-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfigure_ModerateScale_Trajectory.m
189 lines (163 loc) · 6.75 KB
/
figure_ModerateScale_Trajectory.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
% =========================================================================
% Process moderate-scale simulation results
% Plot trajectory from one simulation
%
% *Attention*: need simulation data to run this code.
% If there are no simulation results yet, please run main_ModerateScale
% first.
% =========================================================================
clc; clear; close all;
% Data set
data_str = '1'; % 1. random ovm 2. manual ovm 3. homogeneous ovm
% Mix or not
mix = 0; % 0. all HDVs; 1. mix
% Type of the controller
controller_type = 3; % 1. centralized DeeP-LCC 2. MPC 3.distributed DeeP-LCC
% Type for HDV car-following model
hdv_type = 1; % 1. OVM 2. IDM
% Perturbation type
per_type = 1; % 1. sinuoid perturbation 2. small brake perturbation 3. large brake perturbation
% 4. larger brake perturbation
% 5. Perturbation on a vehicle in the middle of the platoon
% Time horizon for DeeP-LCC
switch controller_type
case 1
T = 1200; % For centralized DeeP-LCC
case 3
T = 300; % For distributed DeeP-LCC
end
% data number
i_data = 1;
% Whether print figures
output_bool = 1;
% ID
ID = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]; % ID of vehicle types
ID_str = num2str(ID);
ID_str(find(ID_str==' ')) = '';
pos_cav = find(ID==1); % position of CAVs
n_vehicle = length(ID); % number of vehicles
n_cav = length(pos_cav); % number of CAVs
n_hdv = n_vehicle-n_cav; % number of HDVs
% Parameters in Simulation
total_time = 30; % Total Simulation Time
Tstep = 0.05; % Time Step
total_time_step = total_time/Tstep;
if mix
load(['_data\simulation_data\',ID_str,'_',num2str(i_data),'_ControllerType_',num2str(controller_type),'_PerType_',num2str(per_type),'_T_',num2str(T),'.mat']);
else
load(['_data\simulation_data\HDVs','_PerType_',num2str(per_type),'.mat']);
end
% -------------------------------------------------------------------------
% Plot Results
%--------------------------------------------------------------------------
% Simulation Time
begin_time = 0.05;
end_time = 30;
color_gray = [190 190 190]/255;
color_red = [244, 53, 124]/255;
color_blue = [67, 121, 227]/255;
color_black = [0 0 0];
color_orange = [255,132,31]/255;
label_size = 18;
total_size = 16;
line_width = 2;
load('_data/ColorMap_RedWhiteBlue.mat');
color_cav = mymap_red_white_blue(linspace(108,76,5),:);
% Velocity
figure;
id_cav = 1;
plot(begin_time:Tstep:end_time,S(begin_time/Tstep:end_time/Tstep,1,2),'Color',color_black,'linewidth',line_width-0.5); hold on;
for i = 1:n_vehicle
if ~mix
plot(begin_time:Tstep:end_time,S(begin_time/Tstep:end_time/Tstep,i+1,2),'Color',color_gray,'linewidth',line_width-0.5); hold on; % line for velocity of HDVs
elseif ID(i) == 0
plot(begin_time:Tstep:end_time,S(begin_time/Tstep:end_time/Tstep,i+1,2),'Color',color_gray,'linewidth',line_width-0.5); hold on; % line for velocity of HDVs
end
end
if mix
for i = 1:n_vehicle
if ID(i) == 1
velocity_plot(id_cav) = plot(begin_time:Tstep:end_time,S(begin_time/Tstep:end_time/Tstep,i+1,2),'Color',color_cav(id_cav,:),'linewidth',line_width); hold on; % line for velocity of CAVs
