-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgenhurst.py
71 lines (59 loc) · 2.17 KB
/
genhurst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
####################################
# Calculates the generalized Hurst exponent H(q) from the scaling
# of the renormalized q-moments of the distribution
#
# <|x(t+r)-x(t)|^q>/<x(t)^q> ~ r^[qH(q)]
#
####################################
# H = genhurst(S,q)
# S is Tx1 data series (T>50 recommended)
# calculates H, specifies the exponent q
#
# example:
# generalized Hurst exponent for a random vector
# H=genhurst(np.random.rand(10000,1),3)
#
####################################
# for the generalized Hurst exponent method please refer to:
#
# T. Di Matteo et al. Physica A 324 (2003) 183-188
# T. Di Matteo et al. Journal of Banking & Finance 29 (2005) 827-851
# T. Di Matteo Quantitative Finance, 7 (2007) 21-36
#
####################################
## written in Matlab : Tomaso Aste, 30/01/2013 ##
## translated to Python (3.6) : Peter Rupprecht, p.t.r.rupprecht (AT) gmail.com, 25/05/2017 ##
import numpy as np
import warnings
def genhurst(S,q):
L=len(S)
if L < 100:
warnings.warn('Data series very short!')
H = np.zeros((len(range(5,20)),1))
k = 0
for Tmax in range(5,20):
x = np.arange(1,Tmax+1,1)
mcord = np.zeros((Tmax,1))
for tt in range(1,Tmax+1):
dV = S[np.arange(tt,L,tt)] - S[np.arange(tt,L,tt)-tt]
VV = S[np.arange(tt,L+tt,tt)-tt]
N = len(dV) + 1
X = np.arange(1,N+1,dtype=np.float64)
Y = VV
mx = np.sum(X)/N
SSxx = np.sum(X**2) - N*mx**2
my = np.sum(Y)/N
SSxy = np.sum( np.multiply(X,Y)) - N*mx*my
cc1 = SSxy/SSxx
cc2 = my - cc1*mx
ddVd = dV - cc1
VVVd = VV - np.multiply(cc1,np.arange(1,N+1,dtype=np.float64)) - cc2
mcord[tt-1] = np.mean( np.abs(ddVd)**q )/np.mean( np.abs(VVVd)**q )
mx = np.mean(np.log10(x))
SSxx = np.sum( np.log10(x)**2) - Tmax*mx**2
my = np.mean(np.log10(mcord))
SSxy = np.sum( np.multiply(np.log10(x),np.transpose(np.log10(mcord)))) - Tmax*mx*my
H[k] = SSxy/SSxx
k = k + 1
mH = np.mean(H)/q
return mH