-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathpreprocess_pdbbind.py
361 lines (317 loc) · 13.5 KB
/
preprocess_pdbbind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing code for the protein-ligand complex.
"""
import os
import pickle
from tqdm import tqdm
import pandas as pd
import numpy as np
import argparse
import openbabel
from openbabel import pybel
from featurizer import Featurizer
from scipy.spatial import distance_matrix
def pocket_atom_num_from_mol2(name, path):
n = 0
with open('%s/%s/%s_pocket.mol2' % (path, name, name)) as f:
for line in f:
if '<TRIPOS>ATOM' in line:
break
for line in f:
cont = line.split()
if '<TRIPOS>BOND' in line or cont[7] == 'HOH':
break
n += int(cont[5][0] != 'H')
return n
def pocket_atom_num_from_pdb(name, path):
n = 0
with open('%s/%s/%s_pocket.pdb' % (path, name, name)) as f:
for line in f:
if 'REMARK' in line:
break
for line in f:
cont = line.split()
# break
if cont[0] == 'CONECT':
break
n += int(cont[-1] != 'H' and cont[0] == 'ATOM')
return n
## function -- feature
def gen_feature(path, name, featurizer):
charge_idx = featurizer.FEATURE_NAMES.index('partialcharge')
ligand = next(pybel.readfile('mol2', '%s/%s/%s_ligand.mol2' % (path, name, name)))
ligand_coords, ligand_features = featurizer.get_features(ligand, molcode=1)
pocket = next(pybel.readfile('mol2' ,'%s/%s/%s_pocket.mol2' % (path, name, name)))
pocket_coords, pocket_features = featurizer.get_features(pocket, molcode=-1)
node_num = pocket_atom_num_from_mol2(name, path)
pocket_coords = pocket_coords[:node_num]
pocket_features = pocket_features[:node_num]
try:
assert (ligand_features[:, charge_idx] != 0).any()
assert (pocket_features[:, charge_idx] != 0).any()
assert (ligand_features[:, :9].sum(1) != 0).all()
except:
print(name)
lig_atoms, pock_atoms = [], []
for i, atom in enumerate(ligand):
if atom.atomicnum > 1:
lig_atoms.append(atom.atomicnum)
for i, atom in enumerate(pocket):
if atom.atomicnum > 1:
pock_atoms.append(atom.atomicnum)
for x in pock_atoms[node_num:]:
assert x == 8
pock_atoms = pock_atoms[:node_num]
assert len(lig_atoms)==len(ligand_features) and len(pock_atoms)==len(pocket_features)
ligand_edges = gen_pocket_graph(ligand)
pocket_edges = gen_pocket_graph(pocket)
return {'lig_co': ligand_coords, 'lig_fea': ligand_features, 'lig_atoms': lig_atoms, 'lig_eg': ligand_edges, 'pock_co': pocket_coords, 'pock_fea': pocket_features, 'pock_atoms': pock_atoms, 'pock_eg': pocket_edges}
## function -- pocket graph
def gen_pocket_graph(pocket):
edge_l = []
idx_map = [-1]*(len(pocket.atoms)+1)
idx_new = 0
for atom in pocket:
edges = []
a1_sym = atom.atomicnum
a1 = atom.idx
if a1_sym == 1:
continue
idx_map[a1] = idx_new
idx_new += 1
for natom in openbabel.OBAtomAtomIter(atom.OBAtom):
if natom.GetAtomicNum() == 1:
continue
a2 = natom.GetIdx()
bond = openbabel.OBAtom.GetBond(natom,atom.OBAtom)
bond_t = bond.GetBondOrder()
edges.append((a1,a2,bond_t))
edge_l += edges
edge_l_new = []
for a1,a2,t in edge_l:
a1_, a2_ = idx_map[a1], idx_map[a2]
assert((a1_!=-1)&(a2_!=-1))
edge_l_new.append((a1_,a2_,t))
return edge_l_new
def dist_filter(dist_matrix, theta):
pos = np.where(dist_matrix<=theta)
ligand_list, pocket_list = pos
return ligand_list, pocket_list
def pairwise_atomic_types(path, processed_dict, atom_types, atom_types_):
keys = [(i,j) for i in atom_types_ for j in atom_types]
for name in tqdm(os.listdir(path)):
if len(name) != 4:
continue
ligand = next(pybel.readfile('mol2', '%s/%s/%s_ligand.mol2' % (path, name, name)))
pocket = next(pybel.readfile('pdb' ,'%s/%s/%s_protein.pdb' % (path, name, name)))
coords_lig = np.vstack([atom.coords for atom in ligand])
coords_poc = np.vstack([atom.coords for atom in pocket])
atom_map_lig = [atom.atomicnum for atom in ligand]
atom_map_poc = [atom.atomicnum for atom in pocket]
dm = distance_matrix(coords_lig, coords_poc)
