-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathg5sensord.c
1584 lines (1423 loc) · 50.3 KB
/
g5sensord.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*+FHDR-----------------------------------------------------------------------
* Copyright (c) 2011, 2012 Freescale Semiconductor, Inc.
* Freescale Semiconductor Confidential Proprietary
* ----------------------------------------------------------------------------
* FILE NAME : main.c
* DEPARTMENT : SENSORS
* AUTHOR : MARK PEDLEY
* ----------------------------------------------------------------------------
* REVIEW(S) :
* ----------------------------------------------------------------------------
* VERSION DATE AUTHOR DESCRIPTION
* V1.0: 20 FEB 2012: MARK PEDLEY
* ----------------------------------------------------------------------------
* KEYWORDS: MAGNETIC CALIBRATION
* ----------------------------------------------------------------------------
* PURPOSE:
* Tilt-compensated e-compass with 7, 4 element calibration.
* Stand-alone file using sensor simulation to verify algorithms.
* ----------------------------------------------------------------------------
* COMMENTS:
* This code is a vanilla C console application.
* It is intended that customers:
* 1. Compile and run this on the destination embedded system using console I/O
* to verify that the eCompass and calibration algorithms execute correctly
* using simulation of the magnetometer and accelerometer sensors and then
* 2. Replace the sensor simulation function with real I2C drivers for the
* physical magnetometer and accelerometer sensors.
*
* IMPORTANT: The most likely source of error moving from simulated to physical
* sensors is the alignment of the sensor coordinate systems. See the user
* manual for more details.
* -FHDR---------------------------------------------------------------------*/
//#include <stdafx.h>
#include <stdio.h>
//#include <conio.h>
#include <stdbool.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <sys/ioctl.h>
#include <termios.h>
#include <fcntl.h>
#include <errno.h>
#include <linux/i2c/bma222.h>
#include <linux/i2c/mmc31xx.h>
#include <linux/i2c/mecs.h>
#include <signal.h>
int enabled = 1;
void sigusr1(); // USR1 signal => Enable the daemon function
void sigusr2(); // USR2 signal => Disable the daemon function
/* maximum calibration model size supported in this code */
#define MAXCALELEMENTS 7
/* mixing coefficient to permit vertical smartphone operation */
//#define FMU 0.00F /* value of 0.0F used to verify correct operation in this code */
#define FMU 0.04F /* stabilizes feCompass at high pitch with reduced accuracy */
/* constants to minimise numerical noise in the SVD algorithm */
#define fSVDscaling 0.02F /* approx normalises geomagnetic field 50uT */
#define finvSVDscaling 50.0F /* inverse of fSVDscaling */
/* fixed constants for array dimensioning */
#define DegToRad 0.0174532925199433F /* deg to rad conversion */
#define RadToDeg 57.2957795130823F /* rad to deg conversion */
#define ABSMAXPITCH 3 /* maximum pitch dimension in smart FIFO / constellation */
#define ABSMAXROLL 6 /* maximum roll dimension in smart FIFO / constellation */
#define ABSMAXYAW 6 /* maximum yaw dimension in smart FIFO / constellation */
#define ABSMAXPITCHROLLYAW 108 /* must be set to product of dimensions above */
#define TRUE 1 /* logical true */
#define FALSE 0 /* logical false */
#define ABSMAXEQUATIONS 64 /* ensure MAXEQUATIONS <= ABSMAXEQUATIONS */
/* run time coefficients which could be set from a user interface but hard-wired here */
int CURRENTMAXPITCH = 3; /* current pitch dimension in smart FIFO / constellation */
int CURRENTMAXROLL = 6; /* current roll dimension in smart FIFO / constellation */
int CURRENTMAXYAW = 6; /* current yaw dimension in smart FIFO / constellation */
int CALUPDACTIVE = TRUE; /* value TRUE (normal use) to enable updating of calibration */
int MINEQUATIONS = 16; /* minimum number of equations for calibration to run */
int MAXEQUATIONS = 64; /* maximum number of equations used for calibration */
int CALINTERVAL = 40; /* interval in samples between re-computation of the calibration */
