-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocropus-ngraphs
executable file
·377 lines (320 loc) · 14.3 KB
/
ocropus-ngraphs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/python
# -*- coding: utf-8 -*-
# FIXME stop using the Lattice class, handle " " by multicharacter classes
# FIXME handle cost accounting for multi-character classes correctly
# FIXME different end-of-line handling
# FIXME use argparse for subparsers
# FIXME right now, it can't really "look back" to add rejected characters; they usually fall out of the beam too early
from pylab import *
from collections import Counter,defaultdict
import glob,re,heapq,os,codecs
import ocrolib
from ocrolib import ngraphs as ng
from ocrolib.lattice import Lattice2
import argparse
extra = """
Subcommands:
%(prog)s [options] line1.lattice line2.lattice ...
Compute text output for each lattice file using the given language model.
%(prog)s --sample 20 -l langmod.ngraphs
Generate 20 samples from the given language model.
%(prog)s --build output.ngraphs --ngraph 3 textfile1.txt textfile2.txt ...
Build a language model of order 3 from the given text files.
%(prog)s --print line.lattice
Visualize the recognition lattice.
"""%dict(prog=sys.argv[0])
parser = argparse.ArgumentParser("""Build, apply, and visualize n-graph language models.""")
# RESULT 0.0338945600778 cweight 1.07777736525 lmodel default-4.ngraphs lweight 0.162668906805
# maxcost 15.4435581516 maxws 5.39191969674 mismatch 8.67617819976 thresh 1.287178097956
parser.add_argument('--build',default=None,help="build and write a language model")
parser.add_argument('--ngraph',type=int,default=4,help="order of the language model")
parser.add_argument('--sample',default=None,type=int,help="sample from the language model")
parser.add_argument('--slength',default=70,type=int,help="length of the sampled strings")
parser.add_argument('-l','--lmodel',default=ocrolib.default.ngraphs,help="the language model (%(default)s)")
parser.add_argument('-C','--cweight',default=1.0,type=float,help="character weight (%(default)s)")
parser.add_argument('-L','--lweight',default=0.1,type=float,help="language model weight (%(default)s)")
parser.add_argument('-B','--beam',default=10,type=int,help="beam width (%(default)s)")
parser.add_argument('-P','--wsfactor',default=1.0,type=float,help="factor that whitespace costs are multiplied with (%(default)s)")
parser.add_argument('-W','--maxws',default=8,type=float,help="max whitespace cost (%(default)s)")
parser.add_argument('-M','--maxcost',default=15.0,type=float,help="max cost (%(default)s)")
parser.add_argument('-X','--mismatch',default=8,type=float,help="mismatch cost (%(default)s)")
parser.add_argument('-T','--thresh',default=0.0,type=float,help="below this cost, ignore language model")
parser.add_argument('-n','--nbest',type=int,default=5,help="the n best labels from each state to use from the lattice")
parser.add_argument('-q','--quiet',action="store_true",help="don't output each line")
parser.add_argument('--other',default=15.0,type=float,help="extra cost for characters outside the lattice")
parser.add_argument('--nother',default=1,type=int,help="number of candidates from outside the lattice")
parser.add_argument('--lother',default=-1,type=float,help="language model weight for other characters")
parser.add_argument('--debugpaths',action="store_true")
parser.add_argument('--debugstates',default="")
parser.add_argument('--debugmaxrank',type=int,default=4)
parser.add_argument('--detailed',action="store_true")
parser.add_argument('--rewrites',default=None)
parser.add_argument("files",default=[],nargs="*")
args = parser.parse_args()
files = args.files
debugstates = [int(x) for x in args.debugstates.split(",")] if args.debugstates!="" else []
if args.lother<0: args.lother = args.lweight
rewrites = None
if args.rewrites is not None:
rewrites = defaultdict(list)
rcost = 1.0
nrewrites = 0
with codecs.open(ocrolib.findfile(args.rewrites)) as stream:
for line in stream.readlines():
line = line[:-1]
# print "*",line
f = line.split("\t")
assert f[0]=="add"
rewrites[f[1]].append((f[2],rcost+float(f[3])))
nrewrites += 1
print "got",nrewrites,"rewrites"
class Path:
def __init__(self,cost=0.0,state=-1,path="",sequence=[],labels=[]):
self.cost = cost # total cost accumulated along this path
