-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
transforms.py
1269 lines (1075 loc) · 48.6 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import math
import cv2
import numpy as np
from PIL import Image
from paddleseg.cvlibs import manager
from paddleseg.transforms import functional
from paddleseg.utils import logger
@manager.TRANSFORMS.add_component
class Compose:
"""
Do transformation on input data with corresponding pre-processing and augmentation operations.
The shape of input data to all operations is [height, width, channels].
Args:
transforms (list): A list contains data pre-processing or augmentation. An empty list means only reading images, no transformation.
to_rgb (bool, optional): If converting image to RGB color space. Default: True.
img_channels (int, optional): The image channels used to check the loaded image. Default: 3.
Raises:
TypeError: When 'transforms' is not a list.
ValueError: when the length of 'transforms' is less than 1.
"""
def __init__(self, transforms, to_rgb=True, img_channels=3):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
self.transforms = transforms
self.to_rgb = to_rgb
self.img_channels = img_channels
self.read_flag = cv2.IMREAD_GRAYSCALE if img_channels == 1 else cv2.IMREAD_COLOR
def __call__(self, data):
"""
Args:
data: A dict to deal with. It may include keys: 'img', 'label', 'trans_info' and 'gt_fields'.
'trans_info' reserve the image shape informating. And the 'gt_fields' save the key need to transforms
together with 'img'
Returns: A dict after process。
"""
if 'img' not in data.keys():
raise ValueError("`data` must include `img` key.")
# data['img'] is numpy array in eg1800 and supervisely
if data['img'] is None:
raise TypeError(
"Expect `data[img]` to be str or np.ndarray, but got NoneType.")
elif isinstance(data['img'], str):
img = cv2.imread(data['img'], self.read_flag)
if img is None:
raise ValueError('Can\'t read The image file {}!'.format(data['img']))
data['img'] = img.astype('float32')
if not isinstance(data['img'], np.ndarray):
raise TypeError(
"Expect image to be np.ndarray, but got {}".format(type(data['img'])))
img_channels = 1 if data['img'].ndim == 2 else data['img'].shape[2]
if img_channels != self.img_channels:
raise ValueError(
'The img_channels ({}) is not equal to the channel of loaded image ({})'.
format(self.img_channels, img_channels))
if self.to_rgb and img_channels == 3:
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
if 'label' in data.keys() and isinstance(data['label'], str):
data['label'] = np.asarray(Image.open(data['label']))
img_h, img_w = data['img'].shape[:2]
if data['label'].shape[0] != img_h:
data['label'] = data['label'].reshape([-1, img_h, img_w]).transpose([1, 2, 0])
elif data['label'].shape[1] != img_w:
data['label'] = data['label'].reshape([img_h, -1, img_w]).transpose([0, 2, 1])
# the `trans_info` will save the process of image shape, and will be used in evaluation and prediction.
if 'trans_info' not in data.keys():
data['trans_info'] = []
for op in self.transforms:
data = op(data)
if data['img'].ndim == 2:
data['img'] = data['img'][..., np.newaxis]
data['img'] = np.transpose(data['img'], (2, 0, 1))
if 'label' in data and data['label'].ndim == 3:
data['label'] = np.transpose(data['label'], (2, 0, 1))
return data
@manager.TRANSFORMS.add_component
class RandomHorizontalFlip:
"""
Flip an image horizontally with a certain probability.
Args:
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.horizontal_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.horizontal_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class RandomVerticalFlip:
"""
Flip an image vertically with a certain probability.
Args:
prob (float, optional): A probability of vertical flipping. Default: 0.1.
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.vertical_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.vertical_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class Resize:
"""
Resize an image.
Args:
target_size (list|tuple, optional): The target size (w, h) of image. Default: (512, 512).
keep_ratio (bool, optional): Whether to keep the same ratio for width and height in resizing.
Default: False.
size_divisor (int, optional): If size_divisor is not None, make the width and height be the times
of size_divisor. Default: None.
interp (str, optional): The interpolation mode of resize is consistent with opencv.
['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']. Note that when it is
'RANDOM', a random interpolation mode would be specified. Default: "LINEAR".
Raises:
TypeError: When 'target_size' type is neither list nor tuple.
