diff --git a/docs/paddlex/overview.md b/docs/paddlex/overview.md
index 7c1ef06de..5d7725055 100644
--- a/docs/paddlex/overview.md
+++ b/docs/paddlex/overview.md
@@ -1,9 +1,10 @@
## 目录
-- [一站式全流程开发简介](#1)
-- [图像分割相关能力支持](#2)
-- [图像分割相关模型产线列表和教程](#3)
-- [图像分割相关单功能模块列表和教程](#4)
+- [目录](#目录)
+- [1. 一站式全流程开发简介](#1-一站式全流程开发简介)
+- [2. 图像分割相关能力支持](#2-图像分割相关能力支持)
+- [3. 图像分割相关模型产线列表和教程](#3-图像分割相关模型产线列表和教程)
+- [4. 图像分割相关单功能模块列表和教程](#4-图像分割相关单功能模块列表和教程)
@@ -37,8 +38,8 @@ PaddleX中图像分割相关的2条产线均支持本地**快速推理**,部
星河零代码产线 |
- 通用图像分类 |
- 链接 |
+ 通用语义分割 |
+ 链接 |
✅ |
✅ |
✅ |
diff --git a/docs/paddlex/quick_start.md b/docs/paddlex/quick_start.md
index c064ba01d..6d05c426f 100644
--- a/docs/paddlex/quick_start.md
+++ b/docs/paddlex/quick_start.md
@@ -11,23 +11,23 @@
* **安装PaddlePaddle**
```bash
# cpu
-python -m pip install paddlepaddle
+python -m pip install paddlepaddle==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
# gpu,该命令仅适用于 CUDA 版本为 11.8 的机器环境
- python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
+python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
# gpu,该命令仅适用于 CUDA 版本为 12.3 的机器环境
- python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu123/
+python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu123/
```
> ❗ 更多飞桨 Wheel 版本请参考[飞桨官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)。
* **安装PaddleX**
```bash
-pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0.beta1-py3-none-any.whl
+pip install https://paddle-model-ecology.bj.bcebos.com/paddlex/whl/paddlex-3.0.0b1-py3-none-any.whl
```
-> ❗ 更多安装方式参考[PaddleX安装教程](./installation/installation.md)
+> ❗ 更多安装方式参考[PaddleX安装教程](https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/installation/installation.md)
### 💻 命令行使用
一行命令即可快速体验产线效果,统一的命令行格式为:
@@ -42,49 +42,43 @@ paddlex --pipeline [产线名称] --input [输入图片] --device [运行设备]
* `device`: 使用的GPU序号(例如`gpu:0`表示使用第0块GPU),也可选择使用CPU(`cpu`)
-以通用OCR产线为例:
+以通用语义分割产线为例:
```bash
-paddlex --pipeline OCR --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --device gpu:0
+paddlex --pipeline semantic_segmentation --input https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/application/semantic_segmentation/makassaridn-road_demo.png --device gpu:0
```
-
- 👉 点击查看运行结果
-```bash
-{'img_path': '/root/.paddlex/predict_input/general_ocr_002.png', 'dt_polys': [[[5, 12], [88, 10], [88, 29], [5, 31]], [[208, 14], [249, 14], [249, 22], [208, 22]], [[695, 15], [824, 15], [824, 60], [695, 60]], [[158, 27], [355, 23], [356, 70], [159, 73]], [[421, 25], [659, 19], [660, 59], [422, 64]], [[337, 104], [460, 102], [460, 127], [337, 129]], [[486, 103], [650, 100], [650, 125], [486, 128]], [[675, 98], [835, 94], [835, 119], [675, 124]], [[64, 114], [192, 110], [192, 131], [64, 134]], [[210, 108], [318, 106], [318, 128], [210, 130]], [[82, 140], [214, 138], [214, 163], [82, 165]], [[226, 136], [328, 136], [328, 161], [226, 161]], [[404, 134], [432, 134], [432, 161], [404, 161]], [[509, 131], [570, 131], [570, 158], [509, 158]], [[730, 138], [771, 138], [771, 154], [730, 154]], [[806, 136], [817, 136], [817, 146], [806, 146]], [[342, 175], [470, 173], [470, 197], [342, 199]], [[486, 173], [616, 171], [616, 196], [486, 198]], [[677, 169], [813, 166], [813, 191], [677, 194]], [[65, 181], [170, 177], [171, 202], [66, 205]], [[96, 208], [171, 205], [172, 230], [97, 232]], [[336, 220], [476, 215], [476, 237], [336, 242]], [[507, 217], [554, 217], [554, 236], [507, 236]], [[87, 229], [204, 227], [204, 251], [87, 254]], [[344, 240], [483, 236], [483, 258], [344, 262]], [[66, 252], [174, 249], [174, 271], [66, 273]], [[75, 279], [264, 272], [265, 297], [76, 303]], [[459, 297], [581, 295], [581, 320], [459, 322]], [[101, 314], [210, 311], [210, 337], [101, 339]], [[68, 344], [165, 340], [166, 365], [69, 368]], [[345, 350], [662, 346], [662, 368], [345, 371]], [[100, 459], [832, 444], [832, 465], [100, 480]]], 'dt_scores': [0.8183103704439653, 0.7609575621092027, 0.8662357274035412, 0.8619508290334809, 0.8495855993183273, 0.8676840017933314, 0.8807986687956436, 0.822308525056085, 0.8686617037621976, 0.8279022169854463, 0.952332847006758, 0.8742692553015098, 0.8477013022907575, 0.8528771493227294, 0.7622965906848765, 0.8492388224448705, 0.8344203789965632, 0.8078477124353284, 