int HARDCORRACTIVE = TRUE; /* flag to enable subtraction of hard iron interference estimate */
int SOFTCORRACTIVE = TRUE; /* flag to enable removal of soft iron interference estimate */
int TILTCORRACTIVE = TRUE; /* flag for applying tilt correction */
//float ANGLE_LPF_FPU = 0.0625; /* recip of angle LPF impulse response (16 samples here) */
float ANGLE_LPF_FPU = 0.25; /* recip of angle LPF impulse response (4 samples here) */
/* hardware abstraction layer parameters used to align sensor x, y, z axes together */
/* accelerometer HAL coefficients set to default identity matrix */
int ACCHAL00 = 1;
int ACCHAL01 = 0;
int ACCHAL02 = 0;
int ACCHAL10 = 0;
int ACCHAL11 = 1;
int ACCHAL12 = 0;
int ACCHAL20 = 0;
int ACCHAL21 = 0;
int ACCHAL22 = -1;
/* magnetometer HAL coefficients set to default identity matrix */
int MAGHAL00 = 1;
int MAGHAL01 = 0;
int MAGHAL02 = 0;
int MAGHAL10 = 0;
int MAGHAL11 = 1;
int MAGHAL12 = 0;
int MAGHAL20 = 0;
int MAGHAL21 = 0;
int MAGHAL22 = 1;
/* global scalars */
float fPsi, fThe, fPhi; /* raw yaw, pitch, roll angles in deg */
float fLPPsi, fLPThe, fLPPhi; /* low pass filtered yaw, pitch, roll angles in deg */
float fdelta; /* raw calculated geomagnetic inclination angle */
float fLPdelta; /* low pass filtered calculated inclination angle */
float fBpx, fBpy, fBpz; /* raw magnetometer data in uT */
float fBcx, fBcy, fBcz; /* mag data in uT after calibration correction */
float fBfx, fBfy, fBfz; /* mag data in uT after tilt correction */
float fGpx, fGpy, fGpz; /* raw accel data in g */
int SOLUTIONSIZE; /* calibration model size: 4, 7 elements */
float fVx, fVy, fVz; /* computed hard iron calibration in uT */
float fB; /* fitted geomagnetic field magnitude in uT */
float det; /* matrix determinant */
float fFitErrorpc; /* fit error as a percentage */
int validcal; /* flag to denote at least one cal has been performed */
int loopcounter; /* global counter incrementing each iteration of compass */
int ConstCount; /* number of magnetometer readings in the constellation */
int earliestsample; /* earliest sample number used in current calibration */
int nequations; /* number of equations in SVD */
float SimVx, SimVy, SimVz; /* simulation model hard iron */
float SimB; /* geomagnetic field strength */
float Simdelta; /* geomagnetic field inclination (deg) */
/* global arrays */
float xfinvW[3][3], *finvW[3]; /* computed inverse soft iron matrix size */
float xinvSimW[3][3], *invSimW[3]; /* sensor simulation inverse soft iron matrix */
float xSimW[3][3], *SimW[3]; /* sensor simulation forward soft iron matrix */
float xfX[ABSMAXEQUATIONS][MAXCALELEMENTS], *fX[ABSMAXEQUATIONS]; /* matrix of measurements X */
float xfY[ABSMAXEQUATIONS][1], *fY[ABSMAXEQUATIONS]; /* 4 element model dependent variables */
float xU[ABSMAXEQUATIONS][MAXCALELEMENTS], *U[ABSMAXEQUATIONS]; /* SVD: X = U S GkY^T */
float xS[MAXCALELEMENTS][1], *S[MAXCALELEMENTS]; /* SVD: X = U S GkY^T */
float xGkY[MAXCALELEMENTS][MAXCALELEMENTS], *GkY[MAXCALELEMENTS]; /* SVD: X = U S GkY^T */
float xA[3][3], *A[3]; /* ellipsoid matrix A */
float xinvA[3][3], *invA[3]; /* inverse of ellipsoid matrix A */
float xfBeta4[4][1], *fBeta4[4]; /* 4 element model solution vector */
float xftmpA3x3[3][3], *ftmpA3x3[3]; /* scratch 3x3 matrix */
float xftmpA4x1[4][1], *ftmpA4x1[4]; /* scratch 4x1 matrix */
float xftmpA4x4[4][4], *ftmpA4x4[4]; /* scratch 4x4 matrix */
float xftmpB4x4[4][4], *ftmpB4x4[4]; /* scratch 4x4 matrix */
float xftmpAMAXx1[ABSMAXEQUATIONS][1], *ftmpAMAXx1[ABSMAXEQUATIONS]; /* scratch MAXx1 matrix */
float fConBpx[ABSMAXPITCH][ABSMAXROLL][ABSMAXYAW]; /* float smart FIFO */
float fConBpy[ABSMAXPITCH][ABSMAXROLL][ABSMAXYAW]; /* float smart FIFO */
float fConBpz[ABSMAXPITCH][ABSMAXROLL][ABSMAXYAW]; /* float smart FIFO */
int ConIndex[ABSMAXPITCH][ABSMAXROLL][ABSMAXYAW]; /* sample index to time entry */
int ScratchConIndex[ABSMAXPITCHROLLYAW]; /* scratch array for time sorting */
/* function prototypes */
void fSixDOFSensorDrivers(int k);
void feCompass(float fBx, float fBy, float fBz, float fGx, float fGy, float fGz);