# print(coords_lig.shape, coords_poc.shape, dm.shape)
ligs, pocks = dist_filter(dm, 12)
# print(len(ligs),len(pocks))
fea_dict = {k: 0 for k in keys}
for x, y in zip(ligs, pocks):
x, y = atom_map_lig[x], atom_map_poc[y]
if x not in atom_types or y not in atom_types_: continue
fea_dict[(y, x)] += 1
processed_dict[name]['type_pair'] = list(fea_dict.values())
return processed_dict
def load_pk_data(data_path):
res = dict()
with open(data_path) as f:
for line in f:
if '#' in line:
continue
cont = line.strip().split()
if len(cont) < 5:
continue
code, pk = cont[0], cont[3]
res[code] = float(pk)
return res
def get_lig_atom_types(feat):
pos = np.where(feat[:,:9]>0)
src_list, dst_list = pos
return dst_list
def get_pock_atom_types(feat):
pos = np.where(feat[:,18:27]>0)
src_list, dst_list = pos
return dst_list
def cons_spatial_gragh(dist_matrix, theta=5):
pos = np.where((dist_matrix<=theta)&(dist_matrix!=0))
src_list, dst_list = pos
dist_list = dist_matrix[pos]
edges = [(x,y) for x,y in zip(src_list, dst_list)]
return edges, dist_list
def cons_mol_graph(edges, feas):
size = feas.shape[0]
edges = [(x,y) for x,y,t in edges]
return size, feas, edges
def pocket_subgraph(node_map, edge_list, pock_dist):
edge_l = []
dist_l = []
node_l = set()
for coord, dist in zip(edge_list, np.concatenate([pock_dist, pock_dist])):
x,y = coord
if x in node_map and y in node_map:
x, y = node_map[x], node_map[y]
edge_l.append((x,y))
dist_l.append(dist)
node_l.add(x)
node_l.add(y)
dist_l = np.array(dist_l)
return edge_l, dist_l
def edge_ligand_pocket(dist_matrix, lig_size, theta=4, keep_pock=False, reset_idx=True):
pos = np.where(dist_matrix<=theta)
ligand_list, pocket_list = pos
if keep_pock:
node_list = range(dist_matrix.shape[1])
else:
node_list = sorted(list(set(pocket_list)))
node_map = {node_list[i]:i+lig_size for i in range(len(node_list))}
dist_list = dist_matrix[pos]
if reset_idx:
edge_list = [(x,node_map[y]) for x,y in zip(ligand_list, pocket_list)]
else:
edge_list = [(x,y) for x,y in zip(ligand_list, pocket_list)]
edge_list += [(y,x) for x,y in edge_list]
dist_list = np.concatenate([dist_list, dist_list])
return dist_list, edge_list, node_map
def add_identity_fea(lig_fea, pock_fea, comb=1):
if comb == 1:
lig_fea = np.hstack([lig_fea, [[1]]*len(lig_fea)])
pock_fea = np.hstack([pock_fea, [[-1]]*len(pock_fea)])
elif comb == 2:
lig_fea = np.hstack([lig_fea, [[1,0]]*len(lig_fea)])
pock_fea = np.hstack([pock_fea, [[0,1]]*len(pock_fea)])
else:
lig_fea = np.hstack([lig_fea, [[0]*lig_fea.shape[1]]*len(lig_fea)])
if len(pock_fea) > 0:
pock_fea = np.hstack([[[0]*pock_fea.shape[1]]*len(pock_fea), pock_fea])
return lig_fea, pock_fea
def cons_lig_pock_graph_with_spatial_context(ligand, pocket, add_fea=2, theta=5, keep_pock=False, pocket_spatial=True):
lig_fea, lig_coord, lig_atoms_raw, lig_edge = ligand
pock_fea, pock_coord, pock_atoms_raw, pock_edge = pocket
# inter-relation between ligand and pocket
lig_size = lig_fea.shape[0]
dm = distance_matrix(lig_coord, pock_coord)
lig_pock_dist, lig_pock_edge, node_map = edge_ligand_pocket(dm, lig_size, theta=theta, keep_pock=keep_pock)
# construct ligand graph & pocket graph
lig_size, lig_fea, lig_edge = cons_mol_graph(lig_edge, lig_fea)
pock_size, pock_fea, pock_edge = cons_mol_graph(pock_edge, pock_fea)
# construct spatial context graph based on distance
dm = distance_matrix(lig_coord, lig_coord)
edges, lig_dist = cons_spatial_gragh(dm, theta=theta)
if pocket_spatial:
dm_pock = distance_matrix(pock_coord, pock_coord)
edges_pock, pock_dist = cons_spatial_gragh(dm_pock, theta=theta)
lig_edge = edges
pock_edge = edges_pock
# map new pocket graph
pock_size = len(node_map)
pock_fea = pock_fea[sorted(node_map.keys())]
pock_edge, pock_dist = pocket_subgraph(node_map, pock_edge, pock_dist)
pock_coord_ = pock_coord[sorted(node_map.keys())]
# construct ligand-pocket graph
size = lig_size + pock_size