0.6300434587457232, 0.8359967356998494, 0.7618617265751318, 0.9481573079350023, 0.8712182945408912, 0.837416955846334, 0.8292475059403851, 0.7860382856406026, 0.7350527486717117, 0.8701022267947695, 0.87172526903969, 0.8779847108088126, 0.7020437651809734, 0.6611684983372949], 'rec_text': ['www.997', '151', 'PASS', '登机牌', 'BOARDING', '舱位 CLASS', '序号SERIALNO.', '座位号SEATNO', '航班 FLIGHT', '日期DATE', 'MU 2379', '03DEC', 'W', '035', 'F', '1', '始发地FROM', '登机口 GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名NAME', 'ZHANGQIWEI', '票号TKTNO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前10分钟关闭GATESCLOSE1OMINUTESBEFOREDEPARTURETIME'], 'rec_score': [0.9617719054222107, 0.4199012815952301, 0.9652514457702637, 0.9978302121162415, 0.9853208661079407, 0.9445787072181702, 0.9714463949203491, 0.9841841459274292, 0.9564052224159241, 0.9959094524383545, 0.9386572241783142, 0.9825271368026733, 0.9356589317321777, 0.9985442161560059, 0.3965512812137604, 0.15236201882362366, 0.9976775050163269, 0.9547433257102966, 0.9974752068519592, 0.9646636843681335, 0.9907559156417847, 0.9895358681678772, 0.9374122023582458, 0.9909093379974365, 0.9796401262283325, 0.9899340271949768, 0.992210865020752, 0.9478569626808167, 0.9982215762138367, 0.9924325942993164, 0.9941263794898987, 0.96443772315979]}
-......
-```
-
-可视化结果如下:
+运行后,得到的结果为:
-![alt text](./imgs/boardingpass.png)
+```
+{'img_path': '/root/.paddlex/predict_input/makassaridn-road_demo.png'}
+```
+![](https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/main/images/pipelines/semantic_segmentation/03.png)
-
+可视化图片默认保存在 `output` 目录下,您也可以通过 `--save_path` 进行自定义。
其他产线的命令行使用,只需将`pipeline`参数调整为相应产线的名称。下面列出了每个产线对应的命令:
| 产线名称 | 使用命令 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
-| 文档场景信息抽取 | |
-| 通用图像分类 | `paddlex --pipeline image_classification --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg --device gpu:0` |
-| 通用OCR | `paddlex --pipeline OCR --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png --device gpu:0` |
-| 通用表格识别 | `paddlex --pipeline table_recognition --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg --device gpu:0` |
+| 通用语义分割 | `paddlex --pipeline semantic_segmentation --input https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/application/semantic_segmentation/makassaridn-road_demo.png --device gpu:0` |
+| 图像异常检测 | `paddlex --pipeline anomaly_detection --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/uad_grid.png --device gpu:0 ` |
+
### 📝 Python脚本使用
-几行代码即可完成产线的快速推理,统一的Python脚本格式如下:
+几行代码即可完成产线的快速推理,图像异常检测的Python示例代码如下:
```python
from paddlex import create_pipeline
-pipeline = create_pipeline(pipeline=[产线名称])
-output = pipeline.predict([输入图片名称])
-for batch in output:
- for item in batch:
- res = item['result']
- res.print()
- res.save_to_img("./output/")
- res.save_to_json("./output/")
+pipeline = create_pipeline(pipeline="anomaly_detection")
+
+output = pipeline.predict("uad_grid.png")
+for res in output:
+ res.print() ## 打印预测的结构化输出
+ res.save_to_img("./output/") ## 保存结果可视化图像
+ res.save_to_json("./output/") ## 保存预测的结构化输出
```
执行了如下几个步骤:
@@ -92,10 +86,18 @@ for batch in output:
* 传入图片并调用产线对象的`predict` 方法进行推理预测
* 对预测结果进行处理
+运行后,得到的结果为:
+
+```
+{'img_path': '/root/.paddlex/predict_input/uad_grid.png'}
+```
+![](https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/main/images/pipelines/image_anomaly_detection/02.png)
+
+可视化图片默认保存在 `output` 目录下,您也可以通过 `--save_path` 进行自定义。
+
其他产线的Python脚本使用,只需将`create_pipeline()`方法的`pipeline`参数调整为相应产线的名称。下面列出了每个产线对应的参数名称及详细的使用解释:
| 产线名称 | 对应参数 | 详细说明 |
|----------|----------------------|------|
-| 通用OCR产线 | `OCR` | [通用OCR产线Python脚本使用说明](./pipeline_usage/OCR.md#222-python脚本方式集成) |
-| 通用表格识别产线 | `table_recognition` | [通用表格识别产线Python脚本使用说明](./pipeline_usage/table_recognition.md#22-python脚本方式集成) |
-| PP-ChatOCRv3产线 | `pp_chatocrv3` | [PP-ChatOCRv3产线Python脚本使用说明](./pipeline_usage/document_scene_information_extraction.md#222-python脚本方式集成) |
+| 通用语义分割 | `semantic_segmentation` | [通用语义分割产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/semantic_segmentation.md) |
+| 图像异常检测 | `anomaly_detection` | [图像异常检测产线Python脚本使用说明](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/cv_pipelines/image_anomaly_detection.md) |