From 90afa9ae63627863cce4413312fb277da570f51a Mon Sep 17 00:00:00 2001 From: "Lars H. B. Olsen" <92097196+LHBO@users.noreply.github.com> Date: Mon, 20 Nov 2023 15:48:38 +0000 Subject: [PATCH] Harmonize batch distribution ++ (#359) * Bugfix in `prepare_data()` related to vector of approaches. When using several approaches the old version only used the first approach. Verified this by adding a print in each prepare_data.approach() function and saw that only the first approach in internal$parameters$approach was used. Can maybe remove code comments before pull request is accepted. Maybe a better method to get the approach? Also updated roxygen2 for the function, as it seemed that it was reflecting the old version of shapr(?) due to arguments which are no longer present. However, one then get a warning when creating the roxygen2 documentation. Discuss some solutions as comments below. Discuss with Martin. * # Lars have added `n_combinations` - 1 as a possibility, as the function `check_n_batches` threw an error for the vignette with gaussian approach with `n_combinations` = 8 and `n_batches = NULL`, as this function here then set `n_batches` = 10, which was too large. We subtract 1 as `check_n_batches` function specifies that `n_batches` must be strictly less than `n_combinations`. * Samll typo. * Fixed bug. All messages says "n_combinations is larger than or equal to 2^m", but all the test only tested for "larger than". I.e., if the user specified n_combinations = 2^m in the call to shapr::explain, the function would not treat it as exact. * Added script demonstrating the bug that shapr does not enter the exact mode when `n_combinations = 2^m`, before the bugfix. * Added (tentative) test that checks that shapr enters exact mode when `n_combinations >= 2^m`. Remove the large comment after discussing that with Martin. * Added script that demonstrates the bug before the bugfix, and added test checking that we do not get an error when runing the code after the bugfix has been applied. * Fixed lint warnings in `approach.R`. * Added two parameters to the `internal$parameters` list which contains the number of approaches and the number of unique approaches. This is for example useful to check that the provided `n_batches` is a valid value. (see next commits) * Added test to check that `n_batches` must be larger than or equal to the number of unique approaches. Before the user could, e.g., set `n_batches = 2`, but use 4 approaches and then shapr would use 4 but not update `n_batches` and without giwing a warning to the user. * Updated `get_default_n_batches` to take into consideration the number of unique approaches that is used. This was not done before and gave inconsistency in what number shapr would reccomend and use when `n_batches` was set to `null` by the user. * Changed where seed is set such that it applies for both regular and combined approaches. Furthermore, added if test, because previous version resulted in not reproducible code, as setting seed to `null` ruins that we set seed in `explain()`. Just consider this small example: # Set seed to get same values twice set.seed(123) rnorm(1) # Seting the same seed gives the same value set.seed(123) rnorm(1) # If we also include null then the seed is removed and we do not get the same value set.seed(123) set.seed(NULL) rnorm(1) # Setining seed to null actually gives a new "random" number each time. set.seed(123) set.seed(NULL) rnorm(1) * Typo * Added test to check that setting the seed works for combined approaches. * typo in test function * Added file to demonstrate the bugs (before the bugfix) * Added new test * Updated tests by removing n_samples * Added a bugfix to shapr not using the correct number of batches. Maybe not the most elegant solution. * Updated the demonstration script * Added last test and fixed lintr * Lint again. * styler * minor edits to tests * simplifies comment * comb files ok * Updated bug in independence approach related to categorical features which caused shapr to crash later. Added comments when I debuged to understand what was going on. I have added some comments about some stuff I did no understand/agree with. Discuss with Martin and correct this before merge. * Updated bug in independence approach related to categorical features which caused shapr to crash later. Added comments when I debuged to understand what was going on. I have added some comments about some stuff I did no understand/agree with. Discuss with Martin and correct this before merge. * lint warning * Lint * lint * updated test files after accepting new values * adjustments to comments and Lars' TODO-comments * update snapshot file after weight adjustment * cleaned up doc * rerun doc * style * Changed to `n_batches = 10` in the combined approaches, as the previous value (`n_batches = 1`) is not allowed anymore as it is lower than the number of unique used approaches. * accept OK test changes * additonal Ok test files * change batches in test files * accept new files * handle issue with a breaking change update in the testthat package * + these * removing last (unused) input of approach * updating tests * + update setup tests/snaps * correcting unique length * update linting and vignette * update docs * fix example issue * temporary disable tests on older R systems * remove unecessary if-else test * data.table style on Lars's batch adjustment suggestion * del comment * lint --------- Co-authored-by: Martin --- .github/workflows/R-CMD-check.yaml | 6 +- R/explain.R | 11 +- R/setup.R | 31 +- R/setup_computation.R | 20 +- .../demonstrate_combined_approaches_bugs.R | 139 ++ .../testing_for_valid_defualt_n_batches.R | 54 + man/explain.Rd | 11 +- man/explain_forecast.Rd | 4 +- man/finalize_explanation.Rd | 7 +- man/setup.Rd | 4 +- tests/testthat/_snaps/forecast-output.md | 1780 ++++++++++++++++- .../forecast_output_ar_numeric.rds | Bin 2155 -> 2174 bytes .../forecast_output_arima_numeric.rds | Bin 17568 -> 17590 bytes .../forecast_output_arima_numeric_no_lags.rds | Bin 2543 -> 2565 bytes .../forecast_output_arima_numeric_no_xreg.rds | Bin 1939 -> 1957 bytes ...st_output_forecast_ARIMA_group_numeric.rds | Bin 3563 -> 3579 bytes tests/testthat/_snaps/forecast-setup.md | 116 +- tests/testthat/_snaps/output.md | 9 +- ...utput_custom_lm_numeric_independence_1.rds | Bin 3934 -> 3956 bytes ...utput_custom_lm_numeric_independence_2.rds | Bin 3934 -> 3956 bytes ...utput_custom_xgboost_mixed_dummy_ctree.rds | Bin 4010 -> 4027 bytes .../output/output_lm_categorical_ctree.rds | Bin 2642 -> 2557 bytes .../output_lm_categorical_independence.rds | Bin 2574 -> 2480 bytes .../output/output_lm_categorical_method.rds | Bin 3043 -> 2954 bytes .../_snaps/output/output_lm_mixed_comb.rds | Bin 4117 -> 4136 bytes .../_snaps/output/output_lm_mixed_ctree.rds | Bin 4065 -> 4083 bytes .../output/output_lm_mixed_independence.rds | Bin 3998 -> 4018 bytes .../_snaps/output/output_lm_numeric_comb1.rds | Bin 4417 -> 4094 bytes .../_snaps/output/output_lm_numeric_comb2.rds | Bin 4647 -> 4423 bytes .../_snaps/output/output_lm_numeric_comb3.rds | Bin 4338 -> 4361 bytes .../output/output_lm_numeric_copula.rds | Bin 4270 -> 4289 bytes .../_snaps/output/output_lm_numeric_ctree.rds | Bin 4002 -> 4017 bytes .../output_lm_numeric_ctree_parallelized.rds | Bin 4002 -> 4017 bytes .../output/output_lm_numeric_empirical.rds | Bin 4204 -> 4221 bytes .../output_lm_numeric_empirical_AICc_each.rds | Bin 2911 -> 2931 bytes .../output_lm_numeric_empirical_AICc_full.rds | Bin 2908 -> 2928 bytes ...tput_lm_numeric_empirical_independence.rds | Bin 4210 -> 4225 bytes ...ut_lm_numeric_empirical_n_combinations.rds | Bin 4004 -> 4022 bytes .../output_lm_numeric_empirical_progress.rds | Bin 4347 -> 4363 bytes .../output/output_lm_numeric_gaussian.rds | Bin 4181 -> 4198 bytes .../output/output_lm_numeric_independence.rds | Bin 3934 -> 3952 bytes ..._numeric_independence_keep_samp_for_vS.rds | Bin 98555 -> 98573 bytes ...t_lm_numeric_independence_n_batches_10.rds | Bin 4082 -> 4099 bytes .../output/output_lm_numeric_interaction.rds | Bin 1640 -> 1659 bytes .../output/output_lm_timeseries_method.rds | Bin 33563 -> 33586 bytes tests/testthat/_snaps/setup.md | 318 +-- tests/testthat/test-output.R | 16 +- tests/testthat/test-setup.R | 209 +- vignettes/understanding_shapr.Rmd | 24 +- 49 files changed, 2521 insertions(+), 238 deletions(-) create mode 100644 inst/scripts/devel/demonstrate_combined_approaches_bugs.R create mode 100644 inst/scripts/devel/testing_for_valid_defualt_n_batches.R diff --git a/.github/workflows/R-CMD-check.yaml b/.github/workflows/R-CMD-check.yaml index de3304813..39a2d8a60 100644 --- a/.github/workflows/R-CMD-check.yaml +++ b/.github/workflows/R-CMD-check.yaml @@ -39,8 +39,10 @@ jobs: - {os: windows-latest, r: 'release'} - {os: ubuntu-20.04, r: 'devel', http-user-agent: 'release'} - {os: ubuntu-20.04, r: 'release'} - - {os: ubuntu-20.04, r: 'oldrel-1'} - - {os: ubuntu-20.04, r: 'oldrel-2'} +# Temporary disable the below check plattforms as they fail due to a change in how R reports error from R<4.3 to R>=4.3, +# which gives a different output in the snapshots produced by testthat>=3.2.0 +# - {os: ubuntu-20.04, r: 'oldrel-1'} +# - {os: ubuntu-20.04, r: 'oldrel-2'} env: GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }} diff --git a/R/explain.R b/R/explain.R index 0ce8a4ea9..3144b3c78 100644 --- a/R/explain.R +++ b/R/explain.R @@ -16,8 +16,8 @@ #' can still be explained by passing `predict_model` and (optionally) `get_model_specs`, #' see details for more information. #' -#' @param approach Character vector of length `1` or `n_features`. -#' `n_features` equals the total number of features in the model. All elements should, +#' @param approach Character vector of length `1` or one less than the number of features. +#' All elements should, #' either be `"gaussian"`, `"copula"`, `"empirical"`, `"ctree"`, `"categorical"`, `"timeseries"`, or `"independence"`. #' See details for more information. #' @@ -101,9 +101,10 @@ #' and you'd like to use the `"gaussian"` approach when you condition on a single feature, #' the `"empirical"` approach if you condition on 2-5 features, and `"copula"` version #' if you condition on more than 5 features this can be done by simply passing -#' `approach = c("gaussian", rep("empirical", 4), rep("copula", 5))`. If +#' `approach = c("gaussian", rep("empirical", 4), rep("copula", 4))`. If #' `"approach[i]" = "gaussian"` means that you'd like to use the `"gaussian"` approach -#' when conditioning on `i` features. +#' when conditioning on `i` features. Conditioning on all features needs no approach as that is given +#' by the complete prediction itself, and should thus not be part of the vector. #' #' For `approach="ctree"`, `n_samples` corresponds to the number of samples #' from the leaf node (see an exception related to the `sample` argument). @@ -203,7 +204,7 @@ #' ) #' #' # Combined approach -#' approach <- c("gaussian", "gaussian", "empirical", "empirical") +#' approach <- c("gaussian", "gaussian", "empirical") #' explain5 <- explain( #' model = model, #' x_explain = x_explain, diff --git a/R/setup.R b/R/setup.R index e1c12e48e..9257439e8 100644 --- a/R/setup.R +++ b/R/setup.R @@ -208,6 +208,7 @@ check_n_batches <- function(internal) { n_combinations <- internal$parameters$n_combinations is_groupwise <- internal$parameters$is_groupwise n_groups <- internal$parameters$n_groups + n_unique_approaches <- internal$parameters$n_unique_approaches if (!is_groupwise) { actual_n_combinations <- ifelse(is.null(n_combinations), 2^n_features, n_combinations) @@ -217,10 +218,17 @@ check_n_batches <- function(internal) { if (n_batches >= actual_n_combinations) { stop(paste0( - "`n_batches` (", n_batches, ") must be smaller than the number feature combinations/`n_combinations` (", + "`n_batches` (", n_batches, ") must be smaller than the number of feature combinations/`n_combinations` (", actual_n_combinations, ")" )) } + + if (n_batches < n_unique_approaches) { + stop(paste0( + "`n_batches` (", n_batches, ") must be larger than the number of unique approaches in `approach` (", + n_unique_approaches, ")." + )) + } } @@ -368,6 +376,10 @@ get_extra_parameters <- function(internal) { internal$parameters$n_groups <- NULL } + # Get the number of unique approaches + internal$parameters$n_approaches <- length(internal$parameters$approach) + internal$parameters$n_unique_approaches <- length(unique(internal$parameters$approach)) + return(internal) } @@ -658,13 +670,14 @@ check_approach <- function(internal) { supported_approaches <- get_supported_approaches() if (!