-
Notifications
You must be signed in to change notification settings - Fork 377
/
Copy pathengine_finetuning.py
132 lines (104 loc) · 4.32 KB
/
engine_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import math
import sys
from typing import Iterable
import torch
import util.lr_sched as lr_sched
import util.misc as misc
def train_one_epoch(
model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
args=None,
):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
print_freq = 10
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print("log_dir: {}".format(log_writer.log_dir))
for data_iter_step, (examples, labels, example_mask) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
c_loss = model(examples, labels)
loss = c_loss
loss_value = loss.item()
c_loss_value = c_loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(), update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(closs=c_loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
misc.all_reduce_mean(loss_value)
c_loss_value_reduce = misc.all_reduce_mean(c_loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar("c_train_loss", c_loss_value_reduce, epoch_1000x)
log_writer.add_scalar("lr", lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def val_one_epoch(
model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
args=None,
):
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
print_freq = 10
accum_iter = args.accum_iter
if log_writer is not None:
print("log_dir: {}".format(log_writer.log_dir))
for data_iter_step, (examples, labels, example_mask) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)
):
with torch.no_grad():
c_loss = model(examples, labels)
loss = c_loss
loss_value = loss.item()
c_loss_value = c_loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
metric_logger.update(closs=c_loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
misc.all_reduce_mean(loss_value)
c_loss_value_reduce = misc.all_reduce_mean(c_loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
"""We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar("c_train_loss", c_loss_value_reduce, epoch_1000x)
log_writer.add_scalar("lr", lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}