((a, b) => {
      a(0) < b(0)
    })

    var left = interval(0)(0)
    var right = interval(0)(1)

    for (i <- 1 until interval.length) {
      if (interval(i)(0) <= right) {
        left = math.min(left, interval(i)(0))
        right = math.max(right, interval(i)(1))
      } else {
        res.append(Array[Int](left, right))
        left = interval(i)(0)
        right = interval(i)(1)
      }
    }
    res.append(Array[Int](left, right))
    res.toArray // 返回res的Array形式
  }
}

Rust

impl Solution {
    fn max(a: i32, b: i32) -> i32 {
        if a > b { a } else { b }
    }

    pub fn merge(intervals: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
        let mut intervals = intervals;
        let mut result = Vec::new();
        if intervals.len() == 0 { return result; }
        intervals.sort_by(|a, b| a[0].cmp(&b[0]));
        result.push(intervals[0].clone());
        for i in 1..intervals.len() {
            if result.last_mut().unwrap()[1] >= intervals[i][0] {
                result.last_mut().unwrap()[1] = Self::max(result.last_mut().unwrap()[1], intervals[i][1]);
            } else {
                result.push(intervals[i].clone());
            }
        }
        result
    }
}