-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsafeprocess15-ensembles.tex
69 lines (69 loc) · 2.18 KB
/
safeprocess15-ensembles.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\documentclass{ifacconf}
\usepackage[ruled,vlined,linesnumbered]{algorithm2e}
\usepackage{graphicx}
\usepackage[dvips]{epsfig}
\usepackage{epsf}
\usepackage{times}
\usepackage{xspace}
\usepackage[shortcuts]{extdash}
\usepackage{amsmath,amssymb}
\usepackage{amsfonts}
\usepackage{tabularx}
\usepackage{times}
%
\newtheorem{problem}{Problem}
\newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\newtheorem{proposition}{Proposition}
%
\graphicspath{{figures/}}
%
\input{defs}
%
\begin{document}
%
\begin{frontmatter}
%
\title{Learning Diagnosis Models Using Variable-Fidelity Component Model Libraries\thanksref{footnoteinfo}}
%
\thanks[footnoteinfo]{Supported by SFI grant 12/RC/2289.}
%
\author[First]{Alexander Feldman}
\author[Second]{Gregory Provan}
\author[First]{Rui Abreu}
\author[First]{Johan de Kleer}
%
\address[First]{PARC Inc., Palo Alto, CA 94304, USA\\(e-mail: \{afeldman,dekleer,rui\}@parc.com)}
\address[Second]{Department of Computer Science, University College Cork, Cork, Ireland (e-mail: [email protected]).}
%
\begin{abstract}
%
System models that are used in model-based diagnosis are often
composed of components drawn from component libraries. In these component
libraries, there may be multiple systems of equations per component
(component implementations). For example, a component may be modeled
as a non-linear system (high-fidelity model), linear system, and a
qualitative system (low-fidelity model). Choosing the right component
model for system diagnosis is a difficult task and requires a search
in the space of all possible component type combinations. In this
paper we propose a method that automates this task and computes a
system model that optimizes a set of diagnostic metrics in a set of
diagnostic scenarios. Initial experimental results show that having
linear models of some of the components in a system preserves the
diagnostic accuracy and isolation time while, at the same time,
improves the computational complexity and numerical stability.
%
\end{abstract}
\end{frontmatter}
%
\input{introduction}
\input{related}
\input{running-example}
\input{notation}
\input{algorithm}
\input{empirical}
\input{conclusions}
%
\bibliography{safeprocess15-ensembles}
%
\end{document}