(is.character(approach) && - (length(approach) == 1 || length(approach) == n_features) && + (length(approach) == 1 || length(approach) == n_features - 1) && all(is.element(approach, supported_approaches))) ) { stop( paste( "`approach` must be one of the following: \n", paste0(supported_approaches, collapse = ", "), "\n", - "or a vector of length equal to the number of features (", n_features, ") with only the above strings." + "or a vector of length one less than the number of features (", n_features - 1, "),", + "with only the above strings." ) ) } @@ -675,33 +688,33 @@ set_defaults <- function(internal) { # Set defaults for certain arguments (based on other input) approach <- internal$parameters$approach + n_unique_approaches <- internal$parameters$n_unique_approaches used_n_combinations <- internal$parameters$used_n_combinations n_batches <- internal$parameters$n_batches # n_batches if (is.null(n_batches)) { - internal$parameters$n_batches <- get_default_n_batches(approach, used_n_combinations) + internal$parameters$n_batches <- get_default_n_batches(approach, n_unique_approaches, used_n_combinations) } return(internal) } + #' @keywords internal -get_default_n_batches <- function(approach, n_combinations) { +get_default_n_batches <- function(approach, n_unique_approaches, n_combinations) { used_approach <- names(sort(table(approach), decreasing = TRUE))[1] # Most frequent used approach (when more present) if (used_approach %in% c("ctree", "gaussian", "copula")) { suggestion <- ceiling(n_combinations / 10) this_min <- 10 this_max <- 1000 - min_checked <- max(c(this_min, suggestion)) - ret <- min(c(this_max, min_checked)) } else { suggestion <- ceiling(n_combinations / 100) this_min <- 2 this_max <- 100 - min_checked <- max(c(this_min, suggestion)) - ret <- min(c(this_max, min_checked)) } + min_checked <- max(c(this_min, suggestion, n_unique_approaches)) + ret <- min(c(this_max, min_checked, n_combinations - 1)) message( paste0( "Setting parameter 'n_batches' to ", ret, " as a fair trade-off between memory consumption and ", diff --git a/R/setup_computation.R b/R/setup_computation.R index 23418b50a..a3a7ff9db 100644 --- a/R/setup_computation.R +++ b/R/setup_computation.R @@ -622,6 +622,7 @@ create_S_batch_new <- function(internal, seed = NULL) { X <- internal$objects$X + if (!is.null(seed)) set.seed(seed) if (length(approach0) > 1) { X[!(n_features %in% c(0, n_features0)), approach := approach0[n_features]] @@ -632,6 +633,24 @@ create_S_batch_new <- function(internal, seed = NULL) { pmax(1, round(.N / (n_combinations - 2) * n_batches)), n_S_per_approach = .N ), by = approach] + + # Ensures that the number of batches corresponds to `n_batches` + if (sum(batch_count_dt$n_batches_per_approach) != n_batches) { + # Ensure that the number of batches is not larger than `n_batches`. + # Remove one batch from the approach with the most batches. + while (sum(batch_count_dt$n_batches_per_approach) > n_batches) { + batch_count_dt[which.max(n_batches_per_approach), + n_batches_per_approach := n_batches_per_approach - 1] + } + + # Ensure that the number of batches is not lower than `n_batches`. + # Add one batch to the approach with most coalitions per batch + while (sum(batch_count_dt$n_batches_per_approach) < n_batches) { + batch_count_dt[which.max(n_S_per_approach / n_batches_per_approach), + n_batches_per_approach := n_batches_per_approach + 1] + } + } + batch_count_dt[, n_leftover_first_batch := n_S_per_approach %% n_batches_per_approach] data.table::setorder(batch_count_dt, -n_leftover_first_batch) @@ -640,7 +659,6 @@ create_S_batch_new <- function(internal, seed = NULL) { # Randomize order before ordering spreading the batches on the different approaches as evenly as possible # with respect to shapley_weight - set.seed(seed) X[, randomorder := sample(.N)] data.table::setorder(X, randomorder) # To avoid smaller id_combinations always proceeding large ones data.table::setorder(X, shapley_weight) diff --git a/inst/scripts/devel/demonstrate_combined_approaches_bugs.R b/inst/scripts/devel/demonstrate_combined_approaches_bugs.R new file mode 100644 index 000000000..57e5b9f44 --- /dev/null +++ b/inst/scripts/devel/demonstrate_combined_approaches_bugs.R @@ -0,0 +1,139 @@ +# Use the data objects from the helper-lm.R file. +# Here we want to illustrate three bugs related to combined approaches (before the bugfix) + + +# First we see that setting `n_batches` lower than the number of unique approaches +# produce some inconsistencies in shapr. +# After the bugfix, we force the user to choose a valid value for `n_batches`. +explanation_1 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula", "empirical"), + prediction_zero = p0, + n_batches = 3, + timing = FALSE, + seed = 1) + +# It says shapr is using 3 batches +explanation_1$internal$parameters$n_batches + +# But shapr has actually used 4. +# This is because shapr can only handle one type of approach for each batch. +# Hence, the number of batches must be at least as large as the number of unique approaches. +# (excluding the last approach which is not used, as we then condition on all features) +length(explanation_1$internal$objects$S_batch) + +# Note that after the bugfix, we give an error if `n_batches` < # unique approaches. + + + + + +# Second we look at at another situation where # unique approaches is two and we set `n_batches` = 2, +# but shapr still use three batches. This is due to how shapr decides how many batches each approach +# should get. Right now it decided based on the proportion of the number of coalitions each approach +# is responsible. In this setting, independence is responsible for 5 coalitions and ctree for 25 coalitions, +# So, initially shapr sets that ctree should get the two batches while independence gets 0, but this +# is than changed to 1 without considering that it now breaks the consistency with the `n_batches`. +# This is done in the function `create_S_batch_new()` in setup_computation.R. +explanation_2 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "ctree", "ctree", "ctree" ,"ctree"), + prediction_zero = p0, + n_batches = 2, + timing = FALSE, + seed = 1) + +# It says shapr is using 2 batches +explanation_2$internal$parameters$n_batches + +# But shapr has actually used 3 +length(explanation_2$internal$objects$S_batch) + +# These are equal after the bugfix + + +# Same type of bug but in the opposite direction +explanation_3 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "ctree", "ctree", "ctree" ,"ctree"), + prediction_zero = p0, + n_batches = 15, + timing = FALSE, + seed = 1) + +# It says shapr is using 15 batches +explanation_3$internal$parameters$n_batches + +# It says shapr is using 14 batches +length(explanation_3$internal$objects$S_batch) + +# These are equal after the bugfix + + + + + + +# Bug number three caused shapr to not to be reproducible as seting the seed did not work for combined approaches. +# This was due to a `set.seed(NULL)` which ruins all of the earlier set.seed procedures. + + +# Check that setting the seed works for a combination of approaches +# Here `n_batches` is set to `4`, so one batch for each method, +# i.e., no randomness. +# In the first example we get no bug as there is no randomness in assigning the batches. +explanation_combined_1 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula", "empirical"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + +explanation_combined_2 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula", "empirical"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + +# Check that they are equal +all.equal(explanation_combined_1, explanation_combined_2) + + +# Here `n_batches` is set to `10`, so NOT one batch for each method, +# i.e., randomness in assigning the batches. +explanation_combined_3 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula", "ctree"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + +explanation_combined_4 = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula", "ctree"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + +# Check that they are not equal +all.equal(explanation_combined_3, explanation_combined_4) +explanation_combined_3$internal$objects$X +explanation_combined_4$internal$objects$X + +# These are equal after the bugfix + diff --git a/inst/scripts/devel/testing_for_valid_defualt_n_batches.R b/inst/scripts/devel/testing_for_valid_defualt_n_batches.R new file mode 100644 index 000000000..2c5f3ef09 --- /dev/null +++ b/inst/scripts/devel/testing_for_valid_defualt_n_batches.R @@ -0,0 +1,54 @@ +# In this code we demonstrate that (before the bugfix) the `explain()` function +# does not enter the exact mode when n_combinations is larger than or equal to 2^m. +# The mode is only changed if n_combinations is strictly larger than 2^m. +# This means that we end up with using all coalitions when n_combinations is 2^m, +# but use not the exact Shapley kernel weights. +# Bugfix replaces `>` with `=>`in the places where the code tests if +# n_combinations is larger than or equal to 2^m. Then the text/messages printed by +# shapr and the code correspond. + +library(xgboost) +library(data.table) + +data("airquality") +data <- data.table::as.data.table(airquality) +data <- data[complete.cases(data), ] + +x_var <- c("Solar.R", "Wind", "Temp", "Month") +y_var <- "Ozone" + +ind_x_explain <- 1:6 +x_train <- data[-ind_x_explain, ..x_var] +y_train <- data[-ind_x_explain, get(y_var)] +x_explain <- data[ind_x_explain, ..x_var] + +# Fitting a basic xgboost model to the training data +model <- xgboost::xgboost( + data = as.matrix(x_train), + label = y_train, + nround = 20, + verbose = FALSE +) + +# Specifying the phi_0, i.e. the expected prediction without any features +p0 <- mean(y_train) + +# Shapr sets the default number of batches to be 10 for this dataset for the +# "ctree", "gaussian", and "copula" approaches. Thus, setting `n_combinations` +# to any value lower of equal to 10 causes the error. +any_number_equal_or_below_10 = 8 + +# Before the bugfix, shapr:::check_n_batches() throws the error: +# Error in check_n_batches(internal) : +# `n_batches` (10) must be smaller than the number feature combinations/`n_combinations` (8) +# Bug only occures for "ctree", "gaussian", and "copula" as they are treated different in +# `get_default_n_batches()`, I am not certain why. Ask Martin about the logic behind that. +explanation <- explain( + model = model, + x_explain = x_explain, + x_train = x_train, + n_samples = 2, # Low value for fast computations + approach = "gaussian", + prediction_zero = p0, + n_combinations = any_number_equal_or_below_10 +) diff --git a/man/explain.Rd b/man/explain.Rd index 781255a3c..79b4c6b7a 100644 --- a/man/explain.Rd +++ b/man/explain.Rd @@ -36,8 +36,8 @@ Contains the the features, whose predictions ought to be explained.