ValueError: When "interp" is out of pre-defined methods ('NEAREST', 'LINEAR', 'CUBIC',
'AREA', 'LANCZOS4', 'RANDOM').
"""
# The interpolation mode
interp_dict = {
'NEAREST': cv2.INTER_NEAREST,
'LINEAR': cv2.INTER_LINEAR,
'CUBIC': cv2.INTER_CUBIC,
'AREA': cv2.INTER_AREA,
'LANCZOS4': cv2.INTER_LANCZOS4
}
def __init__(self,
target_size=(512, 512),
keep_ratio=False,
size_divisor=None,
interp='LINEAR'):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
if not (interp == "RANDOM" or interp in self.interp_dict):
raise ValueError("`interp` should be one of {}".format(
self.interp_dict.keys()))
if size_divisor is not None:
assert isinstance(size_divisor,
int), "size_divisor should be None or int"
self.target_size = target_size
self.keep_ratio = keep_ratio
self.size_divisor = size_divisor
self.interp = interp
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if self.interp == "RANDOM":
interp = random.choice(list(self.interp_dict.keys()))
else:
interp = self.interp
target_size = self.target_size
if self.keep_ratio:
h, w = data['img'].shape[0:2]
target_size, _ = functional.rescale_size((w, h), self.target_size)
if self.size_divisor:
target_size = [
math.ceil(i / self.size_divisor) * self.size_divisor
for i in target_size
]
data['img'] = functional.resize(data['img'], target_size,
self.interp_dict[interp])
for key in data.get('gt_fields', []):
data[key] = functional.resize(data[key], target_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeByLong:
"""
Resize the long side of an image to given size, and then scale the other side proportionally.
Args:
long_size (int): The target size of long side.
"""
def __init__(self, long_size):
self.long_size = long_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_long(data['img'], self.long_size)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], self.long_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeByShort:
"""
Resize the short side of an image to given size, and then scale the other side proportionally.
Args:
short_size (int): The target size of short side.
max_size(int): The maximum length of resized image's long edge, if the resized image's long edge exceed this length, short size will be adjusted.
"""
def __init__(self, short_size, max_size=1e10):
if isinstance(short_size, list):
short_size = random.choice(short_size)
self.short_size = short_size
self.max_size = max_size
def __call__(self, data):
h, w = data['img'].shape[0:2]
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if self.short_size / min(h, w) * max(h, w) > self.max_size:
self.short_size = int((self.max_size / max(h, w)) * min(h, w))
data['img'] = functional.resize_short(data['img'], self.short_size)
for key in data.get('gt_fields', []):
data[key] = functional.resize_short(data[key], self.short_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class LimitLong:
"""
Limit the long edge of image.
If the long edge is larger than max_long, resize the long edge
to max_long, while scale the short edge proportionally.
If the long edge is smaller than min_long, resize the long edge
to min_long, while scale the short edge proportionally.
Args:
max_long (int, optional): If the long edge of image is larger than max_long,
it will be resize to max_long. Default: None.
min_long (int, optional): If the long edge of image is smaller than min_long,
it will be resize to min_long. Default: None.
"""
def __init__(self, max_long=None, min_long=None):
if max_long is not None:
if not isinstance(max_long, int):
raise TypeError(
"Type of `max_long` is invalid. It should be int, but it is {}"
.format(type(max_long)))
if min_long is not None:
if not isinstance(min_long, int):
raise TypeError(
"Type of `min_long` is invalid. It should be int, but it is {}"
.format(type(min_long)))
if (max_long is not None) and (min_long is not None):
if min_long > max_long:
raise ValueError(
'`max_long should not smaller than min_long, but they are {} and {}'
.format(max_long, min_long))
self.max_long = max_long
self.min_long = min_long
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
h, w = data['img'].shape[0], data['img'].shape[1]
long_edge = max(h, w)
target = long_edge
if (self.max_long is not None) and (long_edge > self.max_long):
target = self.max_long
elif (self.min_long is not None) and (long_edge < self.min_long):
target = self.min_long
if target != long_edge:
data['img'] = functional.resize_long(data['img'], target)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], target,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeRangeScaling:
"""
Resize the long side of an image into a range, and then scale the other side proportionally.
