-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathhelixfold_single_inference.py
121 lines (99 loc) · 4.08 KB
/
helixfold_single_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference"""
import os
from os.path import exists, join, dirname, basename
import argparse
import numpy as np
import time
import json
import ml_collections
import paddle
from paddle import distributed as dist
from utils.utils import get_model_parameter_size, tree_map
from utils.model_tape import RunTapeModel
from alphafold_paddle.model import features
from alphafold_paddle.model import config
from alphafold_paddle.model import utils
from alphafold_paddle.common import protein, residue_constants
from alphafold_paddle.data.data_utils import single_sequence_to_features
def read_fasta_file(fasta_file):
"""
read fasta file
"""
with open(fasta_file, 'r') as f:
description = f.readline().strip()
sequence = ''
for line in f:
if line.startswith('>'):
break
sequence += line.strip()
return sequence, description
def sequence_to_batch(fasta_file, model_config):
"""
make batch data with single sequence
"""
sequence, description = read_fasta_file(fasta_file)
raw_features = single_sequence_to_features(sequence, description)
feat = features.np_example_to_features(np_example=raw_features, config=model_config)
batch = {
"name": [basename(fasta_file).replace('.fasta', '')],
"feat": tree_map(lambda v: paddle.to_tensor(v[None, ...]), feat),
"label": {},
}
return batch
def postprocess(batch, results, output_dir):
"""save unrelaxed pdb"""
batch['feat'] = tree_map(lambda x: x[0].numpy(), batch['feat']) # slice the 1st item
results = tree_map(lambda x: x[0].numpy(), results)
results.update(utils.get_confidence_metrics(results))
plddt = results['plddt']
plddt_b_factors = np.repeat(
plddt[:, None], residue_constants.atom_type_num, axis=-1)
prot = protein.from_prediction(batch['feat'], results, b_factors=plddt_b_factors)
pdb_str = protein.to_pdb(prot)
with open(join(output_dir, 'unrelaxed.pdb'), 'w') as f:
f.write(pdb_str)
def main(args):
"""main function"""
### create model
pwd = dirname(__file__)
model_config = join(pwd, "./model_configs/tape-lnw4.json")
tape_model_config = join(pwd, "./tape/configs/deberta_1B_bs_cp.json")
af2_model_name = "seq512_pair64_l24_vio0"
train_config = None
model_config = ml_collections.ConfigDict(json.load(open(model_config, 'r')))
tape_model_config = ml_collections.ConfigDict(json.load(open(tape_model_config, 'r')))
af2_model_config = config.model_config(af2_model_name)
model = RunTapeModel(train_config, model_config, tape_model_config, af2_model_config)
print("model size:", get_model_parameter_size(model))
model.load_params(args.init_model)
### make predictions
af2_model_config.data.eval.delete_msa_block = False
batch = sequence_to_batch(
args.fasta_file, af2_model_config)
model.eval()
with paddle.no_grad():
results = model(batch, compute_loss=False)
### postprocess
os.makedirs(args.output_dir, exist_ok=True)
postprocess(batch, results, args.output_dir)
print(f'Done. output to {args.output_dir}.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--init_model", type=str, help='path to pretrained model')
parser.add_argument("--fasta_file", type=str, help='path to fasta file to be predicted')
parser.add_argument("--output_dir", type=str, help='path to prediction outputs')
args = parser.parse_args()
main(args)