From 14b51c4c447c867bad8713b31539a97dd913e56b Mon Sep 17 00:00:00 2001 From: Oscar Dowson Date: Wed, 8 Nov 2023 12:31:35 +1300 Subject: [PATCH] Fix vale warnings in docs/src/jump/README.md --- docs/src/jump/README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/docs/src/jump/README.md b/docs/src/jump/README.md index d0a8ffb7..30b02a0a 100644 --- a/docs/src/jump/README.md +++ b/docs/src/jump/README.md @@ -1,5 +1,5 @@ ```@raw html - + ``` # EAGO - Easy Advanced Global Optimization @@ -57,7 +57,7 @@ f(x) & = v_{5} \\ ```@raw html

- +

``` @@ -88,7 +88,7 @@ optimization models. Consider the "process" problem instance from [5]: ```math \begin{aligned} -& \max_{\mathbf x \in X} 0.063 x_{4} x_{7} - 5.04 x_{1} - 0.035 x_{2} - 10 x_{3} - 3.36 x_{2} \\ +\max_{\mathbf x \in X} & 0.063 x_{4} x_{7} - 5.04 x_{1} - 0.035 x_{2} - 10 x_{3} - 3.36 x_{2} \\ {\rm s.t.} \; \; & x_{1} (1.12 + 0.13167 x_{8} - 0.00667 x_{8}^{2}) + x_{4} = 0 \\ & -0.001 x_{4} x_{9} x_{6} / (98 - x_{6}) + x_{3} = 0 \\ & -(1.098 x_{8} - 0.038 x_{8}^{2}) - 0.325 x_{6} + x_{7} = 0 \\ @@ -163,7 +163,7 @@ Please cite the following paper when using EAGO. In plain text form this is: ``` Wilhelm, M.E. and Stuber, M.D. EAGO.jl: easy advanced global optimization in Julia. -Optimization Methods and Software. 37(2): 425-450 (2022). DOI: 10.1080/10556788.2020.1786566 +Optimization Methods and Software. 37(2): 425—450 (2022). DOI: 10.1080/10556788.2020.1786566 ``` As a BibTeX entry: @@ -186,8 +186,8 @@ As a BibTeX entry: ## References -1. Mitsos, A., Chachuat, B., and Barton, P.I. **McCormick-based relaxations of algorithms.** *SIAM Journal on Optimization*. 20(2): 573–601 (2009). -2. Khan, K.A., Watson, H.A.J., and Barton, P.I. **Differentiable McCormick relaxations.** *Journal of Global Optimization*. 67(4): 687–729 (2017). -3. Stuber, M.D., Scott, J.K., and Barton, P.I.: **Convex and concave relaxations of implicit functions.** *Optimization Methods and Software* 30(3): 424–460 (2015). -4. Wechsung, A., Scott, J.K., Watson, H.A.J., and Barton, P.I. **Reverse propagation of McCormick relaxations.** *Journal of Global Optimization* 63(1): 1–36 (2015). +1. Mitsos, A., Chachuat, B., and Barton, P.I. **McCormick-based relaxations of algorithms.** *SIAM Journal on Optimization*. 20(2): 573—601 (2009). +2. Khan, K.A., Watson, H.A.J., and Barton, P.I. **Differentiable McCormick relaxations.** *Journal of Global Optimization*. 67(4): 687—729 (2017). +3. Stuber, M.D., Scott, J.K., and Barton, P.I.: **Convex and concave relaxations of implicit functions.** *Optimization Methods and Software* 30(3): 424—460 (2015). +4. Wechsung, A., Scott, J.K., Watson, H.A.J., and Barton, P.I. **Reverse propagation of McCormick relaxations.** *Journal of Global Optimization* 63(1): 1—36 (2015). 5. Bracken, J., and McCormick, G.P. *Selected Applications of Nonlinear Programming.* John Wiley and Sons, New York (1968).