-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathseed_llama_tokenizer.py
216 lines (188 loc) · 8.74 KB
/
seed_llama_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch.nn as nn
import torch
# import math
# from torchvision import transforms
import os
# from timm.models import create_model
from typing import Any, Dict, List, Optional, Union
from transformers import LlamaTokenizer
from diffusers import DiffusionPipeline
# from torchvision.transforms.functional import pil_to_tensor
# import torch
from PIL import Image
from torchvision import transforms
# from qformer.qformer_quantizer import Blip2QformerQuantizer
# from diffusers import StableUnCLIPImg2ImgPipeline
from .pipeline_stable_unclip_img2img import StableUnCLIPImg2ImgPipeline
WEIGHTS_NAME = 'seed_quantizer.pt'
DIFFUSION_NAME = 'diffusion_model'
class ImageTokenizer(nn.Module):
def __init__(self,
model_path,
diffusion_model_path=None,
load_diffusion=False,
image_size=224,
device='cuda',
fp16=True,
**kwargs):
super().__init__()
from .seed_qformer.qformer_quantizer import Blip2QformerQuantizer
# proxies = {
# "https_proxy": "http://zhanjun.p:[email protected]:33128/",
# "http_proxy": "http://zhanjun.p:[email protected]:33128/",
# }
model = Blip2QformerQuantizer.from_pretrained(pretrained_model_path=model_path,
vit_precision='fp16' if fp16 else 'fp32',
**kwargs).eval()
if diffusion_model_path is not None and load_diffusion:
# diffusion_model = DiffusionPipeline.from_pretrained(diffusion_model_path,
# torch_dtype=torch.float16 if fp16 else torch.float32)
diffusion_model = StableUnCLIPImg2ImgPipeline.from_pretrained(diffusion_model_path,
torch_dtype=torch.float16 if fp16 else torch.float32)
self.diffusion_model = diffusion_model.to(device)
else:
self.diffusion_model = None
model = model.to(device)
processor = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=3),
# transforms.Resize(image_size, interpolation=3),
# transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
])
if fp16:
model = model.half()
shape_latents = torch.Size([1, 4, 96, 96])
self.latents = torch.randn(shape_latents, generator=None, device=device, dtype=torch.float16, layout=torch.strided)
shape_noise = torch.Size([1, 1024])
self.noise = torch.randn(shape_noise, generator=None, device=device, dtype=torch.float16, layout=torch.strided)
self.model = model
self.processor = processor
self.device = device
self.fp16 = fp16
def __len__(self):
return self.model.n_embed
def encode(self, image_torch):
'''Convert a batch of img to code
Args:
model: The tokenizer model.
img: [b, c, h, w]
'''
if len(image_torch.shape) == 3:
image_torch = image_torch.unsqueeze(0)
# img = image_torch.to(self.device)
img = image_torch
if self.fp16:
img = img.half()
with torch.no_grad():
id, _ = self.model.get_codebook_indices(img)
return id.view(img.shape[0], -1)
def decode(self, indices, negative_indices=None, guidance_scale=10, num_inference_steps=20):
image_embeds = self.model.get_codebook_entry(indices)
# image = self.diffusion_model(image_embeds=image_embed,
# noise_level=0,
# num_inference_steps=20,
# latents=self.latents,
# noise=self.noise).images
if negative_indices is not None:
assert indices.shape == negative_indices.shape, 'Negative indices must have the same shape with indices'
negative_image_embeds = self.model.get_codebook_entry(negative_indices)
else:
negative_image_embeds = None
image = self.diffusion_model(
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
guidance_scale=guidance_scale,
noise_level=0,
num_inference_steps=num_inference_steps,
latents=self.latents,
).images
return image
class SeedLlamaTokenizer(LlamaTokenizer):
def __init__(self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
device='cuda',
fp16=True,
load_diffusion=False,
encoder_url=None,
diffusion_path=None,
**kwargs):
super().__init__(vocab_file, unk_token, bos_token, eos_token, pad_token, sp_model_kwargs, add_bos_token, add_eos_token,
clean_up_tokenization_spaces, **kwargs)
self.device = device
self.fp16 = fp16
self.pad_token = self.unk_token
self.load_diffusion = load_diffusion
self.encoder_url = encoder_url
self.diffusion_path = diffusion_path
self.load_image_tokenizer()
def load_image_tokenizer(self):
if not hasattr(self, '_image_tokenizer'):
if self.encoder_url is not None:
model_path = self.encoder_url
else:
assert hasattr(self, 'name_or_path') and os.path.exists(self.name_or_path)
model_path = os.path.join(self.name_or_path, WEIGHTS_NAME)
# diffusion_model_path = os.path.join(self.name_or_path, DIFFUSION_NAME)
# diffusion_model_path = 'stabilityai/stable-diffusion-2-1-unclip'
self._image_tokenizer = ImageTokenizer(model_path=model_path,
diffusion_model_path=self.diffusion_path,
load_diffusion=self.load_diffusion,
device=self.device,
fp16=self.fp16)
@property
def image_tokenizer(self):
if not hasattr(self, '_image_tokenizer'):
if self.encoder_url is not None:
model_path = self.encoder_url
else:
assert hasattr(self, 'name_or_path') and os.path.exists(self.name_or_path)
model_path = os.path.join(self.name_or_path, WEIGHTS_NAME)
# diffusion_model_path = os.path.join(self.name_or_path, DIFFUSION_NAME)
# diffusion_model_path = 'stabilityai/stable-diffusion-2-1-unclip'
self._image_tokenizer = ImageTokenizer(model_path=model_path,
diffusion_model_path=self.diffusion_path,
load_diffusion=self.load_diffusion,
device=self.device,
fp16=self.fp16)
return self._image_tokenizer
@property
def num_image_tokens(self):
return 8192 # self.image_tokenizer.num_tokens # allow not load
def to(self, device):
self.device = device
if hasattr(self, '_image_tokenizer'):
self._image_tokenizer.to(device=device)
def encode_image(
self,
image_path=None,
image_pil=None,
image_torch=None,
image_size: int = 224,
):
assert (image_path is None) + (image_pil is None) + (image_torch is None) == 2
# need_norm_to_1 = False
if image_path is not None:
image_pil = Image.open(image_path).convert('RGB')
if image_pil is not None:
image_torch = self.image_tokenizer.processor(image_pil)
image_torch = image_torch.to(self.device)
return self.image_tokenizer.encode(image_torch)
def decode_image(self, indices, negative_indices=None, guidance_scale=10):
indices = indices.to(self.device)
if negative_indices is not None:
negative_indices = negative_indices.to(self.device)
image = self.image_tokenizer.decode(
indices,
negative_indices=negative_indices,
guidance_scale=guidance_scale,
)
return image