void fModuloLPF(float Angle, float *pLPFAngle);
void fUpdateConstellation(void);
void fUpdateCalibration7SVD(void);
void fUpdateCalibration4INV(void);
void heapSort(int numbers[], int array_size);
void siftDown(int numbers[], int root, int bottom);
void ResetCalibrationFunc(void);
void fInvertHardandSoftIron(void);
void fmatrixAeqBxC(float **A, float **B, float **C, int rB, int cBrC, int cC);
void fmatrixAeqTrBxB(float **A, float **B, int r, int c);
void fmatrixAeqTrBxC(float **A, float **B, float **C, int rBrC, int cB, int cC);
void fmatrixAeqI(float **A, int rc);
void fmatrixPrintA(float **A, int r1, int r2, int c1, int c2);
float f3x3matrixDetA(float **inp);
void f3x3matrixAeqInvB(float **A, float **B);
void f4x4matrixAeqInvB(float **A, float **B);
void fmatrixAeqAxScalar(float **A, float Scalar, int r, int c);
void eigensort(float **eigval, float **eigvec, int n);
float pythag(float a, float b);
void SVDcompute(float **mat, int m, int n, float **w, float **v);
int fd_bma, fd_mmc;
int aflag, mflag, oflag, prev_aflag, prev_mflag, prev_oflag=0;
int poll_delay=50;
int main(int argc, char *argv[])
{
/* local variables */
int fd_ecompass; /* file handle */
int command; /* keyboard command selected */
int i; /* loop counter */
int niterations; /* number of eCompass iterations to be performed */
float ftmpx, ftmpy, ftmpz; /* scratch variables */
int ypr[13]={0}; /* sensor events */
int tmpyaw, tmppitch, tmproll=0; /* temporary orientation value */
FILE *fp;
signal(SIGUSR1,sigusr1);
signal(SIGUSR2,sigusr2);
/* apply the tweak for C's limitation on functions receiving variable size arrays */
/* slight overhead of additional storage since 2D arrays are replaced with 1D arrays */
/* of pointers to 1D arrays */
/* 3 row arrays */
for (i = 0; i < 3; i++)
{
invSimW[i] = xinvSimW[i];
SimW[i] = xSimW[i];
finvW[i] = xfinvW[i];
A[i] = xA[i];
invA[i] = xinvA[i];
ftmpA3x3[i] = xftmpA3x3[i];
}
/* 4 row arrays */
for (i = 0; i < 4; i++)
{
fBeta4[i] = xfBeta4[i];
ftmpA4x1[i] = xftmpA4x1[i];
ftmpA4x4[i] = xftmpA4x4[i];
ftmpB4x4[i] = xftmpB4x4[i];
}
/* MAXCALELEMENTS row arrays */
for (i = 0; i < MAXCALELEMENTS; i++)
{
S[i] = xS[i];
GkY[i] = xGkY[i];
}
/* MAXEQUATIONS row arrays */
for (i = 0; i < MAXEQUATIONS; i++)
{
fX[i] = xfX[i];
U[i] = xU[i];
fY[i] = xfY[i];
ftmpAMAXx1[i] = xftmpAMAXx1[i];
}
/* for safety, reset sensor simulation hard iron to zero and soft iron to identity matrix */
/* in case the simulation is executed without entering these values */
fmatrixAeqI(invSimW, 3);
fmatrixAeqI(SimW, 3);
SimVx = SimVy = SimVz = 0.0F;
/* for safety, set the geomagnetic field to safe value 50uT and 50 deg */
/* in case the simulation is executed without entering these values */
SimB = 50.0F;
Simdelta = 50.0F;
/* reset computed calibration and other structures */
ResetCalibrationFunc();
/* seed the random number generator */
srand((unsigned int) time(NULL));
/* control loop terminating with option 99 */
printf("\ng5sensord - Freescale eCompass and Magnetic Calibration Software (OuNao mod)\n");
// OuNao inclusions - start
ResetCalibrationFunc();
SOLUTIONSIZE=7;
// save/get calibration values
if(( fp = fopen("/data/misc/sensors/g5s_calib", "rb+")) != NULL) {
fread(&fVx, sizeof(float), 1, fp);
fread(&fVy, sizeof(float), 1, fp);
fread(&fVz, sizeof(float), 1, fp);
fread(&ftmpx, sizeof(float), 1, fp);
fread(&ftmpy, sizeof(float), 1, fp);
fread(&ftmpz, sizeof(float), 1, fp);
if ((ftmpx != 0) && (ftmpy != 0) && (ftmpz != 0)){
finvW[0][0]=ftmpx;
finvW[1][1]=ftmpy;
finvW[2][2]=ftmpz;
finvW[0][1] = finvW[0][2] = finvW[1][0] = finvW[1][2] = finvW[2][0] = finvW[2][1] = 0.0F;
}
}
else {
printf("Cannot open file. Creating new file...\n");
fp = fopen("/data/misc/sensors/g5s_calib", "wb+");
}
fclose(fp);
//printf("\nfVx= %f, fVy= %f, fVz= %f\n", fVx, fVy, fVz);
//fmatrixPrintA(finvW, 0, 2, 0, 2);
/* keyboard command interpreter */
for (;;)
{
if (enabled == 0){
usleep(500000);
continue;
}
fd_ecompass = open("/dev/ecompass_ctrl", O_RDWR);
if (ioctl(fd_ecompass, ECOMPASS_IOC_GET_AFLAG, &aflag)<0)
{
printf("eCompass ioctl error\n");
};
