-
Notifications
You must be signed in to change notification settings - Fork 1.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于SFTPM图像异常分割算法 #3844
Comments
您好,应该是支持的,可以参考 PaddleX 文档 https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection.md 3. 开发集成/部署-服务化部署部分 |
配置文件中的tain.txt 中是什么样式呀? @liuhongen1234567 这不是只需要正样本么,难道也需要生成些0值的标签图像? train_dataset: |
您好,可以从这个页面 https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/cv_modules/anomaly_detection.md 下载 mvtec_examples 数据集看一下 |
原来不明白的是 train.txt 里面的内容,正常的监督分割训练,此处应该是每行一组 图像 掩模 的路径,可这正样本没有掩模呀? |
另外一个问题,EfficientAD好像不用验证集,训练一定轮数也就可以用了。 |
我尝试直接在PaddleSeg工程下对样图mvtec_examples进行了训练,使用tools/predict.py查看了输出结果图,也大致正常,但是导出为onnx格式再运行时,结果就不行了: tools/export.py先导出PD格式,再用paddle2onnx转,网络输出是32位整型,结果全0值;tools/model/export_onnx.py可以直接导出onnx,网络输出为32位浮点,结果大致为原图的重构。 |
问题描述 Please describe your issue
请问一下,SFTPM图像异常分割算法支持C++推理部署吗?
The text was updated successfully, but these errors were encountered: