-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_il_ResTune.py
executable file
·269 lines (221 loc) · 11 KB
/
train_il_ResTune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from utils.util import seed_torch
from utils.logging import Logger
import os
import sys
import copy
import wandb
import math
from utils.sinkhorn_knopp import SinkhornKnopp
from utils.step_tool import StepResults
from data.build_dataset import build_data
from data.config_dataset import set_dataset_config
from models.build_ResTune import build_restune_model
from methods.ResTune import ResTune
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Hyper-parameters Setting
parser.add_argument('--epochs_warmup', default=100, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
# UNO knobs
parser.add_argument("--softmax_temp", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument('--alpha', default=0.75, type=float)
# Knowledge Distillation weights
parser.add_argument("--w_kd", default=1.0, type=float, help="weight for KD loss")
# Dataset Setting
parser.add_argument('--dataset_name', type=str, default='cifar100', choices=['cifar10', 'cifar100', 'tinyimagenet',
'cub200', 'herb19', 'scars',
'aircraft'])
# parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
# parser.add_argument('--num_classes', default=100, type=int)
parser.add_argument('--aug_type', type=str, default='vit_uno', choices=['vit_frost', 'vit_uno', 'resnet',
'vit_uno_clip'])
parser.add_argument('--num_workers', default=8, type=int)
# Strategy Setting
parser.add_argument('--num_steps', default=5, type=int)
# Model Config
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval'])
parser.add_argument('--model_name', type=str, default='vit_dino', choices=['vit_dino', 'clip', 'resnet50_dino',
'resnet18_imagenet1k'])
parser.add_argument('--grad_from_block', type=int, default=10)
parser.add_argument('--dino_pretrain_path', type=str, default='./models/dino_weights/dino_vitbase16_pretrain.pth')
# Experimental Setting
parser.add_argument('--seed', default=10, type=int)
parser.add_argument('--exp_root', type=str, default='./outputs_ResTune/')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='oatmealliu')
# ----------------------
# Initial Configurations
# ----------------------
args = parser.parse_args()
# init. dataset config.
args = set_dataset_config(args)
# init. config.
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
seed_torch(args.seed)
# init. experimental output path
runner_name = os.path.basename(__file__).split(".")[0]
# Experimental Dir.
model_dir = os.path.join(args.exp_root, f"{runner_name}_{args.model_name}_{args.dataset_name}_Steps{args.num_steps}_Wkd_{args.w_kd}_GradBlock_{args.grad_from_block}")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
args.log_dir = model_dir + f'/{runner_name}_{args.model_name}_{args.dataset_name}_Steps{args.num_steps}_Wkd_{args.w_kd}_GradBlock_{args.grad_from_block}_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
# WandB setting
# if args.mode == 'train':
# wandb_run_name = f'ResTune_{args.dataset_name}_{args.model_name}_{args.num_steps}-Steps_Wkd_{args.w_kd}_GradBlock_{args.grad_from_block}'
# wandb.init(project='SOTA_ResTune',
# entity=args.wandb_entity,
# tags=[f'TotalStep={args.num_steps}', args.dataset_name, args.model_name,
# f'Wkd={args.w_kd}', f'GradBlock={args.grad_from_block}', f'device={args.device}'],
# name=wandb_run_name,
# mode=args.wandb_mode)
# ----------------------
# Experimental Setting Initialization
# ----------------------
# Dataset Split Params
args.num_novel_interval = math.ceil(args.num_classes / args.num_steps)
# args.current_novel_start = args.num_novel_interval * args.current_step
# args.current_novel_end = args.num_novel_interval * (args.current_step + 1) \
# if args.num_novel_interval * (args.current_step + 1) <= args.num_classes \
# else args.num_classes
# args.num_novel_per_step = args.current_novel_end - args.current_novel_start
# ViT DINO B/16 Params
# Parameters
# Parameters
if 'vit' in args.model_name:
args.image_size = 224