if (ioctl(fd_ecompass, ECOMPASS_IOC_GET_MFLAG, &mflag)<0)
{
printf("eCompass ioctl error\n");
};
if (ioctl(fd_ecompass, ECOMPASS_IOC_GET_OFLAG, &oflag)<0)
{
printf("eCompass ioctl error\n");
};
/* call sensor driver simulation to get float acc fGpxyz (g) and mag fBpxyz (uT) data */
//printf("\nIteration: %6d", i);
fSixDOFSensorDrivers(i);
/* NED magnetometer HAL to correct for package orientation on PCB and gain */
ftmpx = MAGHAL00 * fBpx + MAGHAL01 * fBpy + MAGHAL02 * fBpz;
ftmpy = MAGHAL10 * fBpx + MAGHAL11 * fBpy + MAGHAL12 * fBpz;
ftmpz = MAGHAL20 * fBpx + MAGHAL21 * fBpy + MAGHAL22 * fBpz;
fBpx = ftmpx;
fBpy = ftmpy;
fBpz = ftmpz;
/* NED accelerometer HAL to correct for package orientation on PCB and gain */
ftmpx = ACCHAL00 * fGpx + ACCHAL01 * fGpy + ACCHAL02 * fGpz;
ftmpy = ACCHAL10 * fGpx + ACCHAL11 * fGpy + ACCHAL12 * fGpz;
ftmpz = ACCHAL20 * fGpx + ACCHAL21 * fGpy + ACCHAL22 * fGpz;
fGpx = ftmpx;
fGpy = ftmpy;
fGpz = ftmpz;
/* remove hard and soft iron terms from Bp (uT) to get calibrated data Bc (uT) */
fInvertHardandSoftIron();
if (oflag==1)
{
/* pass the accel and calibrated mag data to the eCompass */
feCompass(fBcx, fBcy, fBcz, fGpx, fGpy, fGpz);
//printf("\nf6DOFOutp: Phi %6.2f The %6.2f Psi %6.2f delta %6.2f", fPhi, fThe, fPsi, fdelta);
//printf("\nf6DOFOutp: LPPhi %6.2f LPThe %6.2f LPPsi %6.2f LPdelta %6.2f", fLPPhi, fLPThe, fLPPsi, fLPdelta);
/* update the constellation */
fUpdateConstellation();
/* update the calibration if update is enabled */
if (CALUPDACTIVE)
{
/* check for enough data in constellation for a calibration */
if (ConstCount >= MINEQUATIONS)
{
/* calibrate if this will be the first calibration or every CALINTERVAL iterations */
if ((!validcal) || (validcal && !(loopcounter % CALINTERVAL)))
{
/* 7 point calibration */
if (SOLUTIONSIZE == 7)
{
fUpdateCalibration7SVD();
}
/* 4 point calibration */
else if (SOLUTIONSIZE == 4)
{
fUpdateCalibration4INV();
}
/* defensive default to 4 point calibration */
else
{
fUpdateCalibration4INV();
}
}
}
else /* still too few entries in constellation for calibration */
{
//printf("\n%d entries in constellation is too few for calibration", ConstCount);
}
} /* end of test for active calibration flag */
//printf("\nfBpx= %f, fBcx= %f, fBpy= %f, fBcy= %f, fBpz= %f, fBcz= %f, ", fBpx, fBcx, fBpy, fBcy, fBpz, fBcz);
}
if (fPsi<0) fPsi+=360;
ypr[0]=fGpy*-32768;
ypr[1]=fGpx*-32768;
ypr[2]=fGpz*32768;
ypr[4]=(fBcy*32768)/100;
ypr[5]=(fBcx*32768)/100;
ypr[6]=(fBcz*32768)/-100;
ypr[8]=(fLPPsi*65536)/360;
ypr[9]=(fLPThe*65536)/-360;
ypr[10]=(fLPPhi*65536)/-360;
ioctl(fd_ecompass, ECOMPASS_IOC_SET_YPR, &ypr);
close(fd_ecompass);
if ( argc == 2 ) /* argc should be 2 for correct execution */
{
poll_delay=atoi(argv[1]);
}
usleep(poll_delay*1000);
}
return (1);
}
/* (FLOAT) map the uncalibrated data Bp (uT) onto calibrated data Bc (uT) */
void fInvertHardandSoftIron()
{
/* local variables */
float ftmpx, ftmpy, ftmpz;
/* remove the computed hard iron offset if enabled */
if (HARDCORRACTIVE)
{
fBcx = fBpx - fVx;
fBcy = fBpy - fVy;
fBcz = fBpz - fVz;
}
else
{
fBcx = fBpx;
fBcy = fBpy;
fBcz = fBpz;
}
/* remove the computed soft iron offset if enabled */
if (SOFTCORRACTIVE)
{
ftmpx = finvW[0][0] * fBcx + finvW[0][1] * fBcy + finvW[0][2] * fBcz;
ftmpy = finvW[1][0] * fBcx + finvW[1][1] * fBcy + finvW[1][2] * fBcz;
ftmpz = finvW[2][0] * fBcx + finvW[2][1] * fBcy + finvW[2][2] * fBcz;
fBcx = ftmpx;
fBcy = ftmpy;
fBcz = ftmpz;
}
return;
}
/* (FLOAT) tilt-compensated e-Compass function */
void feCompass(float fBx, float fBy, float fBz, float fGx, float fGy, float fGz)
{
/* stack variables */
/* fBx, fBy, fBz: float magnetometer sensor in any units */
/* fGx, fGy, fGz: float accelerometer sensor in any units */
/* local variables */
float sinAngle, cosAngle; /* sine and cosine */
/* calculate roll angle Phi (-180deg, 180deg) */
fPhi = atan2(fGy, ((fGz >= 0.0F) ? 1.0F : -1.0F) * sqrt(fGz * fGz + FMU * fGx * fGx)) * RadToDeg;
/* calculate sin(Phi) and cos(Phi) */
sinAngle = sin(fPhi * DegToRad); /* sin(Phi) */
cosAngle = cos(fPhi * DegToRad); /* cos(Phi) */
