-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathutils.py
43 lines (37 loc) · 1.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import paddle
from math import sqrt
from sklearn.linear_model import LinearRegression
def cos_formula(a, b, c):
''' formula to calculate the angle between two edges
a and b are the edge lengths, c is the angle length.
'''
res = (a**2 + b**2 - c**2) / (2 * a * b)
# sanity check
res = -1. if res < -1. else res
res = 1. if res > 1. else res
return np.arccos(res)
def rmse(y,f):
rmse = sqrt(((y - f)**2).mean(axis=0))
return rmse
def mae(y,f):
mae = (np.abs(y-f)).mean()
return mae
def sd(y,f):
f,y = f.reshape(-1,1),y.reshape(-1,1)
lr = LinearRegression()
lr.fit(f,y)
y_ = lr.predict(f)
sd = (((y - y_) ** 2).sum() / (len(y) - 1)) ** 0.5
return sd
def pearson(y,f):
rp = np.corrcoef(y, f)[0,1]
return rp
def generate_segment_id(index):
zeros = paddle.zeros(index[-1] + 1, dtype="int32")
index = index[:-1]
segments = paddle.scatter(
zeros, index, paddle.ones_like(
index, dtype="int32"), overwrite=False)
segments = paddle.cumsum(segments)[:-1] - 1
return segments