} Contains the data used to estimate the (conditional) distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.} -\item{approach}{Character vector of length \code{1} or \code{n_features}. -\code{n_features} equals the total number of features in the model. All elements should, +\item{approach}{Character vector of length \code{1} or one less than the number of features. +All elements should, either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}. See details for more information.} @@ -214,9 +214,10 @@ E.g., if you're in a situation where you have trained a model that consists of 1 and you'd like to use the \code{"gaussian"} approach when you condition on a single feature, the \code{"empirical"} approach if you condition on 2-5 features, and \code{"copula"} version if you condition on more than 5 features this can be done by simply passing -\code{approach = c("gaussian", rep("empirical", 4), rep("copula", 5))}. If +\code{approach = c("gaussian", rep("empirical", 4), rep("copula", 4))}. If \code{"approach[i]" = "gaussian"} means that you'd like to use the \code{"gaussian"} approach -when conditioning on \code{i} features. +when conditioning on \code{i} features. Conditioning on all features needs no approach as that is given +by the complete prediction itself, and should thus not be part of the vector. For \code{approach="ctree"}, \code{n_samples} corresponds to the number of samples from the leaf node (see an exception related to the \code{sample} argument). @@ -287,7 +288,7 @@ explain4 <- explain( ) # Combined approach -approach <- c("gaussian", "gaussian", "empirical", "empirical") +approach <- c("gaussian", "gaussian", "empirical") explain5 <- explain( model = model, x_explain = x_explain, diff --git a/man/explain_forecast.Rd b/man/explain_forecast.Rd index 998697055..c256e3ed5 100644 --- a/man/explain_forecast.Rd +++ b/man/explain_forecast.Rd @@ -64,8 +64,8 @@ If \code{xreg != NULL}, denotes the number of lags that should be used for each \item{horizon}{Numeric. The forecast horizon to explain. Passed to the \code{predict_model} function.} -\item{approach}{Character vector of length \code{1} or \code{n_features}. -\code{n_features} equals the total number of features in the model. All elements should, +\item{approach}{Character vector of length \code{1} or one less than the number of features. +All elements should, either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}. See details for more information.} diff --git a/man/finalize_explanation.Rd b/man/finalize_explanation.Rd index 7e419f57a..6fe6bbb36 100644 --- a/man/finalize_explanation.Rd +++ b/man/finalize_explanation.Rd @@ -56,9 +56,10 @@ E.g., if you're in a situation where you have trained a model that consists of 1 and you'd like to use the \code{"gaussian"} approach when you condition on a single feature, the \code{"empirical"} approach if you condition on 2-5 features, and \code{"copula"} version if you condition on more than 5 features this can be done by simply passing -\code{approach = c("gaussian", rep("empirical", 4), rep("copula", 5))}. If +\code{approach = c("gaussian", rep("empirical", 4), rep("copula", 4))}. If \code{"approach[i]" = "gaussian"} means that you'd like to use the \code{"gaussian"} approach -when conditioning on \code{i} features. +when conditioning on \code{i} features. Conditioning on all features needs no approach as that is given +by the complete prediction itself, and should thus not be part of the vector. For \code{approach="ctree"}, \code{n_samples} corresponds to the number of samples from the leaf node (see an exception related to the \code{sample} argument). @@ -129,7 +130,7 @@ explain4 <- explain( ) # Combined approach -approach <- c("gaussian", "gaussian", "empirical", "empirical") +approach <- c("gaussian", "gaussian", "empirical") explain5 <- explain( model = model, x_explain = x_explain, diff --git a/man/setup.Rd b/man/setup.Rd index 911498aff..442ff6258 100644 --- a/man/setup.Rd +++ b/man/setup.Rd @@ -39,8 +39,8 @@ needed to properly estimate the conditional expectations in the Shapley formula. \item{x_explain}{A matrix or data.frame/data.table. Contains the the features, whose predictions ought to be explained.} -\item{approach}{Character vector of length \code{1} or \code{n_features}. -\code{n_features} equals the total number of features in the model. All elements should, +\item{approach}{Character vector of length \code{1} or one less than the number of features. +All elements should, either be \code{"gaussian"}, \code{"copula"}, \code{"empirical"}, \code{"ctree"}, \code{"categorical"}, \code{"timeseries"}, or \code{"independence"}. See details for more information.} diff --git a/tests/testthat/_snaps/forecast-output.md b/tests/testthat/_snaps/forecast-output.md index 1049a2e5f..9d347b16a 100644 --- a/tests/testthat/_snaps/forecast-output.md +++ b/tests/testthat/_snaps/forecast-output.md @@ -2,7 +2,7 @@ Code (out <- code) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. @@ -19,7 +19,7 @@ Code (out <- code) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. @@ -43,7 +43,7 @@ Code (out <- code) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. @@ -60,7 +60,7 @@ Code (out <- code) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. @@ -77,1778 +77,3546 @@ Code (out <- code) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. - Warning + Condition + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] + Warning in `matrix()`: data length [2] is not a sub-multiple or multiple of the number of rows [3] Output explain_idx horizon none Wind.F1 Wind.F2 Wind.F3 diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_ar_numeric.rds b/tests/testthat/_snaps/forecast-output/forecast_output_ar_numeric.rds index 2a8452c145a91cfc41e835a544ccf87f99bd94fd..4d0bea08cdb703da4b0668d5f364a84ccbbf0b9c 100644 GIT binary patch literal 2174 zcmV-^2!Zz>iwFP!000001MM1ZY#c{*c5i*>&*0Qfnzo{CS||vJh3!z$qQ>hcsp}>< zvCpyHq{(J|H)n5iw|CjybIws95khTLREX3nX`}wAiVy?@KY$AHCl?{n_8%lwB>F1^ zBvc8MT7>dZijSGy_x59MFL7wx2+1cs&%Td&^YPxinK$F9RzgUED3U}HP3)62?HYe< z!%P}SLB>)*90kDem)pVsY*LGUsWx4ga=UseD@t-dK)~Xj= z{DfR_%l5YyuwM0@1OMs%?7D}}-C6neOMhs2v3fE2%6or){}<=htr;Bo)30*X3*R3; zbH;~msJsM=deT>*CTd-kDHck4#?hGX z*z};lRi<^D0u4>m5i(5z4WnkfGGq$$3)!DmpC#gaoKj5~i!_g&s91Cc8pTe?4Zcqb zN*XzBoo`&jr@YQ~3j8ZM_eY|>)Rr?UG^^RhOhNZWfB7>1ohA+3S=}h8_T^=cE9%7j zks(EXLLECO&%CkK@XLua-#vQUkso>Um#UG#e*ieWnbXk@OPQLb$SevrTaP}fmr7Pq z&&&e;iIPRLM#eFUrgoTGMRYn-V{SKXm^$a!7yxIiV!4D-!_;iOP|8y~AWZ8{X4WSt zHlQ31T4;SRHYo_K{0onobnimp4 zH5;zmR|RWol*9I9R4Jtg_AgH`YEKejx9mj*g}bh@p906Hvno!eg!r zn7)xU-NFM=U7dL1c4|Cv6{!^%?uuA@C1WR z4A`NFumb`aWbhRRk1*H@{H?&-!r);BD&P+RZ4=ZPhI)?x?_nr;TcZqiFxbvu1oU$H zID=il8)GoZU^kR|89W8_ognj7==UJBw;gEPL$D3n7>0VBpANM(3g2mfDQJholhEEU z$n60gqd*^rzU_iBAbkR8_&o(>8e~ReWGA7$-2hJkZz5*Q;kg?L&BHd}jfUFgfp;H+ z{ZQ@!-FpEhVH`U_*S64jaXyCtM!-&-z6JWF0*}jc-xy%<7}VPq$kqjAI1AJTW!%L5 zO_zsRk1q3lip1!8#iRSaEs-S!?nuy%X)nB|Ca`~;c9N{DmzDLhJnIGhYb7SH_}ETz z(|s&9xwuArl>In+jJS#V(;ht`>R3WDfki&*pc`vhsKLI>@^>Ge2cece35=9 zHVaZUQ&T*N*r&3^le#e6Oa{_R<$Z`3E1m^*X)aTo>fGbc( z66xH}!a%%4S2?=CKU1$YDq*x-ZwvF&TK$Dm%ng$#DYSsuyjV6^5g#tYib!F?WMsq1 zm462nP5LTLmQ*t0rIndY@a)R>vY>{HCVo7`ks@S9uM2miF0w2PL*68GpCRP2$r zX1ERgySUJeOe`+aqc)D5o)zM+MgR27c?l9(4Y8+Xsh0#xDFGGRLzN{G+>6U0nk2|z zJ&8n@Od_UKLhwJd$KG5^`R4?&O ze{Xfui8uby^{)r+9dPN$AKH&}z;)p3XT$PrCI+~k1)RLd0z=e#yvp8xr4&#LLQg->n%(W0%zQeZ#wZUj0VBzRSry zN3Zs(>AN@IzvI$ob?naPn|J;0)Qu%PC2dxBdbM5w?~CAl0>4k-_Y3@ft#Sx`x2xn>jV$Ds~8e~)~&Cm;FOhgK3xvA{0Cw_iMT$C(@)ck z<3HniZ?z;i9VT%lpr@lJqo<-LHt;mOz`7&!;H&k1sSg*pKZSxo|Mdg{4Sm&(y(A2%r+mSF5(MYCA=Rig-;Dj7jRm zKF2l*$!2{wXD_+iJ9gL3IZB(TsvrW%BMgW<1eM2uTn{l1QR~eUgS9qxY}- z9;0=*46o#zHU>!s&oX!}rbNC3AOj=-R&c(WE|+IpPDs3*X@24<7vEI;#KqrT@wAH{ zmCJ6~`rbU&tGvJOKb_xLbNA^R%RhbgPfgEM&LyA!@UI{J>hzjb{X>8GO|EkG=Yz-B z9zS`y^ZowH=&FN$y?@>}(YfdKUsm4v;n$BeJ@%u@rT%qizWKn}%DJb1H+I8U@2JdQ z_~_fexc;un@5e{i?KyHEA&TtwUm;C=+@@ZjHv4FIC&44O&~hoS8>VJt%Rov^7cJvJ z(F9a6izbEdu#!CbD*ktWkjBb8^xvBO;AV1nsB;RVjoFS( z9~HRDq;6B7;nK8)mL`D<2( z)HB*z+h~t=uJ2;b{gJ4xwB(F3&1$wWRnUFWUq8oxCrBN0Ro4rueR-MViaIuTa6pkC zR7W0_r{3Od_~qEimkwQb@HKCKQdJVz2LPuxayriQVurpLnFV1@)}jsSrIJ7 zrDV~pk#UTosU4tJ5sk{!m|0C4rp`Gw2DmA!I8(x?U~0BrDCMag5GHjeGwl-;o6;Y=I77+)|vm5*3{RVyW9BEw4{uqe;go z80HlAn3kDq0MZ7k^ZF#s+w~o;6-gnr&8C*4x-(;ihYNDpHB)n}0Br+#&2xEB&4%lC zdB0)fkUC~;W{|NH-sVT%F6!vGHUTj-F{=V<*up*Lnt4DhcHwKJ>dwSry_ zvpWN}?dX;h=B*5Pnc^&~>5w3DBq6x+Ai9yk0}LKyuz>+P#SpfmlYR!@XK*ir&A{Ib zyiE-5VW0wjH_$dfok6H~FYxYxlD9R?U>k$242D22r;jq&0lX0g;|z8}xtqbmK;I5B zKY)JsLwj3+wlxG>pp8MO$NA|{Tf^|32AF_$I6MUH4T9V*&@l}3QRv$a7z5JBfQH`_ zP^Lj{6F!07=#vGozq0l^R0p4(^T^>pIFxU&_F3`OjU>wG=9dvC8jTh&0 z0AL8#iPJYhzf|CHd2Snh4DN?|TLRgdC<~i+O_ar5*WV?1-1O)&-&jbDuID|vZ`%@C zR3wf>;h6Tqn_vR_$7#pNvcD|*%hLD@+ShVSUbeCA|x?&){l7f zgs5W?$+W`j#O2J3I59`!uN)dL;;`3z;qfh8oAE{Zos7@YVov%=cG5Mom>Q(Ykz;OC z**^vcdt)P%iN*Cz4$Gv>nF3`8N)f%HS&!td3o)a=(%DL&L?n4gxi>!k>Ao$;k`0#K z(4JmFyT!A4mU3@pOD}@Ad%VxSr%{w>PRA;+gTWhm$@p3=J{vp#d;-- zmg{X|c3Q2y0gAa2@+5^8@E$=d>v+UxOW+YHOqh&pIJxpKjiUKnZH6Zep#pnaXDQR1 zwx1eP)0j?*sdR&z{R(z-4g27qHj{SIa#$uFJ%frp@_dG`p?`T6x(kZMMS66NBd2GD z_`c|$o;fc;BHj>tT9&#=;7SRo*cz%Vk>Da*4$&k*2J1;A>N1I#QVGHTST8n!2p1Tu z0o7vdqh^g_edixb;5%2ZyTSFiVPh8*O@DV~!_l`t?)cZ8xAeJmS>4xC%3d^gzyt>P)`+v8(k=bhWvnY5tu}d`L>zTk0d^t*`z2_!C z*F-z071+s`T3QxQ%I%qA-qtuNdZI~=Yk9*)spN!*MG{Cqg>!8H54kEB556@E?~h9G zHomHf8UwD zsaD@D>;Fd1O6tf5cb$3j#mCk3>cZ_C|GcMG-^(2*yN|T0>Gt<7o_VKP9lmh%nchq5 zYxRBW*yDeH>^61e)3-i5fB3wbzIAYC*9$+c)psGe>(HfcHGT8O+qRwGsE*wDRO606 z9KW)Jr=(5mPPf)A;5`w%N8tAe{9b|ItJS+`xdv(F(vGmRTIT@Wu8C*zASN!5&%Xp| z$U4D`>BDL7>%olloTE&s)rPa^tfaqIjiSq{E*s+ h|0D!>D}TZdF5zPBy@6}8aFsB`{TEamlXYJv0058{JNL|a&%9@5?w$MOMdLR{l9weD!w%cvib~ABfElu%Rsh?&xSB`$99{KuhHF30B z7VG-keGQar3@^-0)zvBX?DG8b6mfnwXt~!gHGa96 zgkPO5@FMHf|E_qa?7%MPm;loVq`r1M)XrtJq$O`}?|W%pVonM_6B8vh{bLH6$5eFU z;=Ipe#y=zhA>tl{%5UzuJ*!1qF)~w9v5X2xCxz6?2Nm9Y>7y154cmC_PyLdk*3vTn z!ew*S((+&4qo}#CF6=`yZZ^@E{@Nzvp?xziU&!)H%93e~cBAQeq8Xly;`rXhs0S;C z1cm-VDS2(OT`RqbIH!&z?OjNxP^v$WmG8C;^7Rvu06I9vb;}#ye6&cY$!or%wecxq zbb0^L!sIQh-J5NKq4L)i{U@PA1Z-A*>1s;%&a!o%8a)?$DJxiD9{Bx7!PUF0mg&m` zoo=%(ZeIQ<*zoJ0x{M>#?x}jL+`AI<1elMG7UE^{cu0JPN-%s7G`&C=ijD)th~Vg>|Q=4ZZU0orvD3qHWdgOd0mo zZOfdxl+-pOdiGgs=`_#Zq~&!PA06g{e0OeRk360eFdjDS_0wyR3mUn&qaL(|0;de% zjvm+GL4(+SA z1X#vJpR|7lxuFfG`QMC)`#C$lqA&_>jH5_eaw}u2028i%0Q_Auphe`#Fu}P`- zWe2+fI@!UTNfA50N|FGu2MocX#c2&NcJJ_2Abs# zc-=*u`Fq{HG=6ZfjoRkg!E7J%mF8Y|FO8(nJ*gkL8Mql=x|N6L-uJhC156qduPYv+ z8;j4Vi-L9t8hTQOb-?l%!#gsTQh_bCc_82m#_C1h=-p$xm|WMu)9<_IaEdDfZIDZ~ z>+)&f?J|%aMGCkiJUYidxT*Nv#h1OG|DjYvKBK4oUVa;R64-Ia&;0!f&%}AYduPfeh$W;m;U46w`83e%>j0R|0PsB;I3!*wo=>P&E*chy zVsRmIp@9LR_fU5YBv^BszLgN8<>+f7{E4qqk?itR=h&Nv7r3%q;?JGZ^1(ovNjF+u zZ-!@&GX#Q7fhL_{6w8I7=T1spXLGfc(u z<$-D7BSWX^tEVP`kFexqe*iXF5S4ii&zN4HU%9vz=98aV?{3LPpng_D%(;%6?6t~?^tQ+TgZf3epP2vJ&{nfYP>)b|r5j`yTqAPq2^~D@< z|K(h%ceftX12*4|p91T#;pFOpeGDQLn#wD&LXfkJPpO=u^+^D4$i<_M9-XcdA5GNR zozCl2g%3Snjc!JAiUPX}g$V<}y`|Fc&jT*dyEu4`QFKw&b^5z$>EbE|I$CPFVbE-q znD+K#r?3#h1Xmi_-Xg8qD;lY?%H{879|NH^-=h+9Rj^{#bx;5Lt68g(qHX)jgn4%= z^!#k($X8W)eV+o*Qe|xw6aBXqxi#3VIQyK9pHIaIP-11xI?vYcl|{8j{8UzA%Yn>38+9>1R34J8qY$V+jn(&&8Zdz>W8^zVrjOi7jtfdG?~W@O%hwQJvm+#BZ6 zU6ztv<~kQPwuE_)gcXkjGxo=Rj5z@uxdHl_0dF${cryby+Tx?6pO49`j>=Sx$sCM= zHb!L@M`b>+QBleMs6v02_5rfnY{yo#c3Jd{z$sY)_0rmJn1yzkCCK}O2RfnxC=vsX zzmDM6Y5lFDfUXH*1s9U#%#`KBP!q$bKab)=0=xw75zIlBd5Gb(*VeSbApv#nk0QEh zBP?iRLIT$P#3LTFP2z00cCHOLUIaeWQ7^)3NY$!rtM-LLyi%~UR6(fzoW?wUC;6bo zP{{^Dggx=Wtf3yHF;Dh?rt5k_gdOn#CGkby9U!Py&YX85{r=XoJATn}X3E-C>|ApO z1$}HYEj(MQ)2E)dm^uC86g4x=X{eX`P9w-l1fe>;r}jS_lqOB-uye+x)__v|B<+1$ z?S21Te*xdWd6&UCO?AzB`9A=jUU#LV_eQ*w znaq_5%#8@lO)(Ut2o>RJ_J7(5U+?)bk)9o(sV=h<1%8>&M-B&iUEaUZ&8Qw@w#nvw>3A?