id_cav = id_cav+1;
end
end
end
grid on;
if mix
l = legend(velocity_plot,'CAV 1','CAV 2','CAV 3','CAV 4','CAV 5');
l.Interpreter = 'latex';
l.FontSize = total_size;
l.Box = 'off';
l.Orientation = 'horizontal';
l.Location = 'north';
end
set(gca,'TickLabelInterpreter','latex','fontsize',total_size);
set(gca,'YLim',[8 22]);
set(gca,'XLim',[5 30]);
xl = xlabel('$t$ [$\mathrm{s}$]','fontsize',label_size,'Interpreter','latex','Color','k');
yl = ylabel('Velocity [$\mathrm{m/s}$]','fontsize',label_size,'Interpreter','latex','Color','k');
set(gcf,'Position',[250 150 750 300]);
fig = gcf;
fig.PaperPositionMode = 'auto';
if output_bool
if mix
print(gcf,['figures/SinusoidPerturbation_Controller_',num2str(controller_type),'_data_',num2str(i_data),'_T_',num2str(T),'_Tini_',num2str(Tini),'_N_',num2str(N),'_Trajectory'],'-painters','-depsc2','-r300');
else
print(gcf,'figures/SinusoidPerturbation_HDVs_Trajectory','-painters','-depsc2','-r300');
end
end
% Spacing
figure;
id_cav = 1;
for i = 1:n_vehicle
if ID(i) == 1
plot(begin_time:Tstep:end_time,S(begin_time/Tstep:end_time/Tstep,i,1)-S(begin_time/Tstep:end_time/Tstep,i+1,1),'Color',color_cav(id_cav,:),'linewidth',line_width); hold on; % line for velocity of CAVs
id_cav = id_cav+1;
end
end
grid on;
set(gca,'TickLabelInterpreter','latex','fontsize',total_size);
set(gca,'YLim',[0 30]);
set(gca,'XLim',[0 end_time]);
xl = xlabel('$t$ [$\mathrm{s}$]','fontsize',label_size,'Interpreter','latex','Color','k');
yl = ylabel('Spacing [$\mathrm{m}$]','fontsize',label_size,'Interpreter','latex','Color','k');
set(gcf,'Position',[250 450 500 300]);
fig = gcf;
fig.PaperPositionMode = 'auto';
% if output_bool
% if mix
% print(gcf,['figures/Controller_',num2str(controller_type),'_data_',num2str(i_data),'_T_',num2str(T),'_Tini_',num2str(Tini),'_N_',num2str(N),'_Spacing'],'-dpng','-r300');
% else
% print(gcf,'figures/HDVs_Spacing','-dpng','-r300');
% end
% end
if mix
% Computation time
figure;
plot(begin_time:Tstep:end_time,computation_time,'Color',color_black,'linewidth',line_width-0.5); hold on;
set(gca,'TickLabelInterpreter','latex','fontsize',total_size);
title(['Average time: ',num2str(mean(computation_time(Tini:total_time_step-1)))],'fontsize',label_size,'Interpreter','latex','Color','k')
set(gcf,'Position',[650 150 500 300]);
fig = gcf;
fig.PaperPositionMode = 'auto';
if output_bool
if mix
print(gcf,['figures/Controller_',num2str(controller_type),'_data_',num2str(i_data),'_T_',num2str(T),'_Tini_',num2str(Tini),'_N_',num2str(N),'_ComputationTime'],'-dpng','-r300');
end
end
% Iteration number
if controller_type == 3 %|| controller_type == 4 || controller_type == 5
figure;
plot(begin_time:Tstep:end_time,iteration_num,'Color',color_black,'linewidth',line_width-0.5); hold on;
set(gca,'TickLabelInterpreter','latex','fontsize',total_size);
title(['Average iteration: ',num2str(mean(iteration_num(Tini:total_time_step-1)))],'fontsize',label_size,'Interpreter','latex','Color','k')
set(gcf,'Position',[1050 150 500 300]);
fig = gcf;
fig.PaperPositionMode = 'auto';
if output_bool
if mix
print(gcf,['figures/Controller_',num2str(controller_type),'_data_',num2str(i_data),'_T_',num2str(T),'_Tini_',num2str(Tini),'_N_',num2str(N),'_IterationNumber'],'-dpng','-r300');
end
end
end
end