Args:
min_value (int, optional): The minimum value of long side after resize. Default: 400.
max_value (int, optional): The maximum value of long side after resize. Default: 600.
"""
def __init__(self, min_value=400, max_value=600):
if min_value > max_value:
raise ValueError('min_value must be less than max_value, '
'but they are {} and {}.'.format(min_value,
max_value))
self.min_value = min_value
self.max_value = max_value
def __call__(self, data):
if self.min_value == self.max_value:
random_size = self.max_value
else:
random_size = int(
np.random.uniform(self.min_value, self.max_value) + 0.5)
data['img'] = functional.resize_long(data['img'], random_size,
cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], random_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeStepScaling:
"""
Scale an image proportionally within a range.
Args:
min_scale_factor (float, optional): The minimum scale. Default: 0.75.
max_scale_factor (float, optional): The maximum scale. Default: 1.25.
scale_step_size (float, optional): The scale interval. Default: 0.25.
Raises:
ValueError: When min_scale_factor is smaller than max_scale_factor.
"""
def __init__(self,
min_scale_factor=0.75,
max_scale_factor=1.25,
scale_step_size=0.25):
if min_scale_factor > max_scale_factor:
raise ValueError(
'min_scale_factor must be less than max_scale_factor, '
'but they are {} and {}.'.format(min_scale_factor,
max_scale_factor))
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.scale_step_size = scale_step_size
def __call__(self, data):
if self.min_scale_factor == self.max_scale_factor:
scale_factor = self.min_scale_factor
elif self.scale_step_size == 0:
scale_factor = np.random.uniform(self.min_scale_factor,
self.max_scale_factor)
else:
num_steps = int((self.max_scale_factor - self.min_scale_factor) /
self.scale_step_size + 1)
scale_factors = np.linspace(self.min_scale_factor,
self.max_scale_factor,
num_steps).tolist()
np.random.shuffle(scale_factors)
scale_factor = scale_factors[0]
w = int(round(scale_factor * data['img'].shape[1]))
h = int(round(scale_factor * data['img'].shape[0]))
data['img'] = functional.resize(data['img'], (w, h), cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = functional.resize(data[key], (w, h), cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class Normalize:
"""
Normalize an image.
Args:
mean (list, optional): The mean value of a data set. Default: [0.5,].
std (list, optional): The standard deviation of a data set. Default: [0.5,].
Raises:
ValueError: When mean/std is not list or any value in std is 0.
"""
def __init__(self, mean=(0.5, ), std=(0.5, )):
if not (isinstance(mean, (list, tuple)) and isinstance(std, (list, tuple))) \
and (len(mean) not in [1, 3]) and (len(std) not in [1, 3]):
raise ValueError(
"{}: input type is invalid. It should be list or tuple with the lenght of 1 or 3".
format(self))
self.mean = np.array(mean)
self.std = np.array(std)
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, data):
data['img'] = functional.normalize(data['img'], self.mean, self.std)
return data
@manager.TRANSFORMS.add_component
class Padding:
"""
Add bottom-right padding to a raw image or annotation image.
Args:
target_size (list|tuple): The target size after padding.
im_padding_value (float, optional): The padding value of raw image.
Default: 127.5.
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self,
target_size,
im_padding_value=127.5,
label_padding_value=255):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of target_size is invalid. It should be list or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
data['trans_info'].append(('padding', data['img'].shape[0:2]))
im_height, im_width = data['img'].shape[0], data['img'].shape[1]
if isinstance(self.target_size, int):
target_height = self.target_size
target_width = self.target_size
else:
target_height = self.target_size[1]
target_width = self.target_size[0]
pad_height = target_height - im_height
pad_width = target_width - im_width
if pad_height < 0 or pad_width < 0:
raise ValueError(
'The size of image should be less than `target_size`, but the size of image ({}, {}) is larger than `target_size` ({}, {})'
.format(im_width, im_height, target_width, target_height))
else:
img_channels = 1 if data['img'].ndim == 2 else data['img'].shape[2]
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=(self.im_padding_value, ) * img_channels)
for key in data.get('gt_fields', []):
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
return data
@manager.TRANSFORMS.add_component
class PaddingByAspectRatio:
"""
Args:
aspect_ratio (int|float, optional): The aspect ratio = width / height. Default: 1.
im_padding_value (float, optional): The padding value of raw image. Default: 127.5.