elif 'resnet' in args.model_name:
args.image_size = 64
else:
raise NotImplementedError
# args.image_size = 224
args.interpolation = 3
args.crop_pct = 0.875
args.pretrain_path = args.dino_pretrain_path
args.feat_dim = 768
# ----------------------
# Dataloaders Creation for this iNCD step
# ----------------------
data_factory = build_data(args)
val_split = args.val_split
test_split = args.test_split
# Train loader
step_train_loader_list = []
step_val_loader_list = []
step_test_loader_list = []
prev_val_loader_list = []
all_val_loader_list = []
prev_test_loader_list = []
all_test_loader_list = []
# Generate step-wise data loader
for s in range(args.num_steps):
start_class = s * args.num_novel_interval
end_class = (1+s) * args.num_novel_interval
# D_train_s
step_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(start_class, end_class))
step_train_loader_list.append(step_train_loader)
# D_val_s
step_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(start_class, end_class))
step_val_loader_list.append(step_val_loader)
# D_test_s
step_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(start_class, end_class))
step_test_loader_list.append(step_test_loader)
if s > 0:
# D_prev_val_s
prev_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(start_class))
prev_val_loader_list.append(prev_val_loader)
# D_prev_test_s
prev_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(start_class))
prev_test_loader_list.append(prev_test_loader)
# D_all_val_s
all_val_loader = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(end_class))
all_val_loader_list.append(all_val_loader)
# D_all_test_s
all_test_loader = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(end_class))
all_test_loader_list.append(all_test_loader)
# ----------------------
# Model creation
# ----------------------
restune_model_dict = build_restune_model(args)
# DEBUG
# for ss in range(args.num_steps):
# print(restune_model_dict[f'step{ss}']['encoder'])
# print(restune_model_dict[f'step{ss}']['head_mix'])
# print(restune_model_dict[f'step{ss}']['head_res'])
# print('\n')
print(args)
if args.mode == 'train':
sinkhorn = SinkhornKnopp(args)
eval_results_recorder = StepResults(num_steps=args.num_steps)
method = ResTune(
# Model
model_dict=restune_model_dict,
# Sinkhorn cross-pseudo label generator
sinkhorn=sinkhorn,
# Evaluation results (test split) recorder
eval_results_recorder=eval_results_recorder,
# Train datasets
step_train_loader_list=step_train_loader_list,
# Val datasets
step_val_loader_list=step_val_loader_list,
prev_val_loader_list=prev_val_loader_list,
all_val_loader_list=all_val_loader_list,
# Test datasets
step_test_loader_list=step_test_loader_list,
prev_test_loader_list=prev_test_loader_list,
all_test_loader_list=all_test_loader_list
)
# Step-wise Training
for step_train in range(args.num_steps):
# Init WandB logger
wandb_run_name = f'ResTune_{args.dataset_name}_{args.model_name}_{step_train}/{args.num_steps}-Steps_Wkd_{args.w_kd}_GradBlock_{args.grad_from_block}'
wandb_run_step = wandb.init(
project='SOTA_ResTune',
entity=args.wandb_entity,
tags=[f'TotalStep={args.num_steps}', args.dataset_name, args.model_name, f'Wkd={args.w_kd}',
f'GradBlock={args.grad_from_block}', f'device={args.device}', f'CurrentStep={step_train}'],
name=wandb_run_name,
mode=args.wandb_mode,
reinit=True
)
# Training
# 1. Warm-up stage: only update classifier head
method.warmup(args=args, step=step_train)
# 2. Formal stage: unlock last block of ViT, update both encoder and classifier head
method.train(args=args, step=step_train)
# Testing
# 1. Iterate test loaders
method.test(args=args, step=step_train)
# 2. Print test results
method.show_eval_result(step=step_train)
# Save old model for next incremental step
method.duplicate_old_model(args, step=step_train)
if step_train+1 < args.num_steps:
wandb_run_step.finish()
# Print final results
for step in range(args.num_steps):
method.show_eval_result(step=step)
wandb_run_step.finish()
elif args.mode == 'eval':
raise NotImplementedError
else:
raise NotImplementedError