_dR?^Jv;NXxjV1sd_I-VooSUxm@Mmz46t;67z?fpOg_m2e@@{FGm53uqfOH z*UEh9_hz6*JLzCf^#R|DtKTwicc6OVL6=UsE-aL|(OpO;0R*`V8G8(IKx2*2m?ngS zJ?z8rRnr-y6$&7|V~_Q4sOqDel_iYM8Sdl29JtdE`(YdGnS-ug#8jVSAeFEWAjo28 z?lugzc+#|p)H=gmpsLTh=F)JV0kCHqr~>F@d4_{nL95GQ(6Mv#nUjPcNRWdWP=SVI zgK)h#o%1v0hMU5Jo2E0I{y5AYI)3Z8lX2@fo`Zx+=7uA%pHVC#EV$$A%Zf#e4kCyT zYXTaPm1odaEZ8Lo zDk*@i9=&;u5darGm*?1kyus_#4hFvYe<{7vxS=k3 z$g>xLm~>!UmGZL#o>w(LCT=cVxB(}kJ?&r!S~|h~fo{;Ek(*}@JKxTvpLAXiq?W0# z{urKy14;$B9KtQYfhG@X_X_ndc6F{F?eo63le6()10h7Ms1Y=X(9j`%J~!~70N3GH zTBT_jH0%XO=<63&{2Dm?9t*DaIFQ(4p^!MC5) zFty&76g^xdg|CjfYAAd7N!nf=b-NnBIm`Vijg)CwS7ymEw0swDNgB~WJ8Sta!IB^% zo>upj~keikc`-*)wB?gW+mw1CMkK9)$K~HKpnwDTV>T8u`U_mNFw&;BNqN3Br{;yM3|Zz zGYLb20}2m(0PLPX7`o3~M3wz6Fe%(m3REGOWo5D5B%I2?`oPt ziwwyNpkA~X_dfnceUk4(_g2dj*6__VJ1el|@JmzhTml2RucxX^S7d0QyzFo_L23Z0 z|CsIg9hs5~`>vo*3;1T4ODtQa)I0yKlS`LhOjOv+J=nWf%Cd&7LzWG~9zMit7xv*Q z^SOLA;eeK;*_)Wk^}7klvAPPG78-fz>hYv|9pD|>51epVz&Q&gus=`Jay+8_n+xAc z5n3DR)b%clj`rJUFO)FB+H8-=8Nrvx&gkkGLQQ^Z;H5yyo9XxX_C-QEr~WZ*scY8Z zqaK7wDxel5`?axE(|TNU{_+Pc^V?4+S^?p^s0RPzV8D7`BoU~eU_OOD(0OX>)A29` z$dzLf_p6x9{F{f~q$FQsVK$>a%}JT+f=FI#O?*3I=$j+2-@DXLRL}Iix3&6Vj8L-8 z`{hLL`15l({Fdyup9(H#vS1jn4F3?xB8cYh4l0(4Xb)82};O0Oj@x#>k9oLh8r=Lc% zNiyF8b6NRkB&oKg((2pBHh$GdFC!Lvv;*GRlPers`URvM4qyeR&C{+&bOE|m^Wy6k z-`~PHB=MXIn?q-C{YGWa07>=hLurMZ*k>53-cwB9kTTNnrKfbwN9h#XeP0V;&(~tm zmv(e+d=lQD2>&#Y2&W#p)kDef*_`U!;?0cw|KYa5y4mu0(1p$@v-mtb|2+KJd0#Z^ zd9jGXPHbh2jIZo(Pg%kLL-_f>`I^l3#|k?EvI;v=f61kx0YV=;0W0F&w%YaX1gnT0 z%80FRtRzF6`vC7K=dI4wKNvv8sR10tcG3oe$;6v_`RXdmDUx-BYojcvBuFh8eF~5h?j-@NFEt5 z>sVa9b9t{R;5P+T`<-G!hcB?JZPla4=H^Q_fTRJQZJPIvYs0X?PXbZj23l8xed#W~ zLIzRd49xm~_o($1+A(r@eytsZ4Y~IxV(4WANNDp#DBERjItbg_riZU#AJHj z5+L4c?VmL|Q9y;Aw&vmf#?7}~QEjO;t-!NW5X(7&OHqNeThdKlfYBF!dUI*Q>x4s= zeE%SMf&7o669Hpg^y`h=R9ntX^6bdq9Pm4qE^w!i9In4}@YCBaU5t;VOiQhkFXtl5 z>5N3uktgN17>79#{AGtZwyvH-PJ)~!pi*Yf3HiPE5FcV*7%c}oe1BPSq3L``h*o4! z;3mVz77|kilQ|t}Tp&M}&HEWJ6QX;s@M2VNDy}15qmF-XmgcaQ*uJ#N7dd4Sk0%6Q z$r4dX+hh`3H2Ux)N+HUqTsTiRk0bDL*F`2>zpP%I27LT=PrCWoy{m3gDs=T1AVVBt z)|e+W$RdHn-%AO@1dmDO6L|VmYretN=c@%+hjz&G3#l>eS#I{=32?UjJ9Sp&D>q6@ zAfD)$dq;s=`hdse-iW^zy+4WvqdOtow#9xjSp3lVRIaa+eRq}kh$Qbg^~wDH(30{o zm5$U+dBgeHcK7ty@U*OveYIZ_;5|&uf`{GVmFjYk6(eHI7S6bs6PkpKlN?2N&}f#= zXE>s$PcLSF24na=pKWp#KAuolj#b6Uj_A~S40dn^Z=SAx>xoac37(3iK!suKbvrUg z?TL6>1ijB$NchESR{(0);w%#~257X~_C=g|8{{oheQ_ez$YvvMLWJ`sjM9_oAPjN+!0wF<3*RO~Fs`n4~MsH-59G;R9zmlH}+K zDVQWs`CCV@6TJzCw~fzTlkyXZE(BB6m$!aGe` zpYrNc8Gg}nc>M>vbeaiKPXFf}Vn@btzFziy?>~#c%ig7p-FybTM{N)eF38dkh94*u)XW!VR$qDq~=$wL{(!sG;)`11WF^2B%o zL{8mS3FFTBEwX&%$#zY<#9?=GN7}NoH`y8P#GgxBWC6RkcE3Eg9HO{$>C+bJ@%`+q z&-c);x|#6E8CV`}`*y;54Z|mLEmvvYwE=ZJ4$LvmzX-;>NPp^J2IO5#{wUe`Agt%#5R(vNx zGt==z1A$96!M4RWZvF)G4}suif)ckba;T94q1M6<$@k-x0AsPvWQ2|o zth7Z@F8=)H_u3yqY(8F0R5_2Iv7N+mF)ZtJGhft@wwT*UMJfaUlB%ZzFS-D84C}-R z(I&pw(ER;*AM4mpAvs#*FypLlz`}oHv}||5Pu@Dnq;ZwQ_nd-^N3`=d;o^~;s0Bvo zK`@hS@#(cb?9Q~uK^@t|j>n4-?B8Er!O*JvL|ILJkA~x&mqM_Dfl92`%x_#yRNrff zm1`aNwV^5gL8YVic1iFtNAKIBvjqsE(c8**%`+Y#vYHz3Q2hKs`05{M0fLh`m#2Hx zL#-;9x}V3qoL5@hGl!%IlY@EutAXlbe6Zs?(>|;rr7~U>vnslpx#6+vWC>-k*A7{j z{|O5-@pY{bl6yc4UZg0zc0OZ9;RvC(ZIL$o+1d`h!a=~$fgbh|NWDs58VAX5}p<@4cBKa(b?hKz18Qp!$J&?;a4-M^9LcZLCg~H;C7#^9 z7`7=kSVXGX6QVsFh5M?4$;kx?+Z9+2D(u}^iMFzBMeu`+_l>o&V{R`_nN|nygAebZ zLlmy>$U3VYSeL{T1~$0UbOud+Eu-FRpf@GkL)0aQIJ>~eF6wAT@j&-8?s$KeF_;-A z_QN~#k~AW?-T*M`!Bgp;Z19Cn#yt&nQasz~_TB;VJ#=r{Q`_`c_xDWT&${L=od^RL z>qt_39-0wdgeKy@I5x+bgkI=zTjBnFQ4IEJA-&gr=}SFdDb*%3DB{jsaR3=oJwOK1 z6S*7!TnO{XYnVD3Xr#Lc^1sYu>JZ?EI!VaIG&?F}f3-gcuWQUM{l2hy_2BntHJ6 z)JNu!V<&_98P#LpB_xK2@xF4;tNfUj2NK~U-8y9Xi2tEg>zR9hWUvxkL4MV4TeQ51 z%=H690c6O5V9=P;7Ekn7ec~Wtb*R5{6z&c<)gd7mEIh+JtkG6dI`88Aned&%nFp5- zpgC~|wL9w+%wHyhKb$FRMuL{|$SkdgO;~~~ri8x9uU=V84rZI_Q@Ebo=RVEQdHmF9 z%&Mge=eW@{WKR(}8()SyFU2X8;a>FuOCfh~9;$wWA1NY-nWu4ly|_ckUL3bp6i$BJ zU{OrWQ4Q0nweivh9|4WJhG}4+8fYL_jNrojQmp`M`xpYMWOox^in@ZF-a$Zk5fCys z6wOxx`hBz{FDF*Jbl*K;DVpm<`RHNU!{*-DyY@(iF6S{VeRQ>$)*b)c9x2^GimPJ5 z&1iEPg5awB<2#|r-Zwh#?9JV$n|7uE%u9@zP*{RRUR&vm z$hKQ=7b4wU<0E{oYT4bV`@6+2zgC_zK~Fbn_Gsjp2F0;82IQ7ki!Ue8cD`$cQuRX;{~|qZ2_OC5Ru#;{O;{0=u1B|wm)~vrDN*c0PS+12Arw&bqCpjzE509O}xe!H>nk=YAudZk{?NFFL|IEyA-hEc}@QuKfW zJ&^3O{7FN1AHb-o%bkFcAMO$4%S3}4+m&yY{g`2wDG zi{XH~7%dI2X13Js_DGIvUlgc$-_;?Z4vkEe9beO{QY3a z$Kk&PTnWj!a3Hb*I*rIqZ&fwxzP_ z2;=hc7l-8VpugHTboL;HW7{$eNkeWia9P)m$-<7Jk4d7<1tR(r^5NEY=y&v>h+ct& z?adNL2)KBgdOv#9FK1m}mkcqP*#> zc-@`P9FN1N$At-FqdBl&s}0a|l7^Z67~$hcUU~qhLXRV%$5~L|jAUP6m&hYL=$nA2 z;`YKBksYEx0-U~xU7q-#3w%|lAGQ}zLzsyU-ap1%DQ{9vXEeA zS%~&>LR{gaWHC63@ZuCj_|ga5eeJ>jHtg`hGU~xqf37HA{J54jxhx33f0vW%mixdZ zV2jm!hTVzKh{}H8ilNAb?tGJWagsZWZWKGslwBo6OP&8LyGj^Ocp5pLAO|oQIxF;d z_!95u9!koAek3bne9Ld6qOduY)mO&qvlX)(V_dS~f16SjR55~rEQ^c%6}N|D$SzkoMsjy(k% zy;nIRF;m3=YG_EBIy(0NkVC^{wbnqj(8-_|(P41b1Dy5&j_d$rOtZA8Z@3SML8z`K z9lhoJzSBJ+GuJ!}Ib`{|MBRn`dtGI9cP&oc?5=qP#%M-OVc<^o^{4yl z)zBKXITuEOxzn(-x~dsG*di)sZN-&&y^5vw;`;F^wCa1`*<1pUvINvtNUa@e98fGj zS=_ENzwM<`uQr!Qr8LjJxaRTrL6F1jtmZnN!`lM(X4)erHk1$2l;NpCBZM>o!?JE| zFk2w)8ef9+18{p>@f<7|?BtjEpWdm0x?R6|@GW@t-x&36lm>YqyAn}6M{ewod30rD zB|re?F7F2R=YCBrW?bDos1kd}qVaBU@-Us_t8)>iVIVyi(^{wT&K-01BL)mEU|utU z+oYL+2(K4qn`Qr)f^3Emdd;1mI-Wi`s$LMMyhP0Uu^!@k%vJ6qKIBcMcLmXX`?<6( z8H)J%%y#I?Rks0G^PtQJ^Xtj&AfJX1*5YFCK>+~%uKyts>r1n8dl~ictB#e0m@8b% zT|^sid=J|J&f)-|MnGiXP`|9w7I<;x;mq55^Jevdf?-iDqi2@qJdGK#&P%JO0xAAfnD+JxNl;*X{!(b z58K7sfzQ(Pi~M`GDE;Zo@QQCx+A@gsILq3a%USM-{^Q&J60mT+gZny}`blmxd^5Kg z=`z^tSes_m4E_{^De69am0z>SMO2@TzPsh!HTsZJd}VN!R`*L%%FXP+Y|GGd)Fde7%@6_k$U` zrjiZtEF=-mz_)0=oxB9ek=xoIM40RnQ@ zc&3c~acQ%ZeTg?st}MeP=8*0emu-#+JV#lY6TkzRpekcbRch*rQ%Y*`dpStAO+vM2 zt0TjtJDxSH50L%?%pYrBG|@i7EH!32j!xqKUPZW{y)#Z~{CIr8LPj@XM zwYYBvNWYfpfd9QZ0Xy%B(*R_VbgA45HLA3c3KWFT!_KGHOeV}$SdKS zm@zD@=1ZKT9&{ky>I-$R%`-tMZ}x?LC-$Qdkr} znY;qM&JGTAj3BNi4}lc3cb}fI<-$-p@M_E@r3UC{rF8W)M%+7^h2&syZE>i@a!^xB@J-os6)J*OU2zq?H#-}03L!)_?+B!UP!w&yY| ztZ=qTD@~%jhV${1)tGu!RJ`<-)|#(!?bF-2<==d1rND;;7`oO*_zNFD;-KG}StztC zVZG4H_^)P-EngD3|Njf!U@td*`+CYgdr+{kf`DC+dJIFiE@C^YXs`L?FFZ79mZAOyxjvJRW^o;y zp9zfO6|&Sbv&mKuO4J%j=Q!&KKFruU7q zA;Z>h2IoBKjdrWgXdj==peptcB3k_l{u&u2v|fh?)Uo)Lrvp!PY;}wtd&W#meJp9M z!2ctt;s4`c`bm00)tAyk8p~Uf!0kkrB?z02Y8(Aj)zZuUu{iZHwl%0TX)m|B{qqX} zHAv}otUZM5Cg!*Klth2jM!}e5*4xmiKw(qU>s6k&kb~hVWbl^Q9Sx)IP9kAb9g436 zSjYSa!`Qnu-1mTnQz0u;edw7H4dufs{@bgo>=0a#klDO+ogfyuv^jKJ?FR_Vu0Wx< z?RJbz6+dSbcCL!Q;*EN)8vVZ)cdQG0UOzm5@8Yy4Ko?I!y5-$iWw`CC>@6&yx4g%i z?_Cq(@0}SbW;jI?t;?{hVa@|xvX5)qQ>sAu4}qTv#K32|AG@pr=OB3Gnk&>Hr zOs4j7%EqTBLQmM4IUg-&O^$M}gii8ttt3zKaj(QoR&pI{+WDw8{q%HDYs&XzP-`mo z{Gb+~y%+{e9&@dHojm4V$(dy0S_zrVNx3Ylrz!5>I@YjrQB&vUQ+#rc77n$kH&Gh- zpV+Q9(H!}opsF{KANijM`rJa!hs@uWtzS-0yP0&q<&&w8U_Q67@F5Gg!S(Izd@z*} zsmZgi^~I10PIjr0w6CbG>w88qwsL+=Z2x?xZp&BYtomE&-2{2|p43vTG(D8b&eJI0fMk{Y-Q2XkFLmARZ;=^|;LXgJY&v{UAx&D(1v>X4bNfousK9T;f^OU8)vKu9lqj#QY0V(Ro$- zHu73Y(sII$ode$-Ok_7ru0Xu30qG0`zJ!(sWN zNoAHV@G9oFF2}iur)q}iogw6gZA8O^%Ogz1GU_P@`aEFi-w|LWpUE#3i17w9ZxW<{#t82 zrd3S`ojx^{9rt(Ch?l_qq2)|~R$_-P8OHSQX7mv;N5I13)nsD23NxHHP{aMc?mSsE zOVcLXndmCCrv1c#qoaKDgkg?>8!cPhwx^otsch1Q-y*6qJ5#fT+UXZ&)=RvwlwnBl z;d2GOPmyW=t;dQh#|)a;eq}e_4%@b`^fw>eg?BrSKPN`A8w1%-nnH5R*^QU4h#LO5 z;UdR^-2dVwkVhKjCt%zd<1fm8IoXAO^zepELha)=!A=J?zui;}dvFVv?6WGO1qZ`o zqf)FHB@5lbF(-ooH`A{wq*~aF!`M$qXT=mIl^Y6@iL&I)$~eP#U$nB>bq%XlSX(F6 z+q%Db`-%Q6Cje+14&QB5d0$%$|B_6n!kT-vH(Reh$Rj4+hrU+gAe}_W2$2j3SZImd z#4)RMYK*t1Z#_$1XioLlb|Fh9jWV&?x6xlq|5fzH?3gR|<1yW_>gW!5z3K1ieqLMT z379S+J6$VvaiUs#OyOu|Z9RxFGH$lya-MBrB4OZl;1p1c^C5fB>>T@%$r+h(6a!YxCTPN6*=fk5jB;mm)T=Og&s&YsS(qQ|$e# z!Zi{EP)xnVN~F=slU<7HW}2wpbI2gUSv*g&ZhtS^0($iLr_#EgIsE(RUa_P~ZP`qX zU_~UW-v+RlWgtmW^qKkE^4E+((PuvgH$4!*(IlJW)%JrWIRU$QoK=cY>0IetKhLsJ zIXMwSI8KA5HI?~560Z2kL3&D|gi&s4Bj)0s~*5$yZ^VH}n0Vo9Dzf1r)X$$`~)r>GQ^&6gNB^!eZG+`#tE zH_Q&3{tviCK_)+F+{nfc$Ef~f(y=Y9JZKZ734DEqdfRF|D8(UA(dHUJ{2*B!=|kL+ zfGXC~dc}YvN^UAOuG^L&=crzpyfRCbRq6cud|QpJ3RJH+Z{4w?A}dq=mL^wSMfRT$ zdIgxi%aMQ-5h)*iirR@3SqVB$M6ac>pWBKmxht-$ps?c1UN-vmDhxooSn zo|(Q$33zydW8PI;aOyz~Ri1t6iB@SWF7aB86!Og}dhh>z4VztMpwPB&z_BE?_L_>F zfdf{nm+YxeG*oG*4+r~^56NVkvP2!OwF90$>pv(zB$)u0#Ul7{74Tq-kIs`rILFZvksz9xUEVI+T7@O!(Z(liW6A} z6ccD_s-1DiMe1-W@1t2&oLAAyF(tOdDAQT2Okpc?KPq)VB9<6M==L{gf3bih85nq* z95?L}@x*`0D9yqB-jGYqk2z!?4HP=0mD@=IobHTxkB( z?+U#w#%ZX025Opy<$V9LC6XBt{*HIR&-4&YG*>>@HaYt6>@R^zW65?*r5R*LXIa7&x{b@Md+c>+66 zY_9;OF<`>9a}cEto*REaS*ZDB@@=(f@^7A`cBJL5M*{;JD!a!(N%M2W7T_cq$Nh>l zp@M(Oh10nr&I%z%c24_MjR+>5gA6Q-3UbVyin!kvUo`pX@oYtgR5BJ~jv z^M-dnQ-T9hlxmkHmcLGR!)th2xS*cfjHTUsdT_Y%OVR2$IlFQ@Kh(ra5lpbV8|?PD zwQz(LMp=BhI@lWCPGg?U(O9c^mU0l=n>&?QP%+gFe$}m_v#VI50hIkzsfFidpA4<4 z{5Zo}?nh82qRZ?eC)qRE{YEAo{J%TP{oaGPm`MJnA9~-pkaN+^usfdjimAe^=Wu?( zMq|-Zik`31tx2qLs&}=0cYa1?cvaA3v4SpnCU6JxJWytJu72?#Nry>Q;8N1K4g0WN zlWS+kK3-XHZnP|>1F%hUOtSV2pRQ8*@o>!~nVL?z=A)sTqp z%esfp31Zu~>Wi&NJ@q$z=HVqlkcDhuYU_vxy{ApE|4l7*XMoMP!b@wwd9*n2-q8Dj z?M0-rsD~iCSDFzPtCaI?XT9CGJ~GI! z-R1K}%j6Y8b(tlAe)*#7uyC|54NT^nyH?&zXCJcLFfw8m&~C<79q%9AppJYqnW?c{ zZuTRtNQa?+t}^TExD=(BO+r>=ySeA#jkk_6<8FP_f(`I3(dTNq)DK&j*woj>%)XPs zhH^Sr3TSJ5ZPxaS#ir@cO->_Hc5da%9IM!tJJFj6e3F+lvZs&8>mIEeXh*kPIA0Dfh3!+yl}Mrmx&x&@HVgiFwuFwVu%zqRG1X)kwKGH z?V`+2h`h(KBWC0SoQ}m!T4sVdG(MMG@nxY;4spQIKk@Ac$u3k{(C;&Z+>!Hx{od#w`Eu>i-q1%6){$(-7?zmn}IM@nRs z3U0DUX2C^m7FdtyuU1#A@G7UT?^xA};JqQSy*XsLfYR@+8APjZqrw^ar`z3d-Rs1_ za}Ri|EUme;mA+U*JH9!xnGOZQ<^~AFwC_m9J|VX!X=U6AMiL-I51YDfq762i^mAyV z&X1nKvg*fFz}T4Ziz!NHb61`-3TKyh18;JReS;1#n#ifA?c}Q1&pvGDd}fdVra0(f z)Rr~IJZQK&WDB3XE~rtf8&x%Sq+a#y6lirYv2Ji+mmc4dH5Hq9FjW24Qz%D-VhC5d z+3Gq=%P~%-@A#pUZ0M$!d_F01`zv{2jn2Bq!qQ)Td{-X)iXS+{ikbe(s>wEpR4z&o58jg4WDM0>m5+Hb zw2AXvjd)^syb_r9j$Lt>a)6FVF!7fs*#G2SJ8+mxvGh|>{m3VpMAcO^et?0)d|nx){GCFHg)-kDAk!z%i&xe~ z=KZ9VFP}6dE7I{dV-&K?zwWIp)1Mo;N@D&G1J)3qR7tE{a_koJlR-dBm4I$DrVi(14{<#E-YXwd5#Y;yWQ_LR;J5IjA6_|T8xH?hF`E48@eImi1$N%+ea_W7HVEH zOXIGVGuy&kvy^h*x3{zcoXLPJ)(M;907?*&sHNa?u(4>dw0zslH#KcQqf4d__kMe*Ln{RbDKG&4v(xuWU7hxN0Q83 z4%VdWC(d0_HGFJ#3}( z8p2_2FN=>oXB|#CaFTf(wqIrtS76VcagvAevF&Bu&!^j^RB!_iT`sj3_Y!g(^MKC% zMZX3}6>c*%ZTk8DIr0z6WDMj#aDV<$AO`|3{u@Dl0>phJrl2=3Kq$P%k z{A7UI-^H+3j#>|zut19PB$l`%5+eHgA&iD7D-zj#xK0+fQ^&j+q;n!w@^HTMF>LZh zR`+fT(0b%sQuodUqS3d>^JtZ3i71fwAH#UbLxmFOVY#yxh_{+w)|yRk>JJhX#dW92 zx$O?)=b)3y>B>>$8*ppMM%c*bB3l2wU$qjeoDv+*HDYT9P_lEbeQHb`GA+N_YWZZf zm^)1Bj(-~nGdDw+zdAU1kPj4krg>mzB?;Y6tAJX+bDFQXP-d_3W+R2) z^}Qif{%e8bhE&K*C^al$81eOQ5B%$k1x-Wq%n^cR`-Ns@P?N>GizuGl51I!O+*ui<@q4f*nK$ z!AQ%dRUavivp2sNoZ8RD#+83Bvo1EfKu%yEBq*LgO96S02madv=AHA&;cfeXMNAj%j1L9{ zmMAwc{R`)yHO$|Z2A?=J2RK>)Nf7&!T)mPx;-f0{X6p?1ZBRvjBr&-usSEs#DbrbD zCme#2#k~cEk8j4$7K^?MBG0WDV+m?iXBmpDcAq>5pX&ytEhl)HgznoSG?zBc=Y9wp z*`D|)pHUq<7&$(Q-ujl*t%(#<`RUO$8?f@4g8_j?o%Lm&f~}51Xc~P%FTE7aUdPf( zcSa({D(pg@yf3q<#|^)pBtNk#=qHJm{={;Rc_ZR^|hbc*z}c=mTJ6t-k#v=?)wje0OoV~)DiAhBa5k^O-|dnUs0%c%ei=C2ihcHU3kxx%0gQQZ=sFf#|tiK~rzm@M6r@ zW$PO_s%84?zfHIwP`%QI@zHYyqpY!^mTpZ+?M@dtrkEdWsJ{pSUfomd%c`Lnsw%1^ zlTgE(^e&YB32Wq%&HJa}cCO=NqdV-1(QV%G<8$&4tLa5FNbJ`G=dXOP4wHR@U{2m2 zCp|ep4EZ)6ImE!Rt}4lOsdUNS4#IBo8tnqIk^>D+I0hBx$A=SGxKh@* zcE1|8Y!krrSK1O1aCep5|3&g{@!GknA-3H49e^~R%75m{ykOW0?x_1J4v3w+pCQl1 z2}yq9KZqYVUW%n0=;%8Gyk+d)v%n&)1ge^{!fsr8|D<1f`Y*97O52Fsrjd|$KIr}5z(9dLBoZPe>xFlu`Do~b#s&80 z?>m>mL~Kys=)fLPF&y_xH3=WG=pZg!abYq1U2F*#ME?GDRB*4bkT||bH!40ZI-bAt z%&i={1y`W?D^UCil;45!E0Fq;#{clRMcBaTK0#U$k=Xx%fpuLP@i)K=LZ~WGzs^4h zDAiE!pK4Gqpj3nNKh@x@Cct9hGX?#F`otGJa-bg(i9;S4)Q8d~qhrEC18Myl#=8zz UQw-lr{38JW5B3`^EZhnK0Ad;<4FCWD delta 16852 zcmXVW2Rzl^|GyE+tYoi*6e6i?H<4L(2_dPF6*8`I-$vP7TQ(uv&EBpOviBYr*It)v z-0RN2&-eF#Jf7$EI`4B{kMnpx&Uu{IIImZI1Z8dn<*!UCO6|lfsy{$#NO?Odm@ z;k6QGg--r!)SXYMZH4~eY1zULbT(A(-eN-XH(f53jGNxrYW{~hiAxCcrxQ9~5X8GE z@qK^Q^L`yf}hSx9sDWp*H8W@`q*osE^a-?