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
"""
def __init__(self,
aspect_ratio=1,
im_padding_value=127.5,
label_padding_value=255):
self.aspect_ratio = aspect_ratio
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
ratio = img_width / img_height
if ratio == self.aspect_ratio:
return data
elif ratio > self.aspect_ratio:
img_height = int(img_width / self.aspect_ratio)
else:
img_width = int(img_height * self.aspect_ratio)
padding = Padding(
(img_width, img_height),
im_padding_value=self.im_padding_value,
label_padding_value=self.label_padding_value)
return padding(data)
@manager.TRANSFORMS.add_component
class RandomPaddingCrop:
"""
Crop a sub-image from a raw image and annotation image randomly. If the target cropping size
is larger than original image, then the bottom-right padding will be added.
Args:
crop_size (tuple, optional): The target cropping size. Default: (512, 512).
im_padding_value (float, optional): The padding value of raw image. Default: 127.5.
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
category_max_ratio (float, optional): The maximum ratio that single category could occupy.
Default: 1.0.
ignore_index (int, optional): The value that should be ignored in the annotation image.
Default: 255.
loop_times (int, optional): The maximum number of attempts to crop an image. Default: 10.
Raises:
TypeError: When crop_size is neither list nor tuple.
ValueError: When the length of crop_size is not 2.
"""
def __init__(self,
crop_size=(512, 512),
im_padding_value=127.5,
label_padding_value=255,
category_max_ratio=1.0,
ignore_index=255,
loop_times=10):
if isinstance(crop_size, list) or isinstance(crop_size, tuple):
if len(crop_size) != 2:
raise ValueError(
'Type of `crop_size` is list or tuple. It should include 2 elements, but it is {}.'
.format(crop_size))
else:
raise TypeError(
"The type of `crop_size` is invalid. It should be list or tuple, but it is {}."
.format(type(crop_size)))
if category_max_ratio <= 0:
raise ValueError(
"The value of `category_max_ratio` must be greater than 0, but got {}.".
format(category_max_ratio))
if loop_times <= 0:
raise ValueError(
"The value of `loop_times` must be greater than 0, but got {}.".
format(loop_times))
self.crop_size = tuple(reversed(crop_size))
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
self.category_max_ratio = category_max_ratio
self.ignore_index = ignore_index
self.loop_times = loop_times
def _get_crop_coordinates(self, origin_size):
margin_h = max(origin_size[0] - self.crop_size[0], 0)
margin_w = max(origin_size[1] - self.crop_size[1], 0)
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]
return crop_x1, crop_y1, crop_x2, crop_y2
def _padding(self, data):
img_shape = data['img'].shape[:2]
pad_height = max(self.crop_size[0] - img_shape[0], 0)
pad_width = max(self.crop_size[1] - img_shape[1], 0)
img_channels = 1 if data['img'].ndim == 2 else data['img'].shape[2]
if (pad_height > 0 or pad_width > 0):
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=(self.im_padding_value, ) * img_channels)
for key in data.get('gt_fields', []):
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
return data
def __call__(self, data):
img_shape = data['img'].shape[:2]
if img_shape[0] == self.crop_size[0] and img_shape[1] == self.crop_size[
1]:
return data
data = self._padding(data)
img_shape = data['img'].shape[:2]
crop_coordinates = self._get_crop_coordinates(img_shape)
if self.category_max_ratio < 1.0:
for _ in range(self.loop_times):
seg_temp = functional.crop(data["label"], crop_coordinates)
labels, cnt = np.unique(seg_temp, return_counts=True)
cnt = cnt[labels != self.ignore_index]
if len(cnt) > 1 and np.max(cnt) / np.sum(
cnt) < self.category_max_ratio:
break
crop_coordinates = self._get_crop_coordinates(img_shape)
data['img'] = functional.crop(data['img'], crop_coordinates)
for key in data.get("gt_fields", []):
data[key] = functional.crop(data[key], crop_coordinates)
return data
@manager.TRANSFORMS.add_component
class RandomCenterCrop:
"""
Crops the given the input data at the center.
Args:
retain_ratio (tuple or list, optional): The length of the input list or tuple must be 2. Default: (0.5, 0.5).
the first value is used for width and the second is for height.