self.state = state # state in the lattice
self.path = path # current sequence of characters
self.sequence = sequence # current sequence of states
self.labels = labels # current sequence of labels (list corresponding to sequence)
def __repr__(self):
return "<Path %.2f %d '%s'>"%(self.cost,self.state,self.path)
def __str__(self):
return self.__repr__()
def __cmp__(self,other):
return cmp((self.cost,self.state,self.path),(other.cost,other.state,other.path))
def rewrite_path(path):
result = [path]
for i in range(1,min(4,len(path.path))):
l = rewrites.get(path.path[-i:],[])
for o,c in l:
npath = path.path[:-i]+o
nlabels = path.labels[:-1]+["_"]
ncost = path.cost + c
# print path.path,"->",npath,";",path.cost,ncost
p = Path(cost=path.cost+c,state=path.state,path=npath,sequence=path.sequence,labels=nlabels)
result.append(p)
return result
def expand(path,ngraphs,
cweight=1.0,lweight=1.0,
rank=-1,
verbose=0,
missing=15.0,
thresh=1.0,
nbest=5,
other=15.0,nother=1,lother=1.0,
noreject=1):
"""Expand a search path. Arguments are:
- `path` the path to be expanded
- `ngraphs` the ngraph model
- `rank` the rank of the current path (for debugging)
- `verbose` display extra information for debugging
- `missing` the cost of missing characters in the posterior
- `thresh` the treshold below which the language model cost is ignored entirely
- `other` the cost for inserting non-lattice characters into the search
- `nother` the number of non-lattice characters added (top # of characters from posterior)
- `lother` the language model weight for non-lattice characters
- `noreject` eliminate reject classes from matching
"""
ngraphs.missing = {"~":missing}
floor = missing
lposteriors = ngraphs.getLogPosteriors(path.path)
edges = lattice.edges[path.state]
edges = sorted(edges,key=lambda e:e.cost)
edges = edges[:nbest]
result = []
transitions = set()
# add all the transitions for which we have edges
for e in edges:
if noreject and "~" in e.cls: continue
assert e.start==path.state
if e.cls!="" and e.cls!=" ":
transitions.add((e.start,e.stop))
# we apply the same string transformation to the predicted classes
# as to the language model
cls = ngraphs.lineproc(e.cls)
# add transitions for single and multi-character classes
# returned by the classifier
l = 0.0 if e.cost<thresh and e.cls!=" " else lweight
if len(cls)==0:
ncost = path.cost + cweight*e.cost
# FIXME we really need to add a penalty for not having whitespace here
if verbose:
print "EMPTY","ncost",ncost
elif len(cls)==1:
lcost = lposteriors.get(cls,floor)
ncost = path.cost + cweight*e.cost + l*lcost
if verbose:
prefix = ngraphs.lineproc(path.path)[-5:]
print "prefix",repr(prefix),"cls",repr(cls),"ecost",cweight*e.cost,"lcost",lcost,"ncost",ncost,"seg",e.seg
else:
ncost = path.cost + cweight*e.cost
for c in cls:
tpath = path.path + c
tcls = tpath[-1]
lcost = ngraphs.getLogPosteriors(tpath).get(c,floor)
ncost += l*lcost
if verbose:
print "MULTI","prefix",repr(tpath[-10:]),"cls",repr(tcls),repr(cls),
print "ecost",cweight*e.cost,"lcost",lcost,"ncost",ncost
nsequence = path.sequence + [e]
npath = path.path + e.cls
nstate = e.stop
nlabels = path.labels + [e.cls]
assert nstate>path.state,("oops: %s %s %s %s"%(e.start,e.stop,cls,e.cost))
result.append(Path(cost=ncost,state=nstate,path=npath,sequence=nsequence,labels=nlabels))
# now add `nother` extra transitions for characters predicted by the language
# model but not returned by the classifier; this adds the `other` cost
# to the cost from the language model itself
best = ngraphs.getBestGuesses(path.path,nother=nother)
for start,stop in transitions:
for (lcls,lcost) in best:
ncost = path.cost + other + lcost
nsequence = path.sequence + [None]
npath = path.path + lcls
nstate = stop
nlabels = path.labels + [lcls]
if verbose:
print "OTHER","path",npath[-10:],"lcost",lcost
result.append(Path(cost=ncost,state=nstate,path=npath,sequence=nsequence,labels=nlabels))
return result
def eliminate_common_suffixes_and_sort(paths,n):
# sort by cost
paths = sorted(paths)
# keep track of the best
result = {}
for p in paths:
suffix = p.path[-n:]
if suffix in result: continue
result[suffix] = p
return sorted(result.values())
def search(lattice,ngraphs,accept=None,verbose=0,beam=100,**kw):
global table
N = ngraphs.N
initial = Path(cost=0.0,state=lattice.startState(),path="_"*N)