/* de-rotate by roll angle Phi */
fBfy = fBy * cosAngle - fBz * sinAngle;
fBz = fBy * sinAngle + fBz * cosAngle;
fGz = fGy * sinAngle + fGz * fabs(cosAngle);
/* check for division by zero and calculate pitch angle Theta (-90deg, 90deg) */
if (fGz == 0.0F) fGz = 1E-10F;
fThe = atan2(fGx, fGz) * RadToDeg * -1.0F;
/* calculate sin(Theta) and cos(Theta) */
sinAngle = sin(fThe * DegToRad); /* sin(The) */
cosAngle = cos(fThe * DegToRad); /* cos(The) */
/* de-rotate by pitch angle Theta */
fBfx = fBx * cosAngle + fBz * sinAngle;
fBfz = -fBx * sinAngle + fBz * cosAngle;
/* try stabilizes the compass on high pitch */
if ((fThe>80.0F) && (fThe<120.0F) && (fBfy<0.0F)){
fBfy = fBfy * -1.0F;
}
//printf("\nfBfx=%f, fBfy=%f, fBfz=%f, fGx=%f, fGy=%f, fGz=%f", fBfx, fBfy, fBfz, fGx, fGy, fGz);
/* calculate yaw = ecompass angle psi (-180deg, 180deg) with or without tilt compensation */
if (TILTCORRACTIVE)
fPsi = atan2(-fBfy, fBfx) * RadToDeg;
else
fPsi = atan2(-fBy, fBx) * RadToDeg;
/* calculate the geomagnetic inclination angle delta */
fdelta = atan2(fBfz, sqrt(fBfx * fBfx + fBfy * fBfy)) * RadToDeg;
/* check for first iteration to initialise low pass filters */
if (loopcounter == 0)
{
fLPPhi = fPhi;
fLPThe = fThe;
fLPPsi = fPsi;
fLPdelta = fdelta;
}
/* apply the low pass filter on the roll angle (result will be bounded -180 to 180 deg) */
fModuloLPF(fPhi, &fLPPhi);
/* apply the low pass filter on the pitch angle and ensure result is bounded -90 to 90 deg */
fModuloLPF(fThe, &fLPThe);
if (fLPThe > 90.0F)
fLPThe = 180.0F - fLPThe;
if (fLPThe < -90.0F)
fLPThe = -180.0F - fLPThe;
/* apply the low pass filter on the compass / yaw angle (result will be bounded -180 to 180 deg) */
fModuloLPF(fPsi, &fLPPsi);
/* apply the low pass filter on the magnetic inclination angle */
fModuloLPF(fdelta, &fLPdelta);
return;
}
/* (FLOAT) modulo 360 degree exponential low pass filter for angles */
void fModuloLPF(float fAngle, float *pfLPFAngle)
{
/* local variables */
float ftmpAngle; /* temporary angle */
/* calculate the modulo 360 deg difference between current and low pass filtered sample */
ftmpAngle = fAngle - *pfLPFAngle;
if (ftmpAngle > 180.0F)
ftmpAngle -= 360.0F;
if (ftmpAngle < -180.0F)
ftmpAngle += 360.0F;
/* calculate the new low pass filtered angle */
*pfLPFAngle += ANGLE_LPF_FPU * ftmpAngle;
/* check that the angle remains in range -180 to 180 deg */
if (*pfLPFAngle > 180.0F)
*pfLPFAngle -= 360.0F;
if (*pfLPFAngle < -180.0F)
*pfLPFAngle += 360.0F;
return;
}
/* (FLOAT) update the constellation / smart FIFO with most recent data */
void fUpdateConstellation(void)
{
/* local variables */
int i; /* general loop counter */
int j, k, l; /* constellation indices */
/* find constellation indices */
j = (int) ((fThe + 90.) * CURRENTMAXPITCH / 180.); /* pitch theta range -90. to 90. deg */
k = (int) ((fPhi + 180.) * CURRENTMAXROLL / 360.); /* roll phi range -180. to 180. deg */
l = (int) ((fPsi + 180.) * CURRENTMAXYAW / 360.); /* yaw psi range -180. to 180. deg */
/* bounds safety check in case exactly on boundary */
if (j >= CURRENTMAXPITCH) j = CURRENTMAXPITCH - 1;
if (k >= CURRENTMAXROLL) k = CURRENTMAXROLL - 1;
if (l >= CURRENTMAXYAW) l = CURRENTMAXYAW - 1;
/* store the magnetometer reading and loop counter into the constellation */
fConBpx[j][k][l] = fBpx;
fConBpy[j][k][l] = fBpy;
fConBpz[j][k][l] = fBpz;
/* loop counter has valid value 0 at start of first pass */
ConIndex[j][k][l] = loopcounter++;
/* update the constellation count */
i = 0;
for (j = 0; j < CURRENTMAXPITCH; j++)
for (k = 0; k < CURRENTMAXROLL; k++)
for (l = 0; l < CURRENTMAXYAW; l++)
if (ConIndex[j][k][l] != -1)
{
i++;
}
ConstCount = i;
return;
}
/* (FLOAT) 7 element calibration using SVD */
void fUpdateCalibration7SVD(void)
{
int i, j, k, l; /* loop counters */
float fOffsetx, fOffsety, fOffsetz; /* offset to remove large DC hard iron bias in matrix */
float ftmpBpx, ftmpBpy, ftmpBpz; /* scratch variables */
float ftmpx, ftmpy, ftmpz; /* scratch variables */
FILE *fp;
//printf("\n\nCalculating 7 element SVD calibration at iteration %d with %d in Smart FIFO", loopcounter, ConstCount);