In addition, the minimum size of the cropped image is [width * retain_ratio[0], height * retain_ratio[1]].
Raises:
TypeError: When retain_ratio is neither list nor tuple. Default: None.
ValueError: When the value of retain_ratio is not in [0-1].
"""
def __init__(self, retain_ratio=(0.5, 0.5)):
if isinstance(retain_ratio, list) or isinstance(retain_ratio, tuple):
if len(retain_ratio) != 2:
raise ValueError(
'When type of `retain_ratio` is list or tuple, it shoule include 2 elements, but it is {}'
.format(retain_ratio))
if retain_ratio[0] > 1 or retain_ratio[1] > 1 or retain_ratio[
0] < 0 or retain_ratio[1] < 0:
raise ValueError(
'Value of `retain_ratio` should be in [0, 1], but it is {}'.
format(retain_ratio))
else:
raise TypeError(
"The type of `retain_ratio` is invalid. It should be list or tuple, but it is {}"
.format(type(retain_ratio)))
self.retain_ratio = retain_ratio
def __call__(self, data):
retain_width = self.retain_ratio[0]
retain_height = self.retain_ratio[1]
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
if retain_width == 1. and retain_height == 1.:
return data
else:
randw = np.random.randint(img_width * (1 - retain_width))
randh = np.random.randint(img_height * (1 - retain_height))
offsetw = 0 if randw == 0 else np.random.randint(randw)
offseth = 0 if randh == 0 else np.random.randint(randh)
p0, p1, p2, p3 = offseth, img_height + offseth - randh, offsetw, img_width + offsetw - randw
if data['img'].ndim == 2:
data['img'] = data['img'][p0:p1, p2:p3]
else:
data['img'] = data['img'][p0:p1, p2:p3, :]
for key in data.get('gt_fields', []):
data[key] = data[key][p0:p1, p2:p3]
return data
@manager.TRANSFORMS.add_component
class ScalePadding:
"""
Add center padding to a raw image or annotation image,then scale the
image to target size.
Args:
target_size (list|tuple, optional): The target size of image. Default: (512, 512).
im_padding_value (float, optional): The padding value of raw image. Default: 127.5
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self,
target_size=(512, 512),
im_padding_value=127.5,
label_padding_value=255):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
height = data['img'].shape[0]
width = data['img'].shape[1]
img_channels = 1 if data['img'].ndim == 2 else data['img'].shape[2]
if data['img'].ndim == 2:
new_im = np.zeros((max(height, width), max(height, width)
)) + self.im_padding_value
else:
new_im = np.zeros((max(height, width), max(height, width),
img_channels)) + self.im_padding_value
if 'label' in data['gt_fields']:
new_label = np.zeros((max(height, width), max(height, width)
)) + self.label_padding_value
if height > width:
padding = int((height - width) / 2)
if data['img'].ndim == 2:
new_im[:, padding:padding + width] = data['img']
else:
new_im[:, padding:padding + width, :] = data['img']
if 'label' in data['gt_fields']:
new_label[:, padding:padding + width] = data['label']
else:
padding = int((width - height) / 2)
new_im[padding:padding + height, :] = data['img']
if 'label' in data['gt_fields']:
new_label[padding:padding + height, :] = data['label']
data['img'] = np.uint8(new_im)
data['img'] = functional.resize(
data['img'], self.target_size, interp=cv2.INTER_CUBIC)
if 'label' in data['gt_fields']:
data['label'] = np.uint8(new_label)
data['label'] = functional.resize(
data['label'], self.target_size, interp=cv2.INTER_CUBIC)
return data
@manager.TRANSFORMS.add_component
class RandomNoise:
"""
Superimposing noise on an image with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.5.
max_sigma(float, optional): The maximum value of standard deviation of the distribution.
Default: 10.0.
"""
def __init__(self, prob=0.5, max_sigma=10.0):
self.prob = prob
self.max_sigma = max_sigma
def __call__(self, data):
if random.random() < self.prob:
mu = 0
sigma = random.random() * self.max_sigma
data['img'] = np.array(data['img'], dtype=np.float32)
data['img'] += np.random.normal(mu, sigma, data['img'].shape)
data['img'][data['img'] > 255] = 255
data['img'][data['img'] < 0] = 0
return data
@manager.TRANSFORMS.add_component
class RandomBlur:
"""
Blurring an image by a Gaussian function with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.1.
blur_type(str, optional): A type of blurring an image,
gaussian stands for cv2.GaussianBlur,
median stands for cv2.medianBlur,
blur stands for cv2.blur,
random represents randomly selected from above.
