-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathmain.py
executable file
·46 lines (34 loc) · 1.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import paddle
from parser import get_args
from time import time
import os
from chem_lib.models import ContextAwareRelationNet, Meta_Trainer
from chem_lib.utils import count_model_params
print('pid:', os.getpid())
def main():
root_dir = '.'
args = get_args(root_dir)
paddle.set_device('gpu:'+str(args.gpu_id))
model = ContextAwareRelationNet(args)
count_model_params(model)
trainer = Meta_Trainer(args, model)
t1 = time()
print('Initial Evaluation')
best_avg_auc = 0
for epoch in range(1, args.epochs + 1):
print('----------------- Epoch:', epoch,' -----------------')
trainer.train_step()
if epoch % args.eval_steps == 0 or epoch == 1 or epoch == args.epochs:
print('Evaluation on epoch',epoch)
best_avg_auc = trainer.test_step()
if epoch % args.save_steps == 0:
trainer.save_model()
print('Time cost (min):', round((time()-t1)/60,3))
t1=time()
trainer.conclude()
if args.save_logs:
trainer.save_result_log()
print('Train done.')
print('Best Avg AUC:',best_avg_auc)
if __name__ == '__main__':
main()