/* the offsets are guaranteed to be set from the first element but to avoid compiler error */
fOffsetx = fOffsety = fOffsetz = 0.0F;
/* should never occur but return with no calibration if too few entries in the constellation */
if (ConstCount < MINEQUATIONS)
{
return;
}
/* place the constellation sample number index into a temporary scratch array */
i = 0;
for (j = 0; j < CURRENTMAXPITCH; j++)
{
for (k = 0; k < CURRENTMAXROLL; k++)
{
for (l = 0; l < CURRENTMAXYAW; l++)
{
ScratchConIndex[i] = ConIndex[j][k][l];
i++;
}
}
}
/* sort the scratch array into ascending order in place */
heapSort(ScratchConIndex, (int)(CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW));
/* determine the earliest sample number that is needed to get MAXEQUATIONS: note this may be -1 */
/* defensive programming test */
if (MAXEQUATIONS <= CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW)
{
earliestsample = ScratchConIndex[CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW - MAXEQUATIONS];
}
else
{
earliestsample = 0;
}
/* place from MINEQUATIONS to MAXEQUATIONS entries into the measurement matrix */
i = 0;
for (j = 0; j < CURRENTMAXPITCH; j++)
{
for (k = 0; k < CURRENTMAXROLL; k++)
{
for (l = 0; l < CURRENTMAXYAW; l++)
{
if ((ConIndex[j][k][l] != -1) && (ConIndex[j][k][l] >= earliestsample))
{
/* set tmp to valid data from the constellation */
ftmpBpx = fConBpx[j][k][l];
ftmpBpy = fConBpy[j][k][l];
ftmpBpz = fConBpz[j][k][l];
/* use first valid constellation entry as estimate (in uT) for offset to help solution */
if (i == 0)
{
fOffsetx = ftmpBpx;
fOffsety = ftmpBpy;
fOffsetz = ftmpBpz;
}
/* apply the same fixed offset (in bit counts) to all measurement vectors for this iteration */
ftmpBpx -= fOffsetx;
ftmpBpy -= fOffsety;
ftmpBpz -= fOffsetz;
/* enter into the measurement matrix X scaling to make entries near unity */
fX[i][0] = ftmpBpx * ftmpBpx * fSVDscaling * fSVDscaling;
fX[i][1] = ftmpBpy * ftmpBpy * fSVDscaling * fSVDscaling;
fX[i][2] = ftmpBpz * ftmpBpz * fSVDscaling * fSVDscaling;
fX[i][3] = ftmpBpx * fSVDscaling;
fX[i][4] = ftmpBpy * fSVDscaling;
fX[i][5] = ftmpBpz * fSVDscaling;
fX[i][6] = 1.0F;
i++;
}
}
}
}
/* record how many measurement equations are available for the solution */
nequations = i;
/* call the SVD function and sort the eigenvalues and eigenvectors */
SVDcompute(fX, nequations, 7, S, GkY);
eigensort(S, GkY, 7);
/* set ellipsoid matrix A to the solution vector column [6] with smallest eigenvalue */
A[0][0] = GkY[0][6];
A[1][1] = GkY[1][6];
A[2][2] = GkY[2][6];
A[0][1] = A[0][2] = A[1][0] = A[1][2] = A[2][0] = A[2][1] = 0.0F;
/* compute the hard iron vector in offset bit counts times fSVDscaling */
fVx = -0.5F * GkY[3][6] / A[0][0];
fVy = -0.5F * GkY[4][6] / A[1][1];
fVz = -0.5F * GkY[5][6] / A[2][2];
/* negate A and gain if A has negative determinant. Sign change cancels for hard iron vector */
det = A[0][0] * A[1][1] * A[2][2];
if (det < 0.0F)
{
fmatrixAeqAxScalar(A, -1.0F, 3, 3);
GkY[6][6] = -GkY[6][6];
det = -det;
}
/* compute the geomagnetic field strength B in bit counts times fSVDscaling */
fB = (float)sqrt(fabs(A[0][0] * fVx * fVx + A[1][1] * fVy * fVy + A[2][2] * fVz * fVz - GkY[6][6]));
/* calculate the normalised fit error as a percentage */
fFitErrorpc = S[6][0] / (2.0F * fB * fB * (float)sqrt((double) nequations)) * 100.0F;
//printf("\nCalibration Fit Error (%%)=%9.3f", fFitErrorpc);
/* correct for the measurement matrix offset and scaling and get the computed hard iron offset in uT */
fVx = fVx * finvSVDscaling + fOffsetx;
fVy = fVy * finvSVDscaling + fOffsety;
fVz = fVz * finvSVDscaling + fOffsetz;
//printf("\nCalibration hard iron (in uT) Vx=%9.3f Vy=%9.3f Vz=%9.3f", fVx, fVy, fVz);
/* convert the geomagnetic field strength B into uT for current soft iron matrix A */
fB *= finvSVDscaling;
/* normalise the ellipsoid matrix A to unit determinant and correct B by root of this multiplicative factor */
fmatrixAeqAxScalar(A, (float)pow((double)det, (double) (-1.0F / 3.0F)), 3, 3);
fB *= (float)pow((double)det, (double) (-1.0F / 6.0F));
//printf("\n\nCalibration geomagnetic field (uT) B=%9.3f", fB);