|b@%;3A_; z;>lyW9t-2S?NP^54~txY7y-WWt?G}*!$NOT5B~KQv-?*{epYNTVIWtr1G;T(x4|fGAr9P zP<+?FSwHRVS9Eq`Vz^(iQLp$HaOmP}f&+WQ3YmC> zDt4!oyx0#q#@g{iG?u%?9Ux_RbptKY4)hod^;)lvc2{F*GPC=V|eku zj^8%YhW=KOjDOSa0&=$=go{V4bIc!pFUHzKY$6z=nRa*=8nWPheAUiWhjX+Pe~BjSbY*>VZ7)Gd7buy#9v`IqCwO($HfgcY zz11N;$W8iN!L?)-;WF9^?iPmIEaBnnmSU^|QO5Cefjn#yOL{hLs{V)@50a^j>*LBY z=e6>{Ha4m-8ro-HzmA~MI{POqJFGLZ_POp=W;Sk4Zw#Jix~FN|m}!{+|~s$%l4xroa1Kw0=-q&PFTC7(Nzr2gWsdlIuJzt4{k-4d#2ypIGpSS!BAAxN6;U#F^-Rof+ z@_QtGD!WG z$0niPson>MVOr;p-!lZ48oi0xna+J^4R}WGUct7iKzA?ite@^&-mAGj(SO`;IDqe; zw=e*mhBTx~!S33pVxX9uh6_5qxqr3q=&aF6@YIwI>#VzePYXXl_bKdday}s#S8>Vr zj~CY6Ru#C6?=pFkab<4&251GlEIqu56ge!*1t3dSD~&7XQ&a#r9c8`5FStQuJv03f zWT`ZWca;b)`enH!Dabx|?q?{S zKB(fKwv=9(Tfrx%ZqBc)eT_U& z9=>HdWj_%|X$FgJ5HW09WMdG=h(9=(!ni5;JoRU(>4-iRK)eeVTE|D3IJ5%-^f;E1 z)nIJYr8CjuIl(>a6>L&r$vdl@9Q{@$5bWGX`&p^4Kk-3iTSR8~u)cpl7dUcxRp}X# zwFGCJS#-(Q-%si1I=#8RTeeX$xm!tO^*E6&SzP5ZYcuv{`JB~}Y9sb0L4fz`Gk=I! z`&-k@qR3+tw`|-XI_YA$F5tXaPJnGQf7SmaV=n`XQ@@ZJ((MA5$Vstn79xbDj=*Yv zH;YzV3+7zhtc+r;F9;v33#|QU3A7!=@cZ}*d?(GS(r`bxNa4Erp~`dXKO77KDcDHU zx5AmR&9at|b+tY*eJ6V%GpcPt-?02ZeN-lToyPxEJgh#H4+fm2Dr=tyYdX+l3E_s| z+6~Os`7jx&47;vvdFq-~4BmSq`{2IBgCs!D(lxhFW}23oA-h-7KU_QK-I0`+kwueq z+dpi(jr27^P&~o4`=jdj)1>YMZtQThvBT>D(;_r;Ab+d+>%+KqLuhVXWAXP66&s>F z*Q8R{3so0dGyqd^%h&nCWONPe`WzZ9_u%M0XXL+KhfMxdV;y7N=l8!y{>%6I$k{ix z{hB{So|b`;?Y_xhgDYwu7+-#+T?H9w@QvkH zzX@_vV=65HM%qfC$&`In`lRPR1vN%&?IvT0G~@64H>fe8=+BHo>ILL}gMrgBEfegG zA1PYIGPif}eTk7Y!0sJlg*Xn)rs%9{ITwtprSbg4urtX%QBm;|;;b6*zoAnHhMjTt z2~qZ~C>q?mp!V0fQrG_JUP50FYK_f(qiIlC2B=3pEA=q_msq^AeSy-IEAv;&O7zQr zs#K-p{(jm?EFMk%A0`cjit;t|IK^!MvEwfjhhHWSzn)$pUOlUNpkFM0qBet2(%%Yu z{i5aFqy5OqTJcxomH+plGqLr5*tzU;eKd79R-rwXw!M%xBs+|an-u*#dw3e(OsxC);DvAc&csCaZHtNh;~4dCh}`_%S1;C| zZF9T?4EH%cSR0->D)ev~zL_u!OVqv^4}Enlm&p2rz!S74OO=&F(fsVmZ#k{2@xKii z$v|-U8>AMt$hAzYyQ`6tjOe=M9wS2;qN+j)-&#NagSsXD5x5}}$<-D8PD48XyWs#< zk`~^7HB*JN;~OH<-gS3+VyR*7$aNj?gp&{U+2@N$$JVo$ zmIi$O8o4(XM)a>BH1rX-l+LZ|@Yb7nzyi?#fz$6nKOJrdk2gt8+jRAVrY#H`bw_Fq)GX*L8A9He#|p z=R$H&=0Y+@83p%LVb~>(qCuZjNb{%rrgixI9lSXXF;oVul0V@gCIRGn!o_IW1`(b` z{^JFyB|x*GaK{!y{!Z$D>2bWN~0DRN)p?U5;p9V<&57mUH- z6WKAhc)A=?zexTD?~=x%de)~0MAyN0{7<3c#;L83l1q@}XmzqO!@p_CC-Cui=zNYg zSj;)9HatMzX|ihP$Hnbt{9u1x31w9$`yCrtX8pk>?XK>Y6l<88L8qlTh*rl2 z_EFV*txS(D?W3KW@6;hRc3)LOVf|LxaLLK@tc|?td#!u~DaK>Cl7#W6&YUTp;(}eh zb@{X$X_j+^P6y?9lN2P!BbKJ>OYt}<0aijNSYC&=Gynn|N7>z(RGI&D%9`y=blYHe zn)keQORe+s>lMx4&w`(ZbUbMnnIyJ0`=jgVZojZbB!}AwhZ=Hf*vQ26ET>EOKLV1KN*2@DWG`WaD@34(XBv|z5@FPu_B;yyDM8~h zK(lP(wZVp1rl? zDB7YRe-5}$UvZ^`3CQvvZYB5zve29d`zKk`iD9@;GKaHieD$^`1MvgZ)UA&jK>u1K z2J%lu44Yo&n)X++jxZU3I*4{C<9Gzy4GJHJ0|O(}o^9?l)>CpMuLyK}My=d+NL^x= z!nV9|C%DrrVf;LIx|+QBkzez3Igl9pI(gqY;ZSN2-9Le8qpMnIEaqthAn?=o-)HJc4COkwN8Y@PtQI zziO^0+5R%x@pO)o+&$)alWd=-ybNdk@nq=0m+cNHNZ~X3RiSK}>UobSe+NjZRbpBB zE>IK%c%J0siq6VL!UXI`_e*Z3K0adn*Vd59@WpHYZ7wM1#Rii4B&s;y0D`lnAAwG* z5jRq3uXKQ1ajy$Wk=kvPJWJkzXkHeIhh8B zo^j~n#KTwcQHjulinm)nZ+m_2438akj2v~u9oY3?1OGVDmflf4}Yje(Qgr-^{PF zkp&Bd4q*I42fV)v__Sj_{_`jQWgqgk?F=jkxOwb=QOV__(DkT%pV>Y#8 zHr@ZxPGD19!g_VFR4a6?6C=?ZwpqNyJvLPSiLp1#%>Z~dEh#bBV1l~m?5d=8d{6Co zpL9htdf4=f^fKDiXKP)!L)$BZ(z?c(QV!M2&x|Rb)v+GjXL7;37ZLNJ(P5anj5z8~ zoDphoukZg-N--p{Kd|yCx$HTe)8QxS<5AYh>(>%{&*zuI>0+jH9SefJOJP4Zh_ z3T+Z$JUoqs)LBdH?my=1IwvXNE?~A3+H&Tf=yg@{S>VguqDj7uRts}sD*qKj;|~2> z+4LtjH=FnZjCf9ltpoH=(~aA1o1m_2oipV51&~8u3yQG&ycl@XgI+Y@tSts*X#Q z=&=z;ls6L3Oi!7S)NvW~nVW%d7{Dy%)AyL8!wL23ruUAq_>$go z&pZ<~=~TNZ(5%a38T0Qolh5b*^+3Bq?@MiFe(Y3jPO5fsAom06k-Kzw$}I1vbX&lI zRaQ93K`r^L`;uSCn~zD4M>@O1D6RC|^H&xV%uQet0vx%1uqt6vLj#4vniF*g>v#s` zlFR}_-!NgYw6?)XH83(jbEu7DhU>|^_}yRQi4D*>@gH7iFC916`$I~yl1lP+1G0FVe{lne{i1UrhyB4yWZyOy+)Mti4Qt2*G0=JU1bI?@Mw3DdUbMf2&e`nndF;lWeZ@a@-x5$IJKsDh zir9|P6!T>VJ5y$)dxfDR=ePpz9dY;AI5y~+ptxr4auYbQvA6vw=N~p|?e!g8ZZui+ z2;5bCBXp)j{G&G(+bEI*s{FhszJEf|zSMYoVp!(c+^qYM^ruag>+szCC#g&G)pr!Z zmM%Ikt7RNN_xnmj^gj;$yZ(?%HtXgvvhmFa?Ki-|gFd&F{lCPH z5y)Ey(EVBg&N-Iyx2?Yl5cBs75Il)!`2x%SSm)PcC`-;lh}1~_aS)H41eaZbrP2_m z!cehQWi_zSc$+w}d@Bj*W?7Kc3b2C@-e-QNP4KFdiL6fC_5Nh%vBTj&H$4Aiuaz+N z`F!k_E6a}>WEt#*i7-JIsjYQMOdA20O&fKhmj|SI8I^?7%^#sILro1Jk zD1U+-;`Tc3-su5fJv^D}4s_$cB%etaWTjyK^wj-{>#MU*%g9y+&P~e>IaDz3P)nfO z5{*i#x4dGH=HpA;o8S();Sk=T<0nWZ7S2uZvIjVOTv2|M5ewJ`D^l=3R=Lr4)J*lz z$~3ThmwqHfKh=1&bC>gNYitm&RSyNyGkRu|?a8T5aCZIfewX2B6Md3JPMHz59X&Ky zA8R_oGaf$!UfTau1=WSBh}wxTIcX$reyN6D;zkJtb>p>eS%bLlH$YA56XyX*5&Ww= zJ@{8KzRx?}k&79AfqvuPgE}m%ez()361_b*QHgl~FDlWl>KlHoE34ZzR7P+qwTP-4 z@802K&5Vwb%Ko_B&Wl}W&vbM>HfFiwJ>yP)Uxn@}@lZiRnU10jJ1JH=t!)NX^rq2c;>`&=zTCl0 z6Dnew*)9d#@*1<8Ym{IT&tg3_@dGyc>4|dq(n4Zwwu?#5#Ie`8$PYO9>gX^R6>hf9 zi&fE@_WF50^m6+H)*X3QM@qEi8yrcg;`i*#Gh2LD7TKN^1I(Ntw0Hi}T>8jw|W%L{Z?RC%i@^0=0?>vn0` zuqA_PXzwQ-_Ai%p2S(u@E%Ey|K&XUt`9~@ydjd(0+u6NJtSl;qi2OjDvuzE#N7J4U znO6kCkDt0m?ouKG78G+qQ%#K6t_Oy*}wM^t@0DJ&Ge zsKLTODa=9s7{nNw+yTtKW9uSPAjmWPhsgzxZf<(qxxAI!uTxfwN}d4dv70mYk(QJK z{O{>~!c--mzMap?4;5uAy*&J?2Y)AmgaDvDb{wsRMMVw;X5gdq_)*p zYXam)GE%rHhKj)vPyt}%JmQ|}kfiO^k)~DMK-m5~J+{`4>kjHhEAtkOAhpRHoYZt_ zyU6G-DgR0o1P&t|%X-2UZAy9K2eAyo`GF#Gt*aiPZj&MuvE z_f+>Pz4^rr?0N5)UBgZ)Rfed1YKa@zwG0wwez9|P;S1wG#ic8B=iMnB6m*{4EbGRr zbHy{j)MV&i$4&8IZ*Pi#kPh?QX~8@6SXa}5+vj~%kiwul02DeyIaFwK@Jw*vFl zgsj?=;Zydi9{5Sg$5$DHtU|k4cAuNHyKt@)x?Vq7f!6s*zA2?~U-XM>VP!iXT_|w- zhwD!)dL>kWPv+eJra}Lx>c8aZtVOd>#;k?~w~qHYo4E2V*FRPV5~pe7YV?LEoL)N! z#xq#aoGx4?(-6d_`6-F^rOHVeUiyYrh=mdQUsG$F1_znBH0a@qc?wG-KdL0zfL2bd z_r_yGzyXoh3F-K0cRQr@sOL+ZVq3BB^1?NvWtse2PbxFJ+=Ixoe_azNg_$dOjLDmZ zWvCR>D)r#-{T#@ScNA=zcMt}Zi4xPY9$Hhok(@QX9d zz`--HAXnNg_+GL)arhPlFxOoDTz~BdSOI8u0J9x{Zxw!Sp$EL5Z3qc;dDn1ljlY4_ zZ~;2QX2kY6g5%1>fo$MnW==8I+BN&qiAtDv0ao}>_d_=;T#}Z;Qf;1Q>w4SIVAA<6 zLl6SpXEf51V*Bjq%d$nX3=No7{;(_*9}gL=B&v!)Uj7KrT&(`}eVaMjAE>Y5#rFcKAU1r;0ersQr~N5ddk_pr?^&>~|o#62UMg(CIQH#hUT z-Zm$;fN6^s)g>R8WLHhz;<2U}5RVJ}7ubIH8>yt!Zrt!00$IcLZ+ntH7c2M=(W16` zQ=vBM#5h6nP>QbAc(g&lKPEa=DTxpmCYvMd5Zmm;#zeS8F!p^MJ+sLKwkZpi%?OP#ahU45^L{ z>)P;IY$~>|^hk|J1uMk45o`oT>`bqMN}YFg&~|B80$Y--HC8=-)?1_gD<7N&Lp!kHZK0_G$0>^zh)!STZFg09Lf;}Zw)dnr*iF6_}eKa^z8eKQ(Hdr zq}r0=YM{o}4J8m>*S`eV5~TX3MA5pMssY|YEpg`s`g`6Piw3jgQgcn~@y6+f&f zjyjSY-i?U;OFs355XP~7iH)W?Pw=YGkw9WMpcF&Cb)9U!1N-VI!i zfpf%wdJ(=wn`KzUMDkj4WC(r?azF3LJNHOG_Xz%C6(P)ryuHbS=H;Hd&g}LUAszrC* zO7dlskahskOL4{~V4J8J42pO{F68Rv2p!~8g%x~YO+ZcQU0h&uKzVzb`7g;I#=DFG z?a-q=e=1Pcb1=~@_>VPxWDl+Pz+iOkidEE3xk`r(0#bHrOmbdM39RD3=bgz+Ktkt+ zjqqHbK)U;OV7xpr<9wd$I^2peMnDbOGls1K9zqx+toi$U^k*SNoqn!4fN>v`awedQ zhZYih;z)|LIEDkO5C5=77cH%0?5H#D2>Cni$T(R98TO$Un^rys`8MdP#k(|N+lyVi z2=VdJBFKj8CBvJNy4|jii$KFaR~bVGa+(>_Ky79U0OtdswB|jj z&n;2}k2!{zd`OZuy#&62xO4FjTZ9k21k2oaaI;uZHFVGGlns`YH7E~buYj;*U85Id`QZ-Cn%0%rG$=h z7B8(-BVmyS?D7zc<{XdZJ zM*!*|RYIHn0%jEAqlrYsbOTf|pek$BbDs4hC=wLgy%>2CqNdDErhZ7Gb0Dy46Zovl zurSZ^$1!+^ITo{rr1*yH*dxU%14)J2#6mpBvNf|0Y^;5^B0yphWT?cmc1Vg4!Hdd|$QHIw zKq=UWM#hpgUoKvrh&;L&R|A*vW0mFVpVJhwP2M3WPy)16ClHE(-pHYh#z03Tmq68D z$o~=mqAfoHD6lp%R<&9!)jgu8gQDQ2 zxxh76XV>Km1IKV-;9eLX3FHWo??C`Z`PEk*T zcpL5o64OpCyDoQdrM6yfXT-xwlS5-^6ix@PrdYvkk}DB%R+TGs>voo9luLETY`S(P-ff=>EyFFPqt;;pcN@s>Ouaj%GbThD@7DHP!Y?MpQvfS?F#4`r#mf`ZjfZqf z$_q)$*~(__#65)(4)*e3T&C}0Osk_y5Y9VJ-L#IYK`)AJ_SmB3JS!*GqLcAK&-WlaUrquXY&LK zE#_wLib%&ni^;~}WPQbwTJn&a0+*<3fkYcXNeEK&rB-n<6S%MF{BXG}x#b8a(F6cb z=j4034Hg1t9{u|stxvSKpI-aJm$CqIL-v4lQHVIV*?0H4J`)FUBu$nFE{RjWPDo5? zuK$G(2!(z+Y(rV^oyVfb2i+cHuysYsHq7m4+ui;)p>u528tEm^GOBeX?41z|FV{%w zT7=&Mzf0r8+L-K$Z1GqsJV9#%yxTB1dZ}iOG)tYU8SkOwO^zNomSLkr>=KN+AU8Pr z#_-++**(f7DrzS!+lItgb@=$7kCL+NUYJ_)-#C0&JYy4pjed*&cEKBS1Tidm3wDMz zR!%F#PO5;MSF9`T5&EZE&cXRpGHaxD?a&1{@9!~u>Vf*5_rJG&kjS1xz*naXd|pEW0>dljOQf*98ol_Y&QB;@6u_v{Yk zjKAapdE-DJ(YIR6pk6^F)XL(}B z@>GbKFFA9{1BhB46lUhJepz_bMEjaNaJhpy$LI{o!)u&R_+h(1To`eaB=IuKh#7~z zO}x(>CX92X%sdLF^xs0h?U;7mE&*!<`r##2Pb(y_>^Des15I`V>3~%RE+`;awO-|-lLRK1YknXho8qiT!K^*6= zTI2Uc(;?3-z*Z%Ax4r8i&WXC;b%TS3WgB|=tc`)6QR&P2eW2ABw-3*qk4$mD@%Mbn zvH^hSG>lA$$I0%y62Hps1KA8Ti1;q(y8@e^MDoeEPap1(49gPPV-QgDlCP%$yM2ZC zM#x3U&n4ngFZYQAyYq?QG|TL!nN#$skHi-@kMN`O_pt7R9l z&9jjN@7?AIu#`Tr2;SPvlx&2bs)JAkg5_jCeg2DLg7#D4TkKop@m}>?ansk5b}#pN zCU50Z}*0ldC4WRd41^SfoG7U^MJMdgZDpjF4`02wtqXy8Q#$~azU{4Y$!?;kv?_t*C zZvhwSemm&T@y1`)7o`C^hSPBJS(5lkL-9CF0Z8t-Nc?Xe#g zo(8Mr_dI35d<3CQr0)J0`cZjn>!J>zSI^Uw`s;`ElZTTfz+K5_mRAg?rT$zL30!Qn zv4BH!dS2!8#O$96kLrqg**)?8LZcvS@TiGZ62$P7V-jL`#`XdJ(&@V)wVXxP2WadHcp2 zOQkIvMQSqsBhdN_{P6<;)zFjpU$&pN^$@s3?g!)j-dO5gCBiH%Uqz&-BtQJ|@=~`( z*tZ)K$YF9`F0gf%DkNm}sjt!4o5_xjcGb~Q8|k1tx7r0c;Zl94n>|LvHoC>wpnzNN zz;`Wyr);F>0vsa`9uBL;ZUU<;5qGAFX1>3Zi5$FJ38+`Gb-lb>UpN!Hx^rVXxAAtD z-i_(JM#-+zJ6=C$zOCYJv=}V}u7=)_{V@}>+I>Sdukmiz;GK_mG?esiHp&-f7&p@t zS{O8o6j~THvlUtx&Si}qB)PoUo=S32+kTwnqPtz6be3C7S2%Cj%vU&X+^k%vXwXbu zsC;){+d&G@@iUyu7+Xq8F*1+5vvKZlso%aSI_3X}LsMo-|9?c>zA5K>+W{i2{OH3dKF4l+N`>?hiTHO-geQ@jh-`5c-+_b^54q}qj?6uJ>Kg*pF| zerkKLsQFSviuaH8EPJq>`BGX6;Qezw%K^+`zVt1{J8#|69&Bp9l$_#SxNhkHmNj3B zN%78KU$h6`yvI_o9#pFom*UNFB=C<~OZuvc)>J@DHo?$%jc;O1;!&Zn5$|FuGAV#r zn-6NKLqDofJWTI}f@uQ${$C&a>)Zxye85k|FFqDaaT3H4vNzqrmB zthKp!5(}l?#W$GN7S>z43R`=YZ{zauaX;R@OJhEbiF>DKofue{q7`3-{fdm})M_pm zPJbrOe)E|Wa@NDzTNQmR0VoN;%iWy4Bs1N(?HXThfjwmVP^h)xxRvn0`BK6oUOqYW zQ|^RWNb5V5ZhGw+b-`%y`m(;Gst{9UjR&(L$kK6-I0?7C!@E*_g4CYJQus8yO@u<0sy4&UZkPRwa%*Rj(|czsd%MTGi>_W)q-Dq*Fi2l&(@q<;WpsKGA-YiJ&UrHvPRed z9q-Y^o7=ICUexZ+aph$;y~l$w4oW|7Zg=`V=0}+?Lu&8%`FtpPN_vTpZyVy(tnQ=h zpEN&hj~hmY%x1q}KhUgJxa&dB-bsBj*)`q!=>z?m5K6Yic+6Re?JIBhXVtWt z3q0knp#{)S&qP?{LRyXVY0XT&JR1v4PJGqVeam5ZE&Thy!!>1$Q!>M_bA0VPUE~!J znYgDaN23)Esd0d*%jd}R(-6D4-)^lrmc*tdb2DNAMh(m<%regS?6Vj&6NG_#LF>r zRp{?mJ*&Yn2w*dleQAWH6^U*F-AT8|MMCNS1j(Apmo-zL-=Ff5as&vMvu4mjk<1(8MuUOR3f9vGSz6fiLDxGw`E-TX- zMNh5%gpjlVmjI<*uSXzZ0b zOi91i)cdZ$Yj_lYrF5{ANptL! zR@+?D<<|DWsTa%K)YIw#Z9_o8;^uk6=#OtI=RN^Igwj;^>2)I~NaI7PRo?9BEb*_h zGV0YWtX>}^v0vAY)4tTid23m{@?JS(zb>45fMWL*IM&U{e)pKfBJ65d^ReHLU(2ec z@Tg5JAkIJSMPIV|8^Av5SC4N?yuYtWnxslxi(6JZr$F7*mIzEK#z+V6?taXsLUTw6r*>uSQEpbyXcUG>Ui*8rCigtGLNUdP8w z3{|gVkDI5?St?(~dlzP~t)DsxzGYh>Li zNV9Sl{$P3wjOrZP{3NT6RtzhP&KzOvo&UmV{EnO7)UqC-xA2O(cdi$&0@MIkdVgrJ z+(lsd6Jnw>H|AZK5+nrz#_VUT^Z+d$$tWK20_d z0?I+##vzM}%|hqYbh-jG{5`;SZ zx`T16iqC#=e6qzA?Y0~NjaVPc_NJXk0`1T+CGyr6%~Z7|QJwv^cuxkfRJ($)1naKyWsdALs5DeMla&uAypL@6Wih+t`j@Qm_%=$8;=9bg_@5w(J6(~ zC-)Zv-;V-_#xL(5CDi%XC~t?z4&|uYD!gh7ovy0sPp|FtdT4Hrba8bmif985SCz#l zwS8!;HI)%AJ0AdEV0~L*4t0}4`3ebEd!E%^L^hu+gMq43gp#9HdIYms7d#Zc)sD&mmI9mvo8YbXvy4*@`G=V)ph2C<&U!g{r4683O(LL7! zHiKGQbZ$SY`u?@G&Dlk1dUGn#mdP=zIj8_|^-2D`Cli|((?0?zy9>8iIh%II`0x%K z9;ggxaP&@3L1S(-s9QCJ#=zOPLkqOUeV48}3Z6&FGg0Y5)W^CaIZVY@PMdW$cHC*@ zP>zaTemp?!eg4V!_q;B}KC6DUn;pBDu6xdyP#4=@hsrRyBbs4VWMS|{(6aEjm^NQU z$gE;mpm_)B*`N)C(J4fL<(4>Nltc$R!AJHic(e~<RKt#`scmOIZR%D$r`H`*4=5Pe;f_7kmt+szU|V-FV6yo zZ%twLf5gfSIb5shzb%M5EHOMLXbQSU1u1I`$UH;OZ^Qs+Ue4cIz05#;F5fW9&ZvOO zmMbtdmw%onQ*y$XemQgZe#O>Gi@n3GQEpU7>)h?z2Wn#=x(d$ph2{~dklGDRStiNc z!iMo5<|i{ITF36Vd|972duJl>p{(h<$sdtkx8LWqt;W7T^{p!f7;|d4`Sy~rv?yy! z=I?E=l|Z0X;y9F9-!Z1OKjp=jMu)F!-H$AC7J#eZ$ue&l-v_a_=f6kI)%t~I4;KLu zc=OAdp&zoS#G3tf`-a?r&6bJ-=km}3=TJW^-<#oM_yWsbHZir0KURN6$2F(*y^_?y zUN4U^&D|;TY`$9`t1v<=yIs1B!RSk=J7IP7O#x7hf9x=4pmczPWliI|3|d*_+SdO{ z=(a++>g%%gcrr0FA8RZReZMH#{!a7sS)7gGH4j_$KTv*Oo2RlA=KR`oh2YSte|VT_ z+46xg!F2?NdTAZ~zPD`G^T;V|O<>?c8~)i{DBBtliuK8?@0F^vk8qQwx=Zp7S@8q{8^d;y=tBGQt2L2@ zrC+fTD!NCw34GQ;k*beC0%7z(eZ!&^0#)RMPhacp!NGA!*3`Y!{2%d7Il;%4S+l8c zL{~hg8@oSEYxraj1~j|mvL;xkZGBX71cVdFhCQAu<09HEWk_hOV`6!w9yW4~0?kXE1l6&weZ_&%e)K zN8#PYqoe*oX;3(YGsFDaW{{ zi_W21RxUd8Yy#rQW3@p|k80y1++!4W=e7TmZ*4)>p}7x4o@MsE{8bcSeEKoXU*Rhz z$eiO%eQXZ|CFV&866WYd4VIp{TUr-<*3Y*8)yvdNs#ke%d}RsqQv_zQQ_&xT%rq|4 zW5>zMp?;^+In!^0s>@doxH!gWj(jrq+p2ABlzd1>O|sr}D{?U^bv_=R`od&?!tqXg zSUh22xzAx*CY}HpS_VSRJC7i;s@^Zf`Gi}%T89|teYMVR3hA~o;n!>B*G8_iLOegG zJ9=M7$#8qyj-3?Um;$+Jdri&uQ2AMLjHL>-ElvCe+vjbrplv?