-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter8.py
110 lines (93 loc) · 4.76 KB
/
chapter8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2
import numpy as np
# 检测出物体轮廓,并将其分类,
# 使用gray灰度图,高斯模糊,canny边缘检测,获得contour, 拐角点,按角点分类
def stackImages(scale, imgArray):
rows = len(imgArray)
cols = len(imgArray[0])
# & 输出一个 rows * cols 的矩阵(imgArray) ([])
# print(rows,cols)
# & 判断imgArray[0] 是不是一个list
rowsAvailable = isinstance(imgArray[0], list)
# & imgArray[][] 是什么意思呢?
# & imgArray[0][0]就是指[0,0]的那个图片(我们把图片集分为二维矩阵,第一行、第一列的那个就是第一个图片)
# & 而shape[1]就是width,shape[0]是height,shape[2]是
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
# & 例如,我们可以展示一下是什么含义
# cv2.imshow("img", imgArray[0][1])
if rowsAvailable:
for x in range (0, rows):
for y in range(0, cols):
# & 判断图像与后面那个图像的形状是否一致,若一致则进行等比例放缩;否则,先resize为一致,后进行放缩
if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
# & 如果是灰度图,则变成RGB图像(为了弄成一样的图像)
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
# & 设置零矩阵
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
# & 如果不是一组照片,则仅仅进行放缩 or 灰度转化为RGB
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor= np.hstack(imgArray)
ver = hor
return ver
def getContours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # 图片,检索方法,cv2.RETR_EXTERNAL 检索极端外部轮廓, 不需要近似
for cnt in contours:
area = cv2.contourArea(cnt)
print(area)
if area > 500: # 忽略噪声影响 形状面积大于500
cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3) # contourIdx=-1 代表全部contour
# 计算曲线长度,长度可以帮助我们得到近似边缘的拐角
# perimeter 周长
peri = cv2.arcLength(cnt, True) # curve closed 边缘 True
# print(peri)
# 近似拐角点 进行多边形逼近,得到多边形的角点
approx = cv2.approxPolyDP(cnt, 0.02*peri, True) # 拐角点
print(len(approx))
objCor = len(approx) # 拐角点个数
x, y, w, h = cv2.boundingRect(approx) # 获取图形的宽和高以及起始点的坐标
if objCor == 3:
ObjectType = "Tri"
elif objCor == 4:
aspRate = w / float(h)
if aspRate >= 0.98 and aspRate <= 1.03:
ObjectType = "Squre"
else:
ObjectType = "Rect"
elif objCor > 4:
ObjectType = "Circle"
else:
ObjectType = "None"
cv2.rectangle(imgContour, (x,y), (x+w,y+h), (0,0,0), 3)
cv2.putText(imgContour, ObjectType, ((x+w//2)-20, (y+h//2)-10),
cv2.FONT_HERSHEY_COMPLEX, 0.6,(0,0,0), 2)
path = 'Resources/shapes.png'
img = cv2.imread(path)
imgContour = img.copy()
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur(imgGray, (7,7), sigmaX=1) # sigma值越大,高斯模糊效果越好
# 接下来找到图像中的边缘
imgCanny = cv2.Canny(imgBlur, 50, 50)
getContours(imgCanny)
imgBlank = np.zeros_like(img)
imgStack = stackImages(0.6, ([img, imgGray, imgBlur],
[imgCanny, imgContour, imgBlank]))
cv2.imshow("Stack", imgStack)
# cv2.imshow("Original", img)
# cv2.imshow("Gray", imgGray)
# cv2.imshow("Blur", imgBlur)
cv2.waitKey(0)