/* compute invW from the square root of A also with normalised determinant */
finvW[0][0] = (float)sqrt(fabs(A[0][0]));
finvW[1][1] = (float)sqrt(fabs(A[1][1]));
finvW[2][2] = (float)sqrt(fabs(A[2][2]));
finvW[0][1] = finvW[0][2] = finvW[1][0] = finvW[1][2] = finvW[2][0] = finvW[2][1] = 0.0F;
//printf("\n\nCalibration inverse soft iron matrix invW (normalized)");
//fmatrixPrintA(finvW, 0, 2, 0, 2);
/* for convenience show the original optimal invW */
//printf("\nFor comparison: Simulation inverse soft iron matrix invW (normalized)");
//fmatrixPrintA(invSimW, 0, 2, 0, 2);
/* finally set the valid calibration flag to true */
validcal = 1;
if(( fp = fopen("/data/misc/sensors/g5s_calib", "rb+")) == NULL) {
printf("Cannot open file.\n");
}
if( fp != NULL) {
fwrite(&fVx, sizeof(float), 1, fp);
fwrite(&fVy, sizeof(float), 1, fp);
fwrite(&fVz, sizeof(float), 1, fp);
ftmpx=finvW[0][0];
ftmpy=finvW[1][1];
ftmpz=finvW[2][2];
fwrite(&ftmpx, sizeof(float), 1, fp);
fwrite(&ftmpy, sizeof(float), 1, fp);
fwrite(&ftmpz, sizeof(float), 1, fp);
}
fclose(fp);
return;
}
/* (FLOAT) 4 element calibration using 4x4 matrix inverse */
void fUpdateCalibration4INV(void)
{
int i, j, k, l; /* loop counters */
float fOffsetx, fOffsety, fOffsetz; /* offset to remove large DC hard iron bias in matrix */
float ftmpBpx, ftmpBpy, ftmpBpz; /* scratch variables */
printf("\n\nCalculating 4 element INV calibration at iteration %d with %d in Smart FIFO", loopcounter, ConstCount);
/* the offsets are guaranteed to be set from the first element but to avoid compiler error */
fOffsetx = fOffsety = fOffsetz = 0.0F;
/* should never occur but return with no calibration if too few entries in the constellation */
if (ConstCount < MINEQUATIONS)
{
return;
}
/* place the constellation sample number index into a temporary scratch array */
i = 0;
for (j = 0; j < CURRENTMAXPITCH; j++)
{
for (k = 0; k < CURRENTMAXROLL; k++)
{
for (l = 0; l < CURRENTMAXYAW; l++)
{
ScratchConIndex[i] = ConIndex[j][k][l];
i++;
}
}
}
/* sort the scratch array into ascending order in place */
heapSort(ScratchConIndex, (int)(CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW));
/* determine the earliest sample number that is needed to get MAXEQUATIONS: note this may be -1 */
/* defensive programming test */
if (MAXEQUATIONS <= CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW)
{
earliestsample = ScratchConIndex[CURRENTMAXPITCH * CURRENTMAXROLL * CURRENTMAXYAW - MAXEQUATIONS];
}
else
{
earliestsample = 0;
}
/* place from MINEQUATIONS up to MAXEQUATIONS entries into the measurement matrix */
i = 0;
for (j = 0; j < CURRENTMAXPITCH; j++)
{
for (k = 0; k < CURRENTMAXROLL; k++)
{
for (l = 0; l < CURRENTMAXYAW; l++)
{
if ((ConIndex[j][k][l] != -1) && (ConIndex[j][k][l] >= earliestsample))
{
/* set tmp to valid data from the constellation */
ftmpBpx = fConBpx[j][k][l];
ftmpBpy = fConBpy[j][k][l];
ftmpBpz = fConBpz[j][k][l];
/* use first valid constellation entry as estimate (in uT) for offset to help solution */
if (i == 0)
{
fOffsetx = ftmpBpx;
fOffsety = ftmpBpy;
fOffsetz = ftmpBpz;
}
/* apply the same fixed offset (in uT) to all measurement vectors for this iteration */
ftmpBpx -= fOffsetx;
ftmpBpy -= fOffsety;
ftmpBpz -= fOffsetz;
/* enter into the measurement matrix X scaling to make entries near unity */
fX[i][0] = ftmpBpx * fSVDscaling;
fX[i][1] = ftmpBpy * fSVDscaling;
fX[i][2] = ftmpBpz * fSVDscaling;
fX[i][3] = 1.0F;
/* enter into dependent measurement vector Y */
fY[i][0] = (ftmpBpx * ftmpBpx + ftmpBpy * ftmpBpy + ftmpBpz * ftmpBpz) * fSVDscaling * fSVDscaling;
i++;
}
}
}
}
/* record how many measurement equations are available for the solution */
nequations = i;
/* set inverse soft iron matrix invW to the identity matrix */
finvW[0][0] = finvW[1][1] = finvW[2][2] = 1.0F;
finvW[0][1] = finvW[0][2] = finvW[1][0] = finvW[1][2] = finvW[2][0] = finvW[2][1] = 0.0F;
/* calculate Beta = Inv(X^T.X).X^T.Y */
fmatrixAeqTrBxC(ftmpA4x4, fX, fX, nequations, 4, 4); /* tmpA4x4 = X^T.X (4x4) */
f4x4matrixAeqInvB(ftmpB4x4, ftmpA4x4); /* tmpB4x4 = Inv(X^T.X) (4x4) */