*kW%qMz9E`z9;X*Z z>7MC9j4SkpEME6Pvx~;k-A9hRS&i(yo_;T^R3M@WHT0Vh8Q^)G5_v+UQx|oJlXW)S zXJ9*&gUK{>JG8Pi9^2@&B}W~SFo(N1j~(PO_-vv-?0(j}2d zJC)<}q_6YWfI%r!1ejI@g@c;&dEdx6W+YfFcI-}9j>=nTD0L!5V;5!T>Bf!AIG;^w zJXlo4qlUuO#?)knL_=2z3HuFT-3SJ)IaA2SsS_{8OQT=WrRVtM>+C7+u{`$8#QO7p zR!RU;H;qYPfvcBY_+j%BM0$zN3Icv-dq;)bE@uej^JX`c#ROCFuMppuek@qIp4k)H zjBStjjZYBDAz~IJW9FrsPVGzYCTzUC19nefLHm;4eb7bN&SYPAA(HPv3y2)PEP(UZ z8%t8maxAEj=}tb{K|AGc{Er21J+@x~LQ91&m3*5%&VMMgSNaSn^G?rg@W*OyOKcJ< zJn2`3Kj`;FbC3SK?-E#qRPq!%os!Q)Jca`$(zp0FiEJx)_MzFZ_axhmFYuV@-`73{ zg)y(3lDDpIyw+7}mntMJZc6czX_R-e-C&{b9U`d3Pdd)CE5r_D;rEsVl6U#i!jOC~ ztMPRPZT`-j&TuiEpvUGKMBLJhEV>|$8=&s4F5ne$Vw-S6XC3T9#!3ReJV z>e9ic?W^HuOGTkC(T(k_+KBU0x4ItW>U&?72})F_OB>2dYc1k^&AiX1Yc}+KlbVaH zT+DQ5s5wWW=4bd6eBu{m;rJrw1Wm0RL&V48Ey*jd9T+%-9h+;%t0&^E>qYf^a%()&NK*pP7hCouJbP(z^`JO1;Twv zRY_p6UN4wrfQ0}OO#-`(m&S*8vg*4wVUIpk4lST!*Tm%{0bNXMKH$z+y7-N!a$c8!dEL%hv|i?%vu#VQm?*MU8)CHQ@UWn{ck* zRQcYJXR6ul7TV&Jj^CT)T-a@ViwYie!bLYT9Zdg6~l+HQv=ls{v(c!en5pHRI?_a^T7Uc2MewRPbh2d)-6+Zc<{qZ^3 zfy>C!pJ+`Q#;46UA>P9o&svrn!S5x3vz~Lv^x+nRGN~IMa-eY5 z@)z6sK-}CP&AF8G==*E0Rf<+gP?P5!ZkUYtm-Muk?Xh?}&0~D!{Kc!$@UX`;9!Xq@ z6SfnV5#FD&Uky(8vG)HG>o`x6ja#@il}ALz$mQfkCmZ>@D1Hb3fnYAT3Y?e-59|Kk zOe`n7T>J%)4r+d?=`Jf(S9~G*+VQ!OTo&p|1ysm(Uk2Vx@IdDqI7DOpqSncKz7w@7 zODtVhZ(QZ+Fo^JPQv3Ud?Vo$1lJsKcIdI9GU5VCcu)iF9z1nw9 ztG#*ZZdM2&c>XcVAJ2*4`{o5h0 zRy8jIQpokWKkqN}E+)O@2jl+>90BA0&QDKLP&4nRNWN-$Vs-Ntg7*BsY=7b!@Av_D zU6W2YJbPUX&llX~)GPXiYII=Fpt!n$bp>=i6}q0Fyq=)kSy1kb%YWT1NRiJ*Ie-Kbas-fOL)u3KLsRrkNs=--JfW^XR z3i=22i7$BMKtCc9hdeT<52Z^+$ApCj()u-wcO9;#7`~VIM*#jG`HC0njS2w(^N2?6 diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_lags.rds b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_lags.rds index 34418f81a53da82aa2544e3b14fb200afbf4f9d4..cbf805d66e3d50694672bdcd7c3e545d8c4a4f43 100644 GIT binary patch literal 2565 zcmV+g3i|aQiwFP!000001MM4aY#dkd-QM}`{E2HvA!!@xeD#B*Cbmd+q>?rlXH}$k*HKv0u>rsNCgt0{Gz|wNG%dl&qz>JKv7WO2Y+aP z^&iwikhHXld2e@S_wBnq+i`Gf(5*C{do%Oq&Agd6`|+NK8VDg#5{pDgw2u8Gbpyxu zJ-CC>+8u_A;|!Vszr^6>5RCi?fC3N&XyN>Hf62K-Z2b6Ft2ws6H1jUU`RB&J%CU9% zpPR7X%!YS{*S^#{In(;RtBoJMd|{^TcUNBDd3MbV`QbCWcD$IIsc+mo+H2;@*S}c) zWqK$HvY&)nSHzhwh6In6=?6(BZbHCyYnwXqxxP{vKB zQBrV6r*7EPG_+i&MRVgO9cRSV05<`a-+Mlc!ZS1m_)ZuW?QCL_v`E<>BSRs&(XcG! z7fc$@-XyrdC^)Uezoa(zGcqUn5}8ILN+z9vLD7h)@LM$QA}ER8 zY9d!8%REWuCP_!A^><>lv|`aLXqic9f1zm7te&y;f}x(FW&x+)P+0)RbVK7D3(LcV zS(qwfQ883Y%NKLh@(E*_otg9qF^keH{BC`U(xTHrWofOR>c>vHr52~{NpHC~7N+dt zl&xC&8C>--d%8%&i$jBBk($#caL~A|=XGNOEv6-wM9^pk)j4g9=B(yD*5CZE|~IJ_QOEyg+2$M-!97z{Fa0`LffVW1xcnMc9y-7wx^pdA+A5R7pE`f+~0 zFjgP@?gtoxaX5Sv#ybFVCqPFZ(2s*{1Kq0Jj7>l z?v4oaa0qyP!nhiPCmDTV z@xqeeg#~X5a5v%fB&W-_0k3Qyr}?5wS9r0ylwNmqJP*Q?U3crp6yp${Tn2|H-Y?Gcl^{RU`HFs0o~KzA@!5T zL4K>MvQhSv&UbXp?^8+!`alRzKJpE{|oHs~cFZqjYj4#?FWAsms*E-2AY@`3J z(tOI}qFpkU?Uwz;ad3W-{}pMS;rc^;jgtQu2jnYKoDidbIL~pw=;u0VeA%we(l{7b zl*e&UPL3na_a+IWALu8>NtVNPjry=|Y?buDxFI$15?N$Tr<^R)#_5MF4gMN3aLw2Hwf0JT3rf` zTdPaK`K#5XV7}JsQgFVP=_OTqCtS)4rQ*HOULekfVcw-j=DLzpRldKTiz47 zDZRlem7W7#dR_PEIKzS0_y6up-CQ9v74QsqU8Oy&klmfQp;9A@+d+v^U~8kkEb3p8&pZl38;VV>nFyX`qg1@XYPQ^MJ4_cnE!$F+=IFx4DA z#bx{)Pe5AntzXE9A6&u0dd!8a-pLZ3t^ajZdW~9j&q?K|DOd7$Cv!VecM~bRm#mr%TR6-xEZWx z#ob2lctUVLv~q_uas(AvlUgxHr`6L`pP0n$Sa~bD&e=VdR?p{XgZC9RZWT9k7tFE1=WM=?piFw7sW~q}=B-JgU!@~mBzP0& zidx{eSbU-atr}hIFBcy)N)hBm17pN5m`mwj7viLMzX%>wSPe}zG>urw zZrfZhymh?%mEafxk&mLOs(~!|Ec+NPpE6*)=2=zFrU&tI`r4X{ssa|!Y@(~Jm`l>yKDL{`%eIt<7%I?l*FK_|GQiZ8o zu3O?~_ad`=E_nA9j7*GF)^j)+x~K*%=-9X^X0)eUaV{faiu-R?6W_5W5CCc?zr#3-Gi0wAYOU%b1SdR zMRiiMyVNeJ-5qFmOZ;w$-y`vR7=Oilm{?v9SIt#_&PH9<_Rqw( zu!eY2zOq{kr>v;)>9VQmow?_ei1nv1c9Ldn?_|7t{GIqu`f)EKA(OlngBdUJt9(vg zE1aQMyS6`!1%DZJG@t>UVgCGAV b3jdRMXuj8RO(sSOOZa~P<(BekXg2@=k!L4W literal 2543 zcmVPP*E zV_8YxSM!e2#x5(7zq0-*}DLC`jZ3%4Kr zY4Vl7HbT+HNgY_-y_>n)TOLhWE)%uj0i)s0%+Ait&dxn{HQGW536n@DM8Zw%Cutf! zzVH4WjMil{92{lP2KWUAF9u-bhX53SFhD!!r-n-QC1U+2zgokw_2v0@InF;l^>vQT zOaI)2{pL5kGq(1H#Ke5Z53jU-{9)~`YjA8+;c z>-Ko#-(_}26x;6zY34!HwLCT1j}AL14zZP%ia9N-tJzEmNU@oMkv&t;p&8K&Iz`q< zR?qbA>+?7J{mlVs+-9S2x);ah6QZ1Fe-;-P|1BGs&S@qZr~t7gqgh(7rA_9jk1}O2 zjgo>pdb7Gk4PDFinlv|M&?!b-18@VN{@(Lp6rQ0Gz}+w`+PR8J(jsMl^fZOp4F_c* zzaVHld*k2&mk*_$O%b^4c5;DKYqvmu`M0Ad?#hWa#-|DfO>3qVAXiNv{$`+Xn^%$Q zE3?Xq^v!2Dlg)$s3UL;)B8kMA2I z_*N6SGFf^8t?S0w(27N)prvP^{e_}IGugD2E$HeQY7{WMy2=7PnbkGUF>(1%8->{- z77blBwR|y0O^-0CS?L*<5HTsu!0(R7DJ|L^RF<~tsUhr?HPzyrHRCSl*21h+oV8Rl zdj?l^#F{J8;Kko!TcqZ+X&f|aW%F5m8ZD+JmL$+<1JyZglIG0nskaJAg4z~couZmG zYl!ZG9Ga%9mf?_AuDVQytn504)K14nV(Mz}pF!k2T2PVFrg8909$Yew@KD z@QyJUVely6aRy^RKMFDrf!(`dyu&~{EWjZc;{f#I{2^hiLHIocFbd;v_%@7p0OU@9 zjzORw2iu0h2c$m&H2ggZcnD+$17t^Fyhj1XfcHp%&tmM32yr+Byg^}Hjlp9KCIFuR z-Qxfw;KxzWbx80Ryh*#eGOpr7wvWRgCA%w^0!LkqJQW=+Kc{S zf3!oELwmMgcJyzM{N4oeYn}0v*TIfXkOR7_zenmPkAwUUX+Gq6>6F^5rSYo8PtFg- zNXK|de!2S5UO8`&zFzVd+c>{ykBrejdA`<3c3~U+?~vjtkBfH6ShidC7stW)BLAz> zI>Ysc`dTIbaUPJbNb`gk{lhp%0i&Pmr153DHcR8+yrMjggL3jbV!Ss=82vy$ah_y3 zT-T@%>&8||4~!d76EBh_)QbXFHR@8MF0GKdgmr^peQMMt|G161W|=un=cCWVao2R1o#;BgO2kad)GqZAwd91w+lzQ(VT&@ff5P->b!4KyGe?PZ)8w zP-DP{S+L~^@xJ(kNboKq?k*}4PYK{FLOU$kg7y(%JaH%3C&!n^&44&-G+yg$L@f-_ z=XN!-<+vEQQ~z1eaD2%x+(N!pT&3K6T!(TK!`OhmnL7U zU9JC8`}uRs_c@!dBPf&ZXKK!ik(<_}z^~GwKH|TLb4Bg&TP!|dfmV$!_Lqwf8l?#G zqJa_O70l)IZwheIy#20U7c#{&7il1I-CC)LVcEJ(xu>%Kk@7MlVRlAKZ^JWht+si(J%cl$&ubV6@ z1S}n^k{>QE&b_mLqWnIW|KnZd_xQ8qcscQdx36`5a(7SCrXzp<1k$0c0bhGdlxOiw zay<)yHei;c4L#h3lYf2s?ed?8hj)K3yv4@q;$LiBxbbY_?A3D@K8R^a-X48yy!@Nt z;U}(*mpDEf8|$_CAN^qz=x1!XsgWx-f8)cQod10H*nW`T2J|jlP9NEl$X`ACx2;!N zlfX{`zZ}5l`pcj{iTXLe^}%&zun*))ps)9>?_WKa`o$-gl8%2Hli*(x{0oQ?Rth28 z?CRA-Dj%V6r?1*$m;&^W)HeiKt?cf7>O2=fELE7MdfgH~yBC@Ix!~ScaAqQ;vYx|H z&Lur4%MZs9VfJLY_|S{98Npd}R;Gtn#_WFjzdgJEH?Kv4?jXQyio4mwY8AhhidROq z)#ELtzS-uBR@{AChqIbyk)~Zeqxb_4tHy?$6Ryzg_8X|?*}Dfd)C|6hbfgP8Q{^Q8 zvsiRQ&1FrLijF!h-^pY5Q-Pf$_`H#Vvq>f$u^zPsO>00f!g9GeQl>1&<@bJO5OCzs8 zSK0RCN_+H$r+)nUu!kSoanFG}M=INXyz=66E3eE&bw;!L)IO=*?`!u<{C=wb06*V3%iyH1BdLBfq zKZVJYG;O&@-JSF7#Cy_@x*3TXg)0U#UgB5zoV->z6tDJee*g=Z8$!Rp*S6IV5H$4H z(hw{lXc(xa;btFg-Fw0*EjR1lGUE7ON%+B!|5t?fNjxy$o46(eX9-LAe*k73C*v76 F005zVBESFu diff --git a/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_xreg.rds b/tests/testthat/_snaps/forecast-output/forecast_output_arima_numeric_no_xreg.rds index 16f7d0650940fe174bb8c6f761463420df2def93..670599f6e72a87e2300d83b4655bced8cbdc2157 100644 GIT binary patch literal 1957 zcmV;W2U_?aiwFP!000001MM1HY*a;b_R-zGZBsxbBnpZC+1P@HN1%)HkcY@p`jCgW z)7{zj+TFXCd+(Mld_bZf{%Is=G%+C>ze!B|&_qjOqQ)2!zm4dx9|9j5L`~P3d(WAB z@9bS#q<|*7$?4qlm@|)a=FFU#j<*v+5+oUmkwgpsBrPLHc0aj^)B0S7R|-xShZKhk z9Nvy7kskwy10(>t1wS)ftm)3W0zTErAnl(RM{A@9tkYwELf0DF`aT~P6Z2r;XPJ&15U{$k7bwkthRUoCO z%a(q+Yyg@x$_9h))Dc!P`v*eUpwdj6RX){^O^JDopW}aOwc4L*e{w}?V}Ig6Y|m4N z_B(X4$U>BY#WgAldi!<5VU|IQ{WdEWELPyeRR9YB%RX44H7@)p3FSIyMNR-0)Ga+n zi(t5fZ~*aBOPHXTr_AlHkdI~F$PoCs_|Of~2ych_>bIw-RmufB*jgxCEJtl8LavcM z{N@lBeeNWU7f*vl6S7?*ua{u>f}HZokVq>RK|ksPIkaee2^RIFuR%@J+MO$xOqz2v z?mIR+sc@5%)Mh|K({u$)lR(2{CNH{Wz!c~gaXGD$rQ%|ov6?cL*c^7EYOyJ36gv@b z@O@rU(#UD+eB(Ag<#o14;a@AbKN9w(j)GogdCk_RN>qw|`mXrBM;f?uW}~87%Etws z%#2<+)A{Ad>CEAG&U}9LdR3OA7tKv;yVKtMrEA3Z9{@pb6?C-2Ql@4pG7E~$)}fD5 z)3nMoHx2khrp5Al&e6+;cA8mbbUH)hZa1kLRB&tzfKyhvVq(-VG@F*pBC~zMBz1Dr zl903+%foli3}dESLF0>An;phVx~-XW&a@0@9p#E+Rvd1i(-_y1&Ya2A#R9R`?U7cb zQ`l(A(M!59g*|3fzH|WT0@X!2$%=O41=)$DfZBFLD=_L*tl)4#4!dS(j^(3WAg_5L z0aWwhx?Mh{+c>07LqnrTxjsXy82ZTyi(pl3?!S@t>5_rGpE(pw=@SFSAd6w67h#!bj5UWK@evZTQ9QJY8 z&Ve6_$g>=FaM;RW8;4!M-vzv#9JX-C0KOS$+o8^0sJ9JxTc8weWjVaa;Q)t&pjXh3 za2NsJVGd&)jzW2Y!*QS=0+|<}-#eha13)_vfc?qbN7U)NyZzC`Uq>lm(zsI2*2AOPx>=?9n6yP}UMkB@?oV$a8dDsuUY@l5ccwgo) z0p&5!eF9(%#&HOA?GKC>=W`FhL9mmc?}UD3fG6aIZwztR?bWLb#IXO@1!CN|p& ziNkH;U|h!2bHq);OCCL;>R3YFofLJV((5H0oGB$#jye6FQo)j>qeecA=@YFeY~dmH=;rN z3TJEs9PeO7IPD<*m9%&(X%7tG4z`|UlYutf1=Kloy;ht1X3xa@&tjn8KRW-D*z`}# zZ-4Wvn|-&Qcx=d}BY)2X(gCNyr(Xo+`AiH6JvVUjLJJIiZ=u-->;u{)^qzL#w%`Dc zb=(bdNB?W*L zCd)}Z>)jCM`^S|@kd-uV8dR3Ve4 zH@D5Nzm++>@8b(A`)2<8`tBs*F|}#x3}^!iJ{ZCW75<>Y-=Od}XpJsf9za@oZ%4SI z*5Cl$qp4?dKPE1a+h2mTh literal 1939 zcmV;E2Wn;BEVf*#HznoqC?v2-GM#`Tohhx2~ zTOa%J%J$aXSKI&CvgL=%pDl+IqQo8h71AL3t|n8MoB??r>5J?)M>ucV)>lOa-6scUXwq1}Nq#bIcX;vGkj10zU`uxkaksjZk0ycJS6eR9Q5kxl3fV0(4)HlWrLjsplf-M;#!CGa6sPjJnb{peAZ<%@hj;&DbjU z9gDpxag|AGF`(hpv;?LmffJLSyzG>LsX)Jod&BCnWL)$!R+jn_n@1x`CYypr(TI4J z?+cQWYEE0}8*O3ZdT!*L9|`+PQ%)M%#t)G+t3H8VVFgl znFjnJ!(>@4V{1iSU0`Mrok~}^TTN;@6&wo#+>}|IH83jZsznP%o>@L&lG>SRkDyqL zW#PMRhB3pbpz_74&JAHD%~Fkdd)f!?EnwVI?0JL9iveP(W09JtQ`l(I z)(VEkXPL$52|^0 z9h1*!7Ivv)*5VEsIp8f`5&3p5|~0==~t` z0@!^3+B*)k;{iAZZ5)Amf#tF_D%qt0^VpupMzu97Z`_Qz#9m(Dln5mTDd#rFJGr;ycp||wmpq#j zGQLlxVE)C02PU%#z~NTK;S=KT`!Q0P{Kh3*fjTjnF8nMA#LY^TbGO82>Vs+}^j7F? z;C@=Jyxobo?r|lh7VwThE~~7Fzt>?!q%axMvcbg3yATTJYL(ertPd4f)0C$}^XeI< zO-*B}D5uGFPG&3l%>%T-J5?sFqG|IiJABrZEppe4m_zSkEO5^giOclx9EVQH3h~yW zcS;t#1PQH%$Ww8wi}*_^0Tr7Am1D%eq>cw@F-ZpN#YlL`BqB;B0ROUHWB`#aCpH19 zM*2s^97V33-_~L6tev_3)wiZ+SqZXzB441Zs(*zUoL}LL4S?gNsR*Y{#J@upj~k7F z4yTKI?FzNot<7$2cK>&?8yc;8FN=al5zAm1PtQ1h;Hyw-$bCuzbaU81 zwZKot%v7^@Qf|u>^Oh<|;S)`AOwDT+N+ri#ER;ZcDV*a2c*sqI^WZzO^tPyY@7@EY zuYXT`+m!Bq{2BW8!R_gR-fN>RQ@>Wo4O%DX^0jGXxOowh8+Rx=gv(K#DG{v?lWeRs6iI;MY%MDnaSyaO=r>} zBXcn`!306$QLC%9O6iKCVu{LXvF^bxrR%P1#$!DYa9!70SZWmtEp@jR*j+DHE7?BY z`_uiWCkdK_Sk+VY^ZLF2{=5GF@Bi-f@1`7%<7}MWV&QBK>5_BQ*DaY_DbdC#6)Kc# z@}=UG%KcK=VgRw;0>ui&2Bko*C$$|NQQ^;r6?oac7i1Vb*m;M7-}98oV+OZVD-Q8GGd*f`yCcSVqCf?RDz%qbH$EmPzZ$iKuZUZTy2q9U_&Gfs68AB zi+EiphN5`g7znp8Dzamd>q}6L97AiD^ryGC_kXM{{-6*?TdY9LX%P}aNkV82iaJVb zOp?e57+n$wC&XA-2$safU~5clm5Ae@^gtO@M`ejtdHmP`P67?od8tVt7Vrx}=rEhy z@$!#_5FB}6Wq~j&6APzoK#5z2l`$?kWy4ZD3RZ@`DcBOX9%X9F)u38>8RZ$gSDdnt zdk6rh9k3mb6THud_qJlrcOM^Quu48KL%|cuR8jhcQ zP1o44V@UI33e(Fm93T5H^WAjH+@pdP%ztQ#O& zgZdk&Y6J?I`eUuikJAs(+}1#c*uuvHYeE8LeSWL_dx*<0M@R)Dn(|v^+)Wzx-;no8 z{RZND;D$fEf4n1EI{Nm5@7F9y&c5yE+ison_vCEx!7Wdnd_6fe|DDCl!aqqCx1PLz z&ctcRPZ}PJR!%H%C1?Nsq6;d@cPC4(o&S%Q=YE)+^2V;I{KmVI=XOT^Ipg&Ql0~bJ z?r=OiDkWd#Co?Bke{|*kACtm8U#!@-^AIVVV5xrY(?i7axjQj^Pm(x7XK#9H?cb<9 zAfNKjcx3;KovxFF6A#Afo?A+6j~;tw<10N?2fir(WOrwj+7I?n`N%)>!XHi8cJzEQ z>ffttwpY$47ICljwdUQ_U$CFr1M(^V%thav7sVF1E?g^$ zQKbPdtquJ8T5J@E^U=;k8(qM2BkhT3dqSF;8|XTo=#1huv)tz>7V$x04Jvge0-->7 z4O%RANSPRrd=MQJn#CaU8|3#qBx%Ivg!xucNVLba?gAg07UmPN6q*nGyt=}GXvtm0 zc)Ljfv*5#GT zN~u&!r3U26^g5~3L!D15jZ(P^;3}zH19T7YtN^<&0e#g#tJah&K*w@uC)d|%ba~;r z7D^N7k;|2!Z#nQ?4KlnyuLIla!3U%_01dC30M-JJ*MPSX^j!tz8mMb9@L3zX8ciIo zfI6>6ue=0bE0xs%uLjwxpfrLX9*}i~#$Sx*QYbahPcr>7u!}&Q%rB3PDyb|{+odfP zu)R!MDsW#&_i@VhS{gVp2fBVRJP(K^!72{Qi z^s|9JS>3^qNdTup`&oda{22ht7&^8`Sjx!7cBPDc#f)5}j{}JQqP|+Pw5Q@Xs{Bce-&25pysE$IYp~-C-~&39U(B>)^_QyP5R)$lA^N zi+V7=Sbsh<&v5>syj;eA><6s3GW~=Q{lhpr0ivJhF#1`$rZRf4Uy&d6ARpV081E?z zL_g3^>?f8F=QYa1yfKH719}Z|;#O{eIgxqD^1XN-g14A~VDLuZZ{+m+b*K;Z10Tj4ugl;U z#s%rfhp>Uu`-89n+p~HBHlQ3%Pp9!iJJ2rlzbgZOm!6NMqn(ITKS&0cK`!lA^rK4; z(f@j;eSiH-ajfrRAn?)om(;hT{lxg&1oTFrH*tC#`+@c!(L)-4jZwK4I?D+I1 z^$^?Rd_sPl*BCDkr*DVyy#QCLd>rN{lxOBC6`FYp{Nwcgn0bn6hx!mgeJ#i_^OTX>obNd6-q^4bZn zJ*6A39M%jwUTbgobCvLOF0Kg zU&zmI75s@vj1P+IWgh+OaQI4{_LP+aMwcC~og6)_GSIi!Y%o$4d086y26C19F#u(L zj!V4-#~!-s>zehWFPzb5W$F!mb;!QDwMZF6GoMSH;sx&v`^h0k$gM@nv`D!|oIO2Q zI+6B)iqs$#8ugTxi#@q&W%yXrwewct>yrNTRXBC;k#*Av`O@|Hw}lWU*{*D9yU>eEWa@nM zkPuKC;{_h`JXM%s^YhgZY<{w#MM0oNdlm~<4BZj0Eaog3dju@~w3(#_#mC!(Xi)6r zuNMPr+VE%_d#ul)oWx^>{D`%X!xzY%@klHows88_%2|6;hi)pdmo>+L4S$)($KbT@ zkMH}^K9ijO=>5sbOiw#(AZHxd3@W=O+>yArK6f;_k&YwB;^tD@BO3_HgKOM=Xs@-a zhxQuVWlG^TPQM|+GLUxtIfI)S=IHAU#{@{>6CaK&%}wxNRLcEFjt0p!4ns|>rL>8_*PJB0Q`)vBO zS;Y7BlQ+*OT10#+DyJ`>*mz0_A}h+b2?;mvX7Dl{UdGgyG4$^@Z-zVAoTwm&Dp7v8wkt+|uVSe$V<67!9GG;eyhB7&H>f`jcSH zppj7CpM<{tmrWOm^+K>cwaVa^c>&LpzY~~xJHl|hJ7h^Q>?KU${|EPdkm1l-003-l BDjxs< literal 3563 zcmV(`}y7rCI}j>Q>{+b(Tbwth)Q*+{m?R6TWg-5`a!