nstates = lattice.lastState()+1
table = [[] for i in range(nstates)]
table[initial.state] = [initial]
for i in range(nstates):
if lattice.isAccept(i): break
if len(table[i])==0: continue
table[i] = eliminate_common_suffixes_and_sort(table[i],n=N)
# now apply the rewrites
if rewrites is not None:
npaths = []
for p in table[i]: npaths += rewrite_path(p)
table[i] = eliminate_common_suffixes_and_sort(npaths,n=N)
if args.debugpaths: print i,table[i][0]
if i in debugstates: print "=== state",i
for rank,s in enumerate(table[i][:beam]):
debugexpand = (rank<=args.debugmaxrank and i in debugstates)
if debugexpand: print "\n--- EXPANDING",rank,s
expanded = expand(s,ngraphs,rank=rank,verbose=debugexpand,**kw)
for e in expanded:
table[e.state].append(e)
# table[i] = None
result = eliminate_common_suffixes_and_sort(table[i],n=ngraphs.N)
return result
if args.build is not None:
fnames = []
for pattern in args.files:
if "=" in pattern:
fnames += [pattern]
continue
l = glob.glob(pattern)
assert len(l)>0,"%s: didn't expand to any files"%pattern
for f in l:
assert ".lattice" not in f
assert ".png" not in f
fnames += l
print "got",len(fnames),"files"
ngraphs = ng.NGraphs()
ngraphs.buildFromFiles(fnames,args.ngraph)
ocrolib.save_object(args.build,ngraphs)
sys.exit(0)
if args.sample is not None:
args.lmodel = ocrolib.findfile(args.lmodel)
print "loading",args.lmodel
assert os.path.exists(args.lmodel),\
"%s: cannot find language model"%args.lmodel
ngraphs = ocrolib.load_object(args.lmodel)
for i in range(args.sample):
print ngraphs.sample(args.slength)
sys.exit(0)
fnames = []
for pattern in args.files:
l = sorted(glob.glob(pattern))
for f in l:
assert ".lattice" in f,"all files must end with .lattice"
fnames += l
parser.add_argument('files',nargs='*')
if len(fnames)==0:
parser.print_help()
print extra
sys.exit(0)
if ":" in args.lmodel:
primary,secondary = args.lmodel.split(":")
primary = ocrolib.findfile(primary)
primary = ocrolib.load_object(primary)
secondary = ocrolib.findfile(secondary)
secondary = ocrolib.load_object(secondary)
ngraphs = ng.NGraphsBackoff(primary,secondary)
else:
args.lmodel = ocrolib.findfile(args.lmodel)
print "loading",args.lmodel
assert os.path.exists(args.lmodel),\
"%s: cannot find language model"%args.lmodel
ngraphs = ocrolib.load_object(args.lmodel)
def compute_cseg(path,rseg):
nmax = 10000
assert amax(rseg)<nmax,"rseg contains too many characters, or there is a bug somewhere"
mapping = zeros(nmax,'i')
gt = []
for i,e in enumerate(path.sequence):
c = path.labels[i]
if c=="": continue
# some of the labels end in " "; we need to separate
# those spaces from the characters preceding them
# (otherwise they'd be treated as ligatures)
sp = ""
if c[-1]==" ":
c = c[:-1]
sp = " "
if e is None: continue
if c!="":
gt.append(c)
for s in range(e.seg[0],e.seg[1]+1):
mapping[s] = len(gt)
if sp!="":
gt.append(sp)
return mapping[rseg],gt
print "processing",len(fnames),"files"
for fname in fnames:
if not args.quiet and not args.detailed: print fname,"=NGRAPHS=",
lattice = Lattice2(maxws=args.maxws,maxcost=args.maxcost,mismatch=args.mismatch,wsfactor=args.wsfactor)
lattice.readLattice(fname)
# search through the lattice for the best path under the ngraph model
result = search(lattice,ngraphs,lweight=args.lweight,cweight=args.cweight,beam=args.beam,thresh=args.thresh,
other=args.other,nother=args.nother,lother=args.lother,nbest=args.nbest)
# strip the initial context (we prepend "____" to create the line startup context)
text = result[0].path[ngraphs.N:]
# output the textual result
if not args.quiet:
if args.detailed:
print "%5.2f %s"%(result[0].cost,fname)
base,_ = ocrolib.allsplitext(fname)
if os.path.exists(base+".raw.txt"):
print " RAW\t",ocrolib.read_text(base+".raw.txt")
print " LMD\t",text
else:
print "%5.2f\t%s"%(result[0].cost,text)
fout = ocrolib.fvariant(fname,"txt")
ocrolib.write_text(fout,text)
# write a character segmentation file if there is a raw segmentation
rname = ocrolib.fvariant(fname,"rseg")
cname = ocrolib.fvariant(fname,"cseg")
if os.path.exists(rname):
rseg = ocrolib.read_line_segmentation(rname)
cseg,ctxt = compute_cseg(result[0],rseg)
ocrolib.write_line_segmentation(cname,cseg)
ocrolib.write_text(ocrolib.fvariant(fname,"aligned"),ocrolib.gt_implode(ctxt))
else:
print rname,": not found"