fmatrixAeqTrBxC(ftmpA4x1, fX, fY, nequations, 4, 1); /* tmpA4x1 = X^T.Y (4x1) */
fmatrixAeqBxC(fBeta4, ftmpB4x4, ftmpA4x1, 4, 4, 1); /* Beta = Inv(X^T.X).X^T.Y (4x1) */
/* calculate the performance function P = (Y-X.Beta)^T.(Y-X.Beta) */
fmatrixAeqBxC(ftmpAMAXx1, fX, fBeta4, nequations, 4, 1); /* tmpAMAXx1 = X.Beta (neqx1) */
fFitErrorpc = 0.0F;
for (i = 0; i < nequations; i++)
{
fFitErrorpc += (fY[i][0] - ftmpAMAXx1[i][0]) * (fY[i][0] - ftmpAMAXx1[i][0]);
}
/* calculate the Fit Error (percent) in scaled bit counts but not normalised by B */
fFitErrorpc = (float)sqrt(fFitErrorpc / nequations) * 100.0F;
/* compute the hard iron vector in offset bit counts times fSVDscaling */
fVx = 0.5F * fBeta4[0][0];
fVy = 0.5F * fBeta4[1][0];
fVz = 0.5F * fBeta4[2][0];
/* compute the geomagnetic field strength B in bit counts times fSVDscaling */
fB = (float)sqrt(fBeta4[3][0] + fVx * fVx + fVy * fVy + fVz * fVz);
/* normalise the Fit Error (percent) to the scaled bit count geomagnetic field B */
fFitErrorpc /= (2.0F * fB * fB);
printf("\nCalibration Fit Error (%%)=%9.3f", fFitErrorpc);
/* correct for the measurement matrix offset and scaling and get the computed hard iron offset in uT */
fVx = fVx * finvSVDscaling + fOffsetx;
fVy = fVy * finvSVDscaling + fOffsety;
fVz = fVz * finvSVDscaling + fOffsetz;
printf("\nCalibration hard iron (uT) Vx=%9.3f Vy=%9.3f Vz=%9.3f", fVx, fVy, fVz);
/* convert the geomagnetic field strength B into uT */
fB *= finvSVDscaling;
printf("\nCalibrated geomagnetic field (uT) B=%9.3f", fB);
/* finally set the valid calibration flag to true */
validcal = 1;
return;
}
/* (FLOAT) calibration reset function */
void ResetCalibrationFunc(void)
{
int j, k, l; /* loop counters */
/* initialise the calibration hard and soft iron estimate to null */
fmatrixAeqI(finvW, 3);
fVx = fVy = fVz = 0.;
/* set the loop counter to 0 to denote first pass */
loopcounter = 0;
/* set valid calibration flag to false */
validcal = 0;
/* set constellation index to invalid value -1 to denote unfilled */
for (j = 0; j < ABSMAXPITCH; j++)
for (k = 0; k < ABSMAXROLL; k++)
for (l = 0; l < ABSMAXYAW; l++)
ConIndex[j][k][l] = -1;
/* zero number of constellation bins filled */
ConstCount = 0;
return;
}
/* (FLOAT) function calculates the matrix product A = B x C */
void fmatrixAeqBxC(float **A, float **B, float **C, int rB, int cBrC, int cC)
{
/* rB = rows in B */
/* cBrC = columns in B = rows in C */
/* cC = columns in C */
/* A has dimension rB rows x cC columns */
int i, j, k; /* counters */
for (i = 0; i < rB; i++)
{
for (j = 0; j < cC; j++)
{
A[i][j] = 0.0F;
for (k = 0; k < cBrC; k++)
A[i][j] += B[i][k] * C[k][j];
}
}
return;
}
/* (FLOAT) function calculates the matrix product A = B^T x B */
void fmatrixAeqTrBxB(float **A, float **B, int r, int c)
{
/* r = rows in B before transposing */
/* c = columns in B before transposing */
/* A has dimension c rows x c columns */
int i, j, k; /* counters */
for (i = 0; i < c; i++)
{
for (j = 0; j < c; j++)
{
A[i][j] = 0.0F;
for (k = 0; k < r; k++)
A[i][j] += B[k][i] * B[k][j];
}
}
return;
}
/* (FLOAT) function calculates the matrix product A = B^T x C */
void fmatrixAeqTrBxC(float **A, float **B, float **C, int rBrC, int cB, int cC)
{
/* rBrC = rows in B before transposing = rows in C */
/* cB = columns in B before transposing */
/* cC = columns in C */
/* A has dimension cB rows x cC columns */
int i, j, k; /* counters */
for (i = 0; i < cB; i++)
{
for (j = 0; j < cC; j++)
{
A[i][j] = 0.0F;
for (k = 0; k < rBrC; k++)
A[i][j] += B[k][i] * C[k][j];
}
}
return;
}
/* (FLOAT) function sets the matrix A to the identity matrix */
void fmatrixAeqI(float **A, int rc)
{
/* rc = rows and columns in A */
int i, j; /* loop counters */
for (i = 0; i < rc; i++)
{
for (j = 0; j < rc; j++)
{
A[i][j] = 0.0F;
}
A[i][i] = 1.0F;
}
return;
}
/* (FLOAT) function multiplies all elements of matrix A by the specified scalar */
void fmatrixAeqAxScalar(float **A, float Scalar, int r, int c)
{
/* r = rows and c = columns in A */
int i, j; /* loop counters */
for (i = 0; i < r; i++)
{
for (j = 0; j < c; j++)
{
A[i][j] *= Scalar;
}
}
return;
}