^2>lDgVVbD?ADbUs*)k(T{ z_ndvZ_w7r9CLzx3o4GlA&OP`1?!D*U-R#}wT#n;xoZVvKY!2y?b2QX1omVB%#>o{5 zq%{RnaZ2SrscbfYSZ{%1g<^wJNb5;mXJ<_K^C1~tviErkLkGHUlkvM=aZz|}{=$nX zjKA~Fa%`76eg4jMM;9IK`J%YvgPjxpnkwk%m~z9LWj%k2zIb&0*kubYCARz^imJbGOzs-ZEoc1wTy`uhII+7bu}3ADuu#N1XPDU>FKmXN5U zw8bTfjDWGF!AMe!M}$ymLJYOV#WsmJ0ZK2FA$62Ww9@fo2Ur3cROh88!FVtrgrLK0 zwBzZIg%BJ%u-qWb%EZD+4Jh^KuyV#FCp9e1BV*<0n~W{>=uxJ&LJ6v+k5Qh*d)X-q zxr=b{lkw`~TsAxxoMf*RIc}9t8%1|pG%f~&MACo{WmvMvmWq`IHlNErv$M=--Qcpd z2E))tlRpp;6TUz!y#uK#E?_Ck3vh7S{R6iV?rRwOM^QhUdzpsWvJ!&vu=QB z4N^QT(tBKev`zkT`T>~N7VH#T`9yGSSWsD?+d_X2a#`j8sboZ}{8oy4NaMci^IvY* zK>YV#|A+UEb*9S3-g@A@+J&h(xBPtT59aR3c=^5`lcL?9uiU%iASs$;sd@I3gT(TgCplwxia5e&ZhCUv-&A`* zzRExI;e9iAxK0pGJP@ycb{Vlfa`fqqFZWjO|GeVkU0pHNey~TCkNmUF|IwtaN6sZ< z{=KGlTh#($5%*YMZP}&z3-+t_fP9sI*5a>Mz3XToMb%}umwc6j@j-vlezXVWBR`q7 z@!-DW&reqdx2um!Pi~h|DBVrz+GIRp<90-q^)geu1XG$2i^ZctpdIirvAEb83?zfm z2){v$M=?i5cqvP@1S0~iN#KIMHXiN3H6tg&Cxmb;Bqq{?79kmER|)onD7M0N(K=C# z$qjfZ_w(!Puu(9<$GVd3>H?h??MTKtlG4=Npsv%&t{7f3%XzMB5g!uPqEcrv7!F3( zqQzpTlxYDe0MQ|#MGPUoLH^E1l16N9gl`jtWJg@je1?0^Dw_faY)1?;OdQ4^@s(^PG)Q!0zom1-~YLNE}3`ZF|o z)(as%EOctC$ET|kNgX$&>B~rOiDg^NPKwAWDRzSOjP>&pRZ^*uN-fBx^m?f@K%HMI zO;Wi6;A*K{1#~a)tOUC+0(~_=tI?FpK*tJbN9*e}x_oe52c;SG&~iEGTLFAmf(#$f z>%q1L@B!(KK*Q^1fOWv*GvI9keOExa3hEjSeAdRURuhNIpw6e!OV`w^rLqR#l^}aH zlqT@Q3$iZL_>1ve2BjAIiPA3ty9m@#emXX)rLt6Mmy!EnKbVpGaU-X0yyX3`GFIt& zzJ;8ntnZ|RlYeAZh5REk0G|u>^Y+l+UUD|n&jEVnLKzp%%E~6LyL;ulU^bgyk9V{Q(Q~4W3 z{uIXVbAW%MqQCkpu;Vn~1G*}|glWg>!TKVmKiGabjlst=`m)839Ulmhj`3prQstw) z?6^Vt*^Ix4WB;N(EJXj<{yK}X3vu+nh>0hw7wuvpYd7mJ>cRM8{khCM!}*8u@)-ZI zAF$ra^ba(rwRRD;)lTayA`+!@EU+#pnHh|R{~xO&`0#` z5yy5ukh2oyF>-4dKGctT{6w#>mT8A_5%;DPSP$*$0IvhSI+V-sH$Z&@)2<%)8USx( z@Fw7I;`IFWs1Nl6AI2NwiTdOntpb|S9&L9)Osa@BrCKf3i0{cm8}57f^pj`iIP1U_~C zrS$F8eq#J>26_|Fn>js>{h;4gjC{e+Qv$CoO#s&934bMhIS zutK-7FG~#K*o~dGF*;o{k}oam-q^4bU$@dj@E;D94*xmDdX;Xxa#*wMc&(W|33TRF z8kLSCM)zvX=;-<0?|9GaBIz_fkz()~x--IykydpO9+Xy>p z)hcsEI>KT+7#K$M)Qn9v%r4DXGAO6aIGth}iqoA5aLET3)tB}Q+Jrzd8s|geddj1J z9S&cq(;ka*!058WwUbkipA7abHXDpoS)N-X-$1ThKMo+}=eYD+aO^3m{;pX+`okH0 zR;J$2R|oagqeaRgngv|?*e!Tx*iQ}`A&(X**CG`farVq$=|tKGD^i10YUB^5lO5kk zhXy&1QD`s80zjZwety)UF(9yU>SAWcon!unL^PfhTRHt}<*dEwLpN2}%bHWohQI9NV`$nB#P?lkpH0p{^nv7Lr)L~C zpcw}?gYvEkcO)*Z-yMx^q~pl3c)0ZT$OeM);TpFe+H39Vp}od-*;2TT({D(y45r;c z&fsQ-Im+oqoE8^pzzABkiE>Ve;soKg0dB;*{RY4|;~#!BTUEnKNvtXV{28uN#FA zuLd&*9a(zRoP(ou4jMiZQolZwh=~F9lSRtck|G^p6x@s#_&p|9o$?VUK#TSM@L?eq z6XSd2bWy%QW^2?=K|H|-^s!ZIsUWX z*nfChBk^5(Wb2OIyCk`XJ!QY$Onf`bp3HfE0r8L7cjx%q9%o^uJ+o&N9|&JSe6wDw znz#2o;$8k>uV?32;=AE@|Jw4|A>#dM*Y=HDmJ)Bzp}cL^EJB!R&-$M|u>KOz1FS68RpcM|``O&{zne3SUMd_8^lU%o(?A;NYvMclAX&8P81dh@_0t*CXA}QZPuw)Kcro#>teUZ6 za??pA2zQKc7m^;{!{FsQyqu{oXX-1M`U{$N3>pa)14-!bf7$9Hv0eyu lq*odIlrG@;^uvGYw<8S4yMs!KV=rL}|34Q0I?aJu000SfB? + Message Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain(). Consistency checks between model and data is therefore disabled. - Error - You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain(). + Condition + Error in `get_predict_model()`: + ! You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain(). See ?shapr::explain or the vignette for more information on how to run shapr with custom models. # erroneous input: `x_train/x_explain` @@ -23,8 +24,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `y` has 2 columns (Temp,Wind). + Condition + Error in `get_data_forecast()`: + ! `y` has 2 columns (Temp,Wind). `explain_y_lags` has length 1. These two should match. @@ -36,8 +38,9 @@ train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `xreg` has 2 columns (Temp,Wind). + Condition + Error in `get_data_forecast()`: + ! `xreg` has 2 columns (Temp,Wind). `explain_xreg_lags` has length 1. These two should match. @@ -50,8 +53,9 @@ train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `xreg` misses column names. + Condition + Error in `get_data_forecast()`: + ! `xreg` misses column names. # erroneous input: `model` @@ -59,8 +63,9 @@ explain_forecast(y = data[1:150, "Temp"], xreg = data[, "Wind"], train_idx = 2: 148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - argument "model" is missing, with no default + Condition + Error in `explain_forecast()`: + ! argument "model" is missing, with no default # erroneous input: `prediction_zero` @@ -70,8 +75,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_wrong_length, n_batches = 1) - Error - `prediction_zero` (77.8823529411765, 77.8823529411765) must be numeric and match the output size of the model (3). + Condition + Error in `get_parameters()`: + ! `prediction_zero` (77.8823529411765, 77.8823529411765) must be numeric and match the output size of the model (3). # erroneous input: `n_combinations` @@ -85,12 +91,13 @@ explain_xreg_lags = explain_xreg_lags, horizon = horizon, approach = "independence", prediction_zero = p0_ar, n_batches = 1, n_combinations = n_combinations, group_lags = FALSE) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. - Error - `n_combinations` (6) has to be greater than the number of components to decompose the forecast onto: + Condition + Error in `check_n_combinations()`: + ! `n_combinations` (6) has to be greater than the number of components to decompose the forecast onto: `horizon` (3) + `explain_y_lags` (2) + sum(`explain_xreg_lags`) (2). --- @@ -105,12 +112,13 @@ explain_xreg_lags = explain_xreg_lags, horizon = horizon, approach = "independence", prediction_zero = p0_ar, n_batches = 1, n_combinations = n_combinations, group_lags = TRUE) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. - Error - `n_combinations` (2) has to be greater than the number of components to decompose the forecast onto: + Condition + Error in `check_n_combinations()`: + ! `n_combinations` (2) has to be greater than the number of components to decompose the forecast onto: ncol(`xreg`) (1) + 1 # erroneous input: `train_idx` @@ -121,8 +129,9 @@ "Wind"], train_idx = train_idx_too_short, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `train_idx` must be a vector of positive finite integers and length > 1. + Condition + Error in `get_parameters()`: + ! `train_idx` must be a vector of positive finite integers and length > 1. --- @@ -132,8 +141,9 @@ "Wind"], train_idx = train_idx_not_integer, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `train_idx` must be a vector of positive finite integers and length > 1. + Condition + Error in `get_parameters()`: + ! `train_idx` must be a vector of positive finite integers and length > 1. --- @@ -143,8 +153,9 @@ "Wind"], train_idx = train_idx_out_of_range, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data. + Condition + Error in `get_data_forecast()`: + ! The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data. The lagged data begins at index 2 and ends at index 150. # erroneous input: `explain_idx` @@ -155,8 +166,9 @@ "Wind"], train_idx = 2:148, explain_idx = explain_idx_not_integer, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_idx` must be a vector of positive finite integers. + Condition + Error in `get_parameters()`: + ! `explain_idx` must be a vector of positive finite integers. --- @@ -166,8 +178,9 @@ "Wind"], train_idx = 2:148, explain_idx = explain_idx_out_of_range, explain_y_lags = 2, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data. + Condition + Error in `get_data_forecast()`: + ! The train (`train_idx`) and explain (`explain_idx`) indices must fit in the lagged data. The lagged data begins at index 2 and ends at index 150. # erroneous input: `explain_y_lags` @@ -178,8 +191,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_negative, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_y_lags` must be a vector of positive finite integers. + Condition + Error in `get_parameters()`: + ! `explain_y_lags` must be a vector of positive finite integers. --- @@ -189,8 +203,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_not_integer, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_y_lags` must be a vector of positive finite integers. + Condition + Error in `get_parameters()`: + ! `explain_y_lags` must be a vector of positive finite integers. --- @@ -200,8 +215,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = explain_y_lags_more_than_one, explain_xreg_lags = 2, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `y` has 1 columns (Temp). + Condition + Error in `get_data_forecast()`: + ! `y` has 1 columns (Temp). `explain_y_lags` has length 2. These two should match. @@ -212,8 +228,9 @@ explain_forecast(model = model_arima_temp_noxreg, y = data[1:150, "Temp"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 0, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_y_lags=0` is not allowed for models without exogeneous variables + Condition + Error in `get_data_forecast()`: + ! `explain_y_lags=0` is not allowed for models without exogeneous variables # erroneous input: `explain_x_lags` @@ -223,8 +240,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = explain_xreg_lags_negative, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_xreg_lags` must be a vector of positive finite integers. + Condition + Error in `get_parameters()`: + ! `explain_xreg_lags` must be a vector of positive finite integers. --- @@ -234,8 +252,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = explain_xreg_lags_not_integer, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `explain_xreg_lags` must be a vector of positive finite integers. + Condition + Error in `get_parameters()`: + ! `explain_xreg_lags` must be a vector of positive finite integers. --- @@ -245,8 +264,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = explain_x_lags_wrong_length, horizon = 3, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `xreg` has 1 columns (Wind). + Condition + Error in `get_data_forecast()`: + ! `xreg` has 1 columns (Wind). `explain_xreg_lags` has length 2. These two should match. @@ -258,8 +278,9 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = horizon_negative, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `horizon` must be a vector (or scalar) of positive integers. + Condition + Error in `get_parameters()`: + ! `horizon` must be a vector (or scalar) of positive integers. --- @@ -269,6 +290,7 @@ "Wind"], train_idx = 2:148, explain_idx = 149:150, explain_y_lags = 2, explain_xreg_lags = 2, horizon = horizon_not_integer, approach = "independence", prediction_zero = p0_ar, n_batches = 1) - Error - `horizon` must be a vector (or scalar) of positive integers. + Condition + Error in `get_parameters()`: + ! `horizon` must be a vector (or scalar) of positive integers. diff --git a/tests/testthat/_snaps/output.md b/tests/testthat/_snaps/output.md index 02bf05f21..303f9a777 100644 --- a/tests/testthat/_snaps/output.md +++ b/tests/testthat/_snaps/output.md @@ -32,10 +32,11 @@ Code (out <- code) - Warning + Condition + Warning in `setup_approach.empirical()`: Using empirical.type = 'independence' for approach = 'empirical' is deprecated. Please use approach = 'independence' instead. - Message + Message Success with message: empirical.eta force set to 1 for empirical.type = 'independence' @@ -208,7 +209,7 @@ Code (out <- code) - Message + Message Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain(). Consistency checks between model and data is therefore disabled. @@ -222,7 +223,7 @@ Code (out <- code) - Message + Message Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain(). Consistency checks between model and data is therefore disabled. diff --git a/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_1.rds b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_1.rds index 7c41be1a553191b44477b50434a43ed77171c285..f6db5c6139b7520ab356db94a40c1300cab1e570 100644 GIT binary patch literal 3956 zcmV-)4~y_0iwFP!000001MM0KbW}z1&k-g!lMo;wbBlX)>F1aIG3`HfpVLxvXiN!BoJm$LNYI%ubfsWYYtoNYj=}`th=wXT`C;{4mJp z;D7b?