Default: gaussian.
"""
def __init__(self, prob=0.1, blur_type="gaussian"):
self.prob = prob
self.blur_type = blur_type
def __call__(self, data):
if self.prob <= 0:
n = 0
elif self.prob >= 1:
n = 1
else:
n = int(1.0 / self.prob)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
data['img'] = np.array(data['img'], dtype='uint8')
if self.blur_type == "gaussian":
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0, 0)
elif self.blur_type == "median":
data['img'] = cv2.medianBlur(data['img'], radius)
elif self.blur_type == "blur":
data['img'] = cv2.blur(data['img'], (radius, radius))
elif self.blur_type == "random":
select = random.random()
if select < 0.3:
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0)
elif select < 0.6:
data['img'] = cv2.medianBlur(data['img'], radius)
else:
data['img'] = cv2.blur(data['img'], (radius, radius))
else:
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0, 0)
data['img'] = np.array(data['img'], dtype='float32')
return data
@manager.TRANSFORMS.add_component
class RandomRotation:
"""
Rotate an image randomly with padding.
Args:
max_rotation (float, optional): The maximum rotation degree. Default: 15.
im_padding_value (float, optional): The padding value of raw image. Default: 127.5.
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
"""
def __init__(self,
max_rotation=15,
im_padding_value=127.5,
label_padding_value=255):
self.max_rotation = max_rotation
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
if self.max_rotation > 0:
(h, w) = data['img'].shape[:2]
img_channels = 1 if data['img'].ndim == 2 else data['img'].shape[2]
do_rotation = np.random.uniform(-self.max_rotation,
self.max_rotation)
pc = (w // 2, h // 2)
r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
cos = np.abs(r[0, 0])
sin = np.abs(r[0, 1])
nw = int((h * sin) + (w * cos))
nh = int((h * cos) + (w * sin))
(cx, cy) = pc
r[0, 2] += (nw / 2) - cx
r[1, 2] += (nh / 2) - cy
dsize = (nw, nh)
data['img'] = cv2.warpAffine(
data['img'],
r,
dsize=dsize,
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(self.im_padding_value, ) * img_channels)
for key in data.get('gt_fields', []):
data[key] = cv2.warpAffine(
data[key],
r,
dsize=dsize,
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.label_padding_value)
return data
@manager.TRANSFORMS.add_component
class RandomScaleAspect:
"""
Crop a sub-image from an original image with a range of area ratio and aspect and
then scale the sub-image back to the size of the original image.
Args:
min_scale (float, optional): The minimum area ratio of cropped image to the original image. Default: 0.5.
aspect_ratio (float, optional): The minimum aspect ratio. Default: 0.33.
"""
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
self.min_scale = min_scale
self.aspect_ratio = aspect_ratio
def __call__(self, data):
if self.min_scale != 0 and self.aspect_ratio != 0:
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
for i in range(0, 10):
area = img_height * img_width
target_area = area * np.random.uniform(self.min_scale, 1.0)
aspectRatio = np.random.uniform(self.aspect_ratio,
1.0 / self.aspect_ratio)
dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
if (np.random.randint(10) < 5):
tmp = dw
dw = dh
dh = tmp
if (dh < img_height and dw < img_width):
h1 = np.random.randint(0, img_height - dh)
w1 = np.random.randint(0, img_width - dw)
if data['img'].ndim == 2:
data['img'] = data['img'][h1:(h1 + dh), w1:(w1 + dw)]
else:
data['img'] = data['img'][h1:(h1 + dh), w1:(w1 + dw), :]
data['img'] = cv2.resize(
data['img'], (img_width, img_height),
interpolation=cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = data[key][h1:(h1 + dh), w1:(w1 + dw)]
data[key] = cv2.resize(
data[key], (img_width, img_height),
interpolation=cv2.INTER_NEAREST)
break
return data
@manager.TRANSFORMS.add_component