-
Notifications
You must be signed in to change notification settings - Fork 789
/
Copy pathevaluate.py
242 lines (204 loc) · 8.77 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate generated response."""
import argparse
import json
import re
import string
from paddlenlp.metrics import BLEU
def setup_args():
"""Setup arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, choices=["SMD", "CamRest", "MultiWOZ"], required=True)
parser.add_argument("--pred_file", type=str, required=True)
parser.add_argument("--entity_file", type=str, required=True)
parser.add_argument("--save_file", type=str, required=True)
args = parser.parse_args()
return args
def evaluate(args):
"""Main evaluation function."""
with open(args.pred_file, "r") as fin:
data = json.load(fin)
print(f"Load prediction file from: {args.pred_file}")
preds = []
refs = []
for dial in data:
for turn in dial["dialogue"]:
if turn["turn"] == "system":
if args.dataset == "MultiWOZ":
preds.append(preprocess_text(turn["generated_response"]))
else:
preds.append(turn["generated_response"])
refs.append(turn["utterance"])
assert len(preds) == len(refs), f"{len(preds)} != {len(refs)}"
bleu_metric = BLEUMetric()
entity_metric = EntityMetric(args)
bleu_res = bleu_metric.evaluate(preds, refs)
entity_res = entity_metric.evaluate(preds, refs)
results = {
"BLEU": bleu_res,
"Entity-F1": entity_res
}
print(json.dumps(results, indent=2))
with open(args.save_file, "w") as fout:
json.dump(results, fout, indent=2)
return
class BLEUMetric(object):
"""BLEU Metric for Response."""
def __init__(self):
self.metric = BLEU()
def evaluate(self, preds, refs):
preds, refs = self._process_text(preds, refs)
for pred, ref in zip(preds, refs):
self.metric.add_inst(pred, ref)
bleu = self.metric.score()
return bleu
def _process_text(self, preds, refs):
_preds = [pred.strip().lower().split(" ") for pred in preds]
_refs = [[ref.strip().lower().split(" ")] for ref in refs]
return _preds, _refs
class EntityMetric(object):
"""Entity Metric for Response."""
def __init__(self, args):
self.dataset = args.dataset
self.entities = self._load_entities(args.entity_file)
def evaluate(self, preds, refs):
extracted_preds_entities = []
extracted_refs_entities = []
for pred, ref in zip(preds, refs):
pred_entities = self._extract_entities(pred)
ref_entities = self._extract_entities(ref)
extracted_preds_entities.append(pred_entities)
extracted_refs_entities.append(ref_entities)
entity_f1 = self._compute_entity_f1(extracted_preds_entities, extracted_refs_entities)
return entity_f1
def _load_entities(self, entities_file):
with open(entities_file, "r") as fin:
raw_entities = json.load(fin)
entities = set()
if self.dataset == "SMD":
for slot, values in raw_entities.items():
for val in values:
if slot == "poi":
entities.add(val["address"])
entities.add(val["poi"])
entities.add(val["type"])
elif slot == "distance":
entities.add(f"{val} miles")
elif slot == "temperature":
entities.add(f"{val}f")
else:
entities.add(val)
# add missing entities
missed_entities = ["yoga", "tennis", "swimming", "football", " lab ", "doctor", "optometrist", "dentist",
"1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th", "11th", "12th",
"13th", "14th", "15th", "16th", "17th", "18th", "19th", "20th", "jill", "jack", " hr "]
for missed_entity in missed_entities:
entities.add(missed_entity)
# special handle of "hr"
entities.remove("hr")
else:
for slot, values in raw_entities.items():
for val in values:
if self.dataset == "MultiWOZ" and slot == "choice":
val = f"choice-{val}"
entities.add(val)
processed_entities = []
for val in entities:
processed_entities.append(val.lower())
processed_entities.sort(key=lambda x: len(x), reverse=True)
return processed_entities
def _extract_entities(self, response):
def _is_sub_str(str_list, sub_str):
for str_item in str_list:
if sub_str in str_item:
return True
return False
response = f" {response} ".lower()
extracted_entities = []
if self.dataset == "SMD":
# preprocess response
for h in range(0, 13):
response = response.replace(f"{h} am", f"{h}am")
response = response.replace(f"{h} pm", f"{h}pm")
for low_temp in [20, 30, 40, 50, 60, 70, 80, 90, 100]:
for high_temp in [20, 30, 40, 50, 60, 70, 80, 90, 100]:
response = response.replace(f"{low_temp}-{high_temp}f", f"{low_temp}f-{high_temp}f")
for entity in self.entities:
if self.dataset == "MultiWOZ":
success_tag = False
if entity.startswith("choice-"):
entity = entity[7:]
if entity == "many":
if entity in re.sub(r"(many (other types|food types|cuisines)|how many)", " ", response):
success_tag = True
elif entity == "all":
if re.search(r"all (of the|expensive|moderate|cheap)", response):
success_tag = True
elif entity == "to":
success_tag = False
else:
if re.search(f"(there are|there is|found|have about|have)( only|) {entity}", response):
success_tag = True
elif entity == "centre":
if entity in response.replace("cambridge towninfo centre", " "):
success_tag = True
elif entity == "free":
if re.search(r"free (parking|internet|wifi)", response):
success_tag = True
elif entity in response or entity.lower() in response.lower():
success_tag = True
if success_tag:
extracted_entities.append(entity)
response = response.replace(entity, " ")
else:
if entity in response and not _is_sub_str(extracted_entities, entity):
extracted_entities.append(entity)
return extracted_entities
def _compute_entity_f1(self, preds, refs):
"""Compute Entity-F1."""
def _count(pred, ref):
tp, fp, fn = 0, 0, 0
if len(ref) != 0:
for g in ref:
if g in pred:
tp += 1
else:
fn += 1
for p in set(pred):
if p not in ref:
fp += 1
return tp, fp, fn
tp_all, fp_all, fn_all = 0, 0, 0
for pred, ref in zip(preds, refs):
tp, fp, fn = _count(pred, ref)
tp_all += tp
fp_all += fp
fn_all += fn
precision = tp_all / float(tp_all + fp_all) if (tp_all + fp_all) != 0 else 0
recall = tp_all / float(tp_all + fn_all) if (tp_all + fn_all) != 0 else 0
f1 = 2 * precision * recall / float(precision + recall) if (precision + recall) != 0 else 0
return f1
def preprocess_text(text):
"""Preprocess utterance and table value."""
text = text.strip().replace("\t", " ").lower()
for p in string.punctuation:
text = text.replace(p, f" {p} ")
text = " ".join(text.split())
return text
if __name__ == "__main__":
args = setup_args()
evaluate(args)