lig_fea, pock_fea = add_identity_fea(lig_fea, pock_fea, comb=add_fea)
feas = np.vstack([lig_fea, pock_fea]) if len(pock_fea) > 0 else lig_fea
edges = lig_edge + lig_pock_edge + pock_edge
lig_atoms = get_lig_atom_types(feas)
pock_atoms = get_pock_atom_types(feas)
assert len(lig_atoms) == lig_size and len(pock_atoms) == pock_size
atoms = np.concatenate([lig_atoms, pock_atoms]) if len(pock_fea) > 0 else lig_atoms
lig_atoms_raw = np.array(lig_atoms_raw)
pock_atoms_raw = np.array(pock_atoms_raw)
pock_atoms_raw = pock_atoms_raw[sorted(node_map.keys())]
atoms_raw = np.concatenate([lig_atoms_raw, pock_atoms_raw]) if len(pock_atoms_raw) > 0 else lig_atoms_raw
coords = np.vstack([lig_coord, pock_coord_]) if len(pock_fea) > 0 else lig_coord
if len(pock_fea) > 0:
assert size==max(node_map.values())+1
assert feas.shape[0]==coords.shape[0]
return lig_size, coords, feas, atoms_raw
def random_split(dataset_size, split_ratio=0.9, seed=0, shuffle=True):
"""random splitter"""
np.random.seed(seed)
indices = list(range(dataset_size))
np.random.shuffle(indices)
split = int(split_ratio * dataset_size)
train_idx, valid_idx = indices[:split], indices[split:]
return train_idx, valid_idx
def process_dataset(core_path, refined_path, dataset_name, output_path, cutoff):
core_set_list = [x for x in os.listdir(core_path) if len(x) == 4]
refined_set_list = [x for x in os.listdir(refined_path) if len(x) == 4]
path = refined_path
# atomic sets for long-range interactions
atom_types = [6,7,8,9,15,16,17,35,53]
atom_types_ = [6,7,8,16]
# atomic feature generation
featurizer = Featurizer(save_molecule_codes=False)
processed_dict = {}
for name in tqdm(os.listdir(path)):
if len(name) != 4:
continue
processed_dict[name] = gen_feature(path, name, featurizer)
# interaction features
processed_dict = pairwise_atomic_types(path, processed_dict, atom_types, atom_types_)
# load pka (binding affinity) data
pk_dict = load_pk_data(path+'index/INDEX_general_PL_data.2016')
data_dict = processed_dict
for k,v in processed_dict.items():
v['pk'] = pk_dict[k]
data_dict[k] = v
refined_id, refined_data, refined_pk = [], [], []
core_id, core_data, core_pk = [], [], []
for k, v in tqdm(data_dict.items()):
ligand = (v['lig_fea'], v['lig_co'], v['lig_atoms'], v['lig_eg'])
pocket = (v['pock_fea'], v['pock_co'], v['pock_atoms'], v['pock_eg'])
graph = cons_lig_pock_graph_with_spatial_context(ligand, pocket, add_fea=3, theta=cutoff, keep_pock=False, pocket_spatial=True)
cofeat, pk = v['type_pair'], v['pk']
graph = list(graph) + [cofeat]
if k in core_set_list:
core_id.append(k)
core_data.append(graph)
core_pk.append(pk)
continue
refined_id.append(k)
refined_data.append(graph)
refined_pk.append(pk)
# split train and valid
train_idxs, valid_idxs = random_split(len(refined_data), split_ratio=0.9, seed=2020, shuffle=True)
train_g = [refined_data[i] for i in train_idxs]
train_y = [refined_pk[i] for i in train_idxs]
valid_g = [refined_data[i] for i in valid_idxs]
valid_y = [refined_pk[i] for i in valid_idxs]
train = (train_g, train_y)
valid = (valid_g, valid_y)
test = (core_data, core_pk)
with open(os.path.join(output_path, dataset_name + '_train.pkl'), 'wb') as f:
pickle.dump(train, f)
with open(os.path.join(output_path, dataset_name + '_val.pkl'), 'wb') as f:
pickle.dump(valid, f)
with open(os.path.join(output_path, dataset_name + '_test.pkl'), 'wb') as f:
pickle.dump(test, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path_core', type=str)
parser.add_argument('--data_path_refined', type=str)
parser.add_argument('--output_path', type=str, default='./data/')
parser.add_argument('--dataset_name', type=str, default='pdbbind2016')
parser.add_argument('--cutoff', type=float, default=5.)
args = parser.parse_args()
process_dataset(args.data_path_core, args.data_path_refined, args.dataset_name, args.output_path, args.cutoff)