^>?HWNew5~~ za*fg6pfA0a%87kyWinffv_?^4+*y%{yz>xUD@4~uu z%|oTF+~Sy%db8Cq+ac{uJ<=Gpg{;$7HbarYRLDHmm1*;BOxUEEuG88|tYVjSWfr5> z!0f3^8k^Ng`hmPgSgdUB7Hep?vkb+|Enky{CDtL=#-u4R8D^H~+%%OG>k2fI96MKy z9O^5ZUt~UI6Ynt8V)z0NES_&NvZ`>&;Oa0$V+h7D2}3D{tr)IgnE@ahi0R81%J8)h zh9G=x!MG#F+b|r#unWTvm`D0rig725Ph%X9@z-FxJBBO_qhZ253jJ@#fa|U7elp20 ztibRlhDyM%VhF)t#}I>oOw7%KkK9qLhjnDB7-BK_fzFQ@dSSSYVZY!Di9r@cQiyR1 z#x)q@D#M+@Fc(8_AwOIu=J&@q8RGyUx3V^nhg`5pavlVBb8wql$e|2DPObou`13JT zVK|22BMhM!-i3Jf!Wt!hFTmGfkQ*afC!?kD zvb->T*3M|w&iuU(aFj%zxbzxc@`JzUk&nXoH|MDGd}CL z9nj35`vLa}akbB|R4!7I&(4j|-6Z3{{9^G)$AgV0YwsoLkHyRUzh5F3Ex|q@&+;hs zUy7MtD@i_CJIkMRK7oDCSs%$-ABJHHC)CQJ7)EeHox*FI8^Y0=z>R_H$;2GA6S*`D zQ$df^x$z)RWN}^MMgl(@^hjSRphxgT41+NwaYB8`0eyCz0lwjS#0|tSO61!F3=e|- zaF8Lqahykk5e_NSx`Qmj%8K5c!w~*Lh%<$nzkd z3-RZGFWF!}2l^c-(wzvplcAqn=$H90Ml^2Z9!KtLgW zn%qo-L65YnIp_0rILLT{Oc1ompidRh9l#$I^y?3CwC9`;)#SP(#G-<}{D9{Ra>1PQ znO_b*hJj2t_{MV92K3b6W0=TCHRPZ**ouI5A{Pq%6F))#I)F_%#1#bgLqzfWiR1zy zZZ*jIf{#H$8`%uV>p9o$W|hEKuuVb}c9_a~&izKR`FkFheM<{$q3%karb(7G7|sh% z#&E*G?tqdfD3K1SzN9*5iFj<}Jw-gWn%g##^*eu*th<(ezVA5BVjCf$Iy!4*B&1Q+dmt%({x6*QB~0cD966lZ#v#hx1-7)@WpMT*Vxc5Pq+4zq}`Y zJAnTFZ}BgTgT>7WHHwUf7rvL*yFJhTllLdDxjZ(%VBI}>l}tU=KiP5r9}P>MR#cEP ze?x)z5FNOll4Jgc2mi8cW}sNFwHS5fnprwSp`N`dkiI4Hpf5HWd7eM>D?HEtj`2C) zhZUQxHeCVd`j$-Uk?`P3=4cK7ZGHX3mp;C0$2GICeB)?}S9!cl@l{1XiVv>JB3SQx zy*kOTDC9oVY`x!0&(kJyQn?uTYlT)K3ti~M`q2^6os@UUQa>4#Kr z;EfBEE;w|T`A_LZK0gU|sv;>)Mh1e9D-YFEz0}fkNkex9L|loA=>oP^EOiX14|RB+>xjWwEcSM8cJ{2)1A_1$E8zw-^Ec>enI(z zwEb`|HEqA?|1E8oeJ|KKI%x-`TfLY_<=3i)QT~^!Kd15+S9GTM+8i^Li~S;;w(mnD zhAQ!kS$-(}y?HlnKXiLJr7x|g_Jbq5=1~48ftOtDhgQy@*yns#+P>G+LCEv<#^LlifuC}j(&tV*>>?lF`<0N#!k4MusgsXWxz}fgP<&x`VN!CO z&!8nYlX;NmL7oSBJILF`^4X_!Jov+dKX&kk2Y>9$AF+KLFAwqBAznMg%d>bz_DMeN zkWU`+$wNNvET3Y3xY{LlVZ1)!VZ7|ZcxibyUPRt9V>A!*!7j{)_I8*LJj@4Pm=6`q zz8&TpFU+@CUYKttUYKtYc458^XZGzdpLv+iJj`c1%x7Mh&;6CECRwydLea9(h=gJgi6FxgOO%Q*!(B!g{agh4oI?2VUY)GHq970>DwmiNB-nu!?Var+G^5ABqA)5$D{pk|Tgf(d}XtyRnPDVEEbJy&n;p_G|hhNb~GT zq!m;I*p|69p7wf$cGG`0O+{HBh>FZI8s|Qh8`8x~1Z7>UwSIJTzCnxpBL0 zY5X1A2~MbwaQ;irg4vN}1oyihsk&^vSb3NA<{Cekc6>NhY|-UAHYMZP#W;4sJ_A#Y z*1#5|!ADR^h$WKc4MFyhCtx+;Ai%+ZI|7ab+zD_r;8?)yzh{|o0E`@QYI-s{rvQID0Rj8rSpQ?p-j)3U8@)42ddYeute)PQIvV00kOS!dW$a)1zulVAT?`pfCA!oN2&QM)L!=hj88Z@Xq8r(~M*SMEj_Glsda_%%>Z0{PQ>c zkj(FMV{ z@UNWQGajYB+V$p}BOXKOKT9U;+x#X<`S-d#9gp9}{`~mryX8@6P~RqGbPI_2xa#V1M$j=IP%@{ON;_JaN&8 z24oiYmU*Y5L5pAV-?evngFIx)RL_L3<59o2R<7!?surc0eEOE^H=@+qPLa07`%(I# zgG0J(+Jpw0Lwsd3ucC~s%(|&LgHd|Tl+UJ==c3FvyzU0BMyT)5$lSLseu)x#X2-4{ z=!yD!zf{_G;aQa0V_NyfgncMI)Nl1elix*Yi=r#_^A4Z^s_JbOo9j^GNV+mF2o2P}P-T4i3Xc1LUVkG5rN6g&c~zTSlyKjtZw8xH zDDg~IhdR_wQi7B}e{^Ee=(V=qn%)xn0SO)d8y@zwsK?H4$H{SG8TJs~gSj-SHJS$J zIP85{V=o<9s2&A2=l8q*m=J%}+fa=~=WWrFT-bD0$M?Y`L+l1%p7xL~-{$y=SNIB; zb8Z(DZ27b4-^lPQnx3{s--S93&q}q%635w^C;OzHo!gR6sGV=I-A)e=V#&(lHX4d) OX#WGStTs_*F#rIug!35y literal 3934 zcmV-k525fMiwFP!000001MM0KR8&Xu&jG{jfT$n}L=jIA@7v#;iV6zeMjb~OnTf;9 zIE)BxvTDTjU}H2vqi(#`n8X-k5_i=s(Ls&(8P90qDlu{6ZM;^E%69j!p84|`qC82m z?UVWjbyanB{ononFdvTN6r55f;}jnFlJgimC?%#drq!k$0`|lZK-ws|^M%*8 z%^3$chhf%V7S!bGaeaja$ts>?cDnZn`LFqQ`?6QgIOHQ|pWafq%~s~KqkT}nw{DcR zeY;)E{%Ky0{x(IEJNS+6P!@b``huIrGxq=b?o#jg5IOYM9T>IfjVY-VU)+4AOgYG= z@4x1AN59vsn7aFeHrXp?M=k!_(mniLzn7z9;C~)FgWtks;jiA}%`2$(Wc;tuynP^!B3{?ljytEdJ z)vV28YHC@mx@<$1&0scZChM$bAP1Nhhd~ zv07V}-a%02>2%Bw^?04mLIpJA%vMeQKqh3!(^v{^db0@#zUGNG%S4+d&oG(gnbKBh zapaudY&A@FaQje;G)8R>8`RTg$TgU9n8msRZI+EOn>6EeTH8dc*koOS#i%tfeJYd2 zW_33GfnOsmMwXj-8anJGLmo4$_QX70wnh>(XPV2QAhLuY36M^P!%&Xl8$44uL1gvt zHD2S~RSZ!WLNJWPkdI*thU=K8EAR&4_B9Lz_}UjkFut~6+yLXP7>;AuiQx{Wk+BwF z+z8`y7`Matd(hnqLmGyGkU>*m{B0O;ft0l*S%YCIhV>YV0l$YK6oVZ@6AUENN(CFa z6Ic$*$PzI`WAF!=`xxRdJi@SFu!Z;_YfM6jaRSC=7~`_QoyRa8LmMGJTrW)Tf^j^? zfkJF$wIL3fpp(Qr81!b~KD7`-8G@Kx2O$1uVJN|H3d3OxVHh@nKYL+O5xZyO>xK{; zBWgR2{!rLr@>_!B(2jz3V`w*oHp4Lo$nPL(1??u#ZY``;6bU#8Ea`jl<*_Kl6)?uLgcLPmLt{8J&$=7uw98mVn!by6R_G$`>h#XVWU$ zEhO{6>|*{%=Y!2B>yML+$NXjXx0LWjNw6>Qvp7oamtrR8DTycRXYrHf6X@rh^^vUg zJ{U%GLaj{2(2o=96kgk0Z;sXkZV+6LBI=-@@Figw19GI!4Fi6{i|Z2CAL!{IN5)D3 zIf6%E=z*apC)Ae=kZ0E^U>mMSTsI5@M79mb@FK|f1s*~h$_cf07}!PHL%;_jHyHGg zYc1HAF0v&F_%px<;%73*rGc$oMK%tB>mi_*@bkc*3I1n*E$N^?1IFzpk{toEqhOp& z7?;^FNHlNc9!KtL zgE3Xmt`GL8VB7%kqaNpc3MSVLz!w#aES0$mZ%Px!)Md}2o^Kz-0D2fu=a=p#?}@(Rv%e^?^W z73`_M8e2kT1?PU}_xzg_myJjb?0KF@o~B8ZG#D-lPsVU0!0v#OCn%8&slKE-r-^86 z=DkETwwmiy5%tHvm#Dj_WL~NYT((T!1&%G1bN}N3SW#o<$X(Q!Cg$p_hOFmm{t^LW z&O4@71i$qBDA)DeC9Z3{)j>TjG%Z% zP`UxJ9W1A$;8VlkZVWOuS)-Bhu|-o!K={4F{qm{!lR*0Wzs1k!2lJZ~Y806dZ+tJW zaC-p#2kj5q^U_#;!MdArlcb*N@9bs6?+r_yR#fc8gCSddhz?XQ$+>;ylYCh^Q;?_E zT8z3v%_N;6N6(J_rLR3a=$ncvp6Ad10?+fmp?}U7Sb1ivO_$BNzSfdjBs{p194+H- zR8)+3=gTK{Tr+bDHx8tDg~w`&Zz?)bd~ih?!Fs>Di+dV&1|}qDUm!JhPV!5e?Q0e< zJ~e9geTvu3oJDbwpNirg+QF3HJft7+-J^2tjvS%wg|*gDY%GbUc19Fhg56ZE+r3M)oqgyDv!Ax-`u-&7DT$;w z9vKM!N_nV)$|dGs=$X1RFyeaSXdctwxPGu5#is@ju&)dZ45_uVh~Rp68lIx<@F5#1 z|A7UaDc|wN!)gEBur;*3VNWaC{&r|G<@cM{nDWmqe3AAaiBr@52LU%|zwDNv=fueE zwC%a7Gv!~a>O<-OUimfUzr3_5#kZ%LDPQzA;k17r>PPq^Ykd+-`yX9TrSvcUT!-S) zC5I^eOwqekPPt_|(@)!6`RkOgY|dfI_b}ou+CJNQENwqIvY5q(wr`nt(f&h^meBT< zbyR;yg!fcRKN@t!MSocFc#3^5HmCi2P4$I1-@Q%culcB4`29ndQ~G1u7-1gHT@dIA z*J%5~>6cyj1O2`e;+V6V%AGy)D&_lNLMX+TcIEVpkM-?7|3N$t{5YF3gvfXY)n)E#n9BkPmhtAL`j5A9%zJmj+-@|hR%xeMjrFtfEC)(a2o#V)LuSYB8!DZH>=qFn63>(LJDk%#rj z!+PYM>rw4HI@vL59exC>Ln|PrfKC}z<@Jo>UKp3Z_2`|(`8`U4yaiksU zEy&%6@n-Q*Z+WPy@905d%ZWk-qja~Hp#Lxbo{)kY$U-chBo==~YuPXVc>96kizZQRW`=2&Wb^D)2 zukJiNtNqU#m#Tg>6^EK?*OcGYU9UAAhv(&gUcX(pGy#t71Six-IRB+*!R*K~g8NO6 zR9&`Sth~$Ga8(~nJHCXw``c|f<5jm&pQu&MgS&^I9&z$}=MGLr{ZsEw7@&_q1Cp;Se)&*ylvL4S z#^97YD0SJRxJfH7qBQT5V@kpoq4d6+8}-QCf)ea?ZHpd{MZHF!jVK+KiPCljHea#1 z81RJ ziR*@DHC~>N5~r?8*vc9F;KPo3|e&A3E5(+2+qsH*=_;Y{E^HlGf|$n2eq% zxoq^w(S-w1uaCT+1g%7xUs`NlpN;2 z@}*ImP}1C}V*QK*sH`t;%EHj st#P8`Y|V>(1JBNF$v4r?x7cpe!-HtDGQW+6JnGv20JJbM$rmvI04WgbYybcN diff --git a/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_2.rds b/tests/testthat/_snaps/output/output_custom_lm_numeric_independence_2.rds index 7c41be1a553191b44477b50434a43ed77171c285..f6db5c6139b7520ab356db94a40c1300cab1e570 100644 GIT binary patch literal 3956 zcmV-)4~y_0iwFP!000001MM0KbW}z1&k-g!lMo;wbBlX)>F1aIG3`HfpVLxvXiN!BoJm$LNYI%ubfsWYYtoNYj=}`th=wXT`C;{4mJp z;D7b?^>?HWNew5~~ za*fg6pfA0a%87kyWinffv_?^4+*y%{yz>xUD@4~uu z%|oTF+~Sy%db8Cq+ac{uJ<=Gpg{;$7HbarYRLDHmm1*;BOxUEEuG88|tYVjSWfr5> z!0f3^8k^Ng`hmPgSgdUB7Hep?vkb+|Enky{CDtL=#-u4R8D^H~+%%OG>k2fI96MKy z9O^5ZUt~UI6Ynt8V)z0NES_&NvZ`>&;Oa0$V+h7D2}3D{tr)IgnE@ahi0R81%J8)h zh9G=x!MG#F+b|r#unWTvm`D0rig725Ph%X9@z-FxJBBO_qhZ253jJ@#fa|U7elp20 ztibRlhDyM%VhF)t#}I>oOw7%KkK9qLhjnDB7-BK_fzFQ@dSSSYVZY!Di9r@cQiyR1 z#x)q@D#M+@Fc(8_AwOIu=J&@q8RGyUx3V^nhg`5pavlVBb8wql$e|2DPObou`13JT zVK|22BMhM!-i3Jf!Wt!hFTmGfkQ*afC!?kD zvb->T*3M|w&iuU(aFj%zxbzxc@`JzUk&nXoH|MDGd}CL z9nj35`vLa}akbB|R4!7I&(4j|-6Z3{{9^G)$AgV0YwsoLkHyRUzh5F3Ex|q@&+;hs zUy7MtD@i_CJIkMRK7oDCSs%$-ABJHHC)CQJ7)EeHox*FI8^Y0=z>R_H$;2GA6S*`D zQ$df^x$z)RWN}^MMgl(@^hjSRphxgT41+NwaYB8`0eyCz0lwjS#0|tSO61!F3=e|- zaF8Lqahykk5e_NSx`Qmj%8K5c!w~*Lh%<$nzkd z3-RZGFWF!}2l^c-(wzvplcAqn=$H90Ml^2Z9!KtLgW zn%qo-L65YnIp_0rILLT{Oc1ompidRh9l#$I^y?3CwC9`;)#SP(#G-<}{D9{Ra>1PQ znO_b*hJj2t_{MV92K3b6W0=TCHRPZ**ouI5A{Pq%6F))#I)F_%#1#bgLqzfWiR1zy zZZ*jIf{#H$8`%uV>p9o$W|hEKuuVb}c9_a~&izKR`FkFheM<{$q3%karb(7G7|sh% z#&E*G?tqdfD3K1SzN9*5iFj<}Jw-gWn%g##^*eu*th<(ezVA5BVjCf$Iy!4*B&1Q+dmt%({x6*QB~0cD966lZ#v#hx1-7)@WpMT*Vxc5Pq+4zq}`Y zJAnTFZ}BgTgT>7WHHwUf7rvL*yFJhTllLdDxjZ(%VBI}>l}tU=KiP5r9}P>MR#cEP ze?x)z5FNOll4Jgc2mi8cW}sNFwHS5fnprwSp`N`dkiI4Hpf5HWd7eM>D?HEtj`2C) zhZUQxHeCVd`j$-Uk?`P3=4cK7ZGHX3mp;C0$2GICeB)?}S9!cl@l{1XiVv>JB3SQx zy*kOTDC9oVY`x!0&(kJyQn?uTYlT)K3ti~M`q2^6os@UUQa>4#Kr z;EfBEE;w|T`A_LZK0gU|sv;>)Mh1e9D-YFEz0}fkNkex9L|loA=>oP^EOiX14|RB+>xjWwEcSM8cJ{2)1A_1$E8zw-^Ec>enI(z zwEb`|HEqA?|1E8oeJ|KKI%x-`TfLY_<=3i)QT~^!Kd15+S9GTM+8i^Li~S;;w(mnD zhAQ!kS$-(}y?HlnKXiLJr7x|g_Jbq5=1~48ftOtDhgQy@*yns#+P>G+LCEv<#^LlifuC}j(&tV*>>?lF`<0N#!k4MusgsXWxz}fgP<&x`VN!CO z&!8nYlX;NmL7oSBJILF`^4X_!Jov+dKX&kk2Y>9$AF+KLFAwqBAznMg%d>bz_DMeN zkWU`+$wNNvET3Y3xY{LlVZ1)!VZ7|ZcxibyUPRt9V>A!*!7j{)_I8*LJj@4Pm=6`q zz8&TpFU+@CUYKttUYKtYc458^XZGzdpLv+iJj`c1%x7Mh&;6CECRwydLea9(h=gJgi6FxgOO%Q*!(B!g{agh4oI?2VUY)GHq970>DwmiNB-nu!?Var+G^5ABqA)5$D{pk|Tgf(d}XtyRnPDVEEbJy&n;p_G|hhNb~GT zq!m;I*p|69p7wf$cGG`0O+{HBh>FZI8s|Qh8`8x~1Z7>UwSIJTzCnxpBL0 zY5X1A2~MbwaQ;irg4vN}1oyihsk&^vSb3NA<{Cekc6>NhY|-UAHYMZP#W;4sJ_A#Y z*1#5|!ADR^h$WKc4MFyhCtx+;Ai%+ZI|7ab+zD_r;8?)yzh{|o0E`@QYI-s{rvQID0Rj8rSpQ?p-j)3U8@)42ddYeute)PQIvV00kOS!dW$a)1zulVAT?`pfCA!oN2&QM)L!=hj88Z@Xq8r(~M*SMEj_Glsda_%%>Z0{PQ>c zkj(FMV{ z@UNWQGajYB+V$p}BOXKOKT9U;+x#X<`S-d#9gp9}{`~mryX8@6P~RqGbPI_2xa#V1M$j=IP%@{ON;_JaN&8 z24oiYmU*Y5L5pAV-?evngFIx)RL_L3<59o2R<7!?surc0eEOE^H=@+qPLa07`%(I# zgG0J(+Jpw0Lwsd3ucC~s%(|&LgHd|Tl+UJ==c3FvyzU0BMyT)5$lSLseu)x#X2-4{ z=!yD!zf{_G;aQa0V_NyfgncMI)Nl1elix*Yi=r#_^A4Z^s_JbOo9j^GNV+mF2o2P}P-T4i3Xc1LUVkG5rN6g&c~zTSlyKjtZw8xH zDDg~IhdR_wQi7B}e{^Ee=(V=qn%)xn0SO)d8y@zwsK?H4$H{SG8TJs~gSj-SHJS$J zIP85{V=o<9s2&A2=l8q*m=J%}+fa=~=WWrFT-bD0$M?Y`L+l1%p7xL~-{$y=SNIB; zb8Z(DZ27b4-^lPQnx3{s--S93&q}q%635w^C;OzHo!gR6sGV=I-A)e=V#&(lHX4d) OX#WGStTs_*F#rIug!35y literal 3934 zcmV-k525fMiwFP!000001MM0KR8&Xu&jG{jfT$n}L=jIA@7v#;iV6zeMjb~OnTf;9 zIE)BxvTDTjU}H2vqi(#`n8X-k5_i=s(Ls&(8P90qDlu{6ZM;^E%69j!p84|`qC82m z?UVWjbyanB{ononFdvTN6r55f;}jnFlJgimC?%#drq!k$0`|lZK-ws|^M%*8 z%^3$chhf%V7S!bGaeaja$ts>?cDnZn`LFqQ`?6QgIOHQ|pWafq%~s~KqkT}nw{DcR zeY;)E{%Ky0{x(IEJNS+6P!@b``huIrGxq=b?o#jg5IOYM9T>IfjVY-VU)+4AOgYG= z@4x1AN59vsn7aFeHrXp?M=k!_(mniLzn7z9;C~)FgWtks;jiA}%`2$(Wc;tuynP^!B3{?ljytEdJ z)vV28YHC@mx@<$1&0scZChM$bAP1Nhhd~ zv07V}-a%02>2%Bw^?04mLIpJA%vMeQKqh3!(^v{^db0@#zUGNG%S4+d&oG(gnbKBh zapaudY&A@FaQje;G)8R>8`RTg$TgU9n8msRZI+EOn>6EeTH8dc*koOS#i%tfeJYd2 zW_33GfnOsmMwXj-8anJGLmo4$_QX70wnh>(XPV2QAhLuY36M^P!%&Xl8$44uL1gvt zHD2S~RSZ!WLNJWPkdI*thU=K8EAR&4_B9Lz_}UjkFut~6+yLXP7>;AuiQx{Wk+BwF z+z8`y7`Matd(hnqLmGyGkU>*m{B0O;ft0l*S%YCIhV>YV0l$YK6oVZ@6AUENN(CFa z6Ic$*$PzI`WAF!=`xxRdJi@SFu!Z;_YfM6jaRSC=7~`_QoyRa8LmMGJTrW)Tf^j^? zfkJF$wIL3fpp(Qr81!b~KD7`-8G@Kx2O$1uVJN|H3d3OxVHh@nKYL+O5xZyO>xK{; zBWgR2{!rLr@>_!B(2jz3V`w*oHp4Lo$nPL(1??u#ZY``;6bU#8Ea`jl<*_Kl6)?uLgcLPmLt{8J&$=7uw98mVn!by6R_G$`>h#XVWU$ zEhO{6>|*{%=Y!2B>yML+$NXjXx0LWjNw6>Qvp7oamtrR8DTycRXYrHf6X@rh^^vUg zJ{U%GLaj{2(2o=96kgk0Z;sXkZV+6LBI=-@@Figw19GI!4Fi6{i|Z2CAL!{IN5)D3 zIf6%E=z*apC)Ae=kZ0E^U>mMSTsI5@M79mb@FK|f1s*~h$_cf07}!PHL%;_jHyHGg zYc1HAF0v&F_%px<;%73*rGc$oMK%tB>mi_*@bkc*3I1n*E$N^?1IFzpk{toEqhOp& z7?;^FNHlNc9!KtL zgE3Xmt`GL8VB7%kqaNpc3MSVLz!w#aES0$mZ%Px!)Md}2o^Kz-0D2fu=a=p#?}@(Rv%e^?^W z73`_M8e2kT1?PU}_xzg_myJjb?0KF@o~B8ZG#D-lPsVU0!0v#OCn%8&slKE-r-^86 z=DkETwwmiy5%tHvm#Dj_WL~NYT((T!1&%G1bN}N3SW#o<$X(Q!Cg$p_hOFmm{t^LW z&O4@71i$qBDA)DeC9Z3{)j>TjG%Z% zP`UxJ9W1A$;8VlkZVWOuS)-Bhu|-o!K={4F{qm{!lR*0Wzs1k!2lJZ~Y806dZ+tJW zaC-p#2kj5q^U_#;!MdArlcb*N@9bs6?+r_yR#fc8gCSddhz?XQ$+>;ylYCh^Q;?_E zT8z3v%_N;6N6(J_rLR3a=$ncvp6Ad10?+fmp?}U7Sb1ivO_$BNzSfdjBs{p194+H- zR8)+3=gTK{Tr+bDHx8tDg~w`&Zz?)bd~ih?!Fs>Di+dV&1|}qDUm!JhPV!5e?Q0e< zJ~e9geTvu3oJDbwpNirg+QF3HJft7+-J^2tjvS%wg|*gDY%GbUc19Fhg56ZE+r3M)oqgyDv!Ax-`u-&7DT$;w z9vKM!N_nV)$|dGs=$X1RFyeaSXdctwxPGu5#is@ju&)dZ45_uVh~Rp68lIx<@F5#1 z|A7UaDc|wN!)gEBur;*3VNWaC{&r|G<@cM{nDWmqe3AAaiBr@52LU%|zwDNv=fueE zwC%a7Gv!~a>O<-OUimfUzr3_5#kZ%LDPQzA;k17r>PPq^Ykd+-`yX9TrSvcUT!-S) zC5I^eOwqekPPt_|(@)!6`RkOgY|dfI_b}ou+CJNQENwqIvY5q(wr`nt(f&h^meBT< zbyR;yg!fcRKN@t!MSocFc#3^5HmCi2P4$I1-@Q%culcB4`29ndQ~G1u7-1gHT@dIA z*J%5~>6cyj1O2`e;+V6V%AGy)D&_lNLMX+TcIEVpkM-?7|3N$t{5YF3gvfXY)n)E#n9BkPmhtAL`j5A9%zJmj+-@|hR%xeMjrFtfEC)(a2o#V)LuSYB8!DZH>=qFn63>(LJDk%#rj z!+PYM>rw4HI@vL59exC>Ln|PrfKC}z<@Jo>UKp3Z_2`|(`8`U4yaiksU zEy&%6@n-Q*Z+WPy@905d%ZWk-qja~Hp#Lxbo{)kY$U-chBo==~YuPXVc>96kizZQRW`=2&Wb^D)2 zukJiNtNqU#m#Tg>6^EK?*OcGYU9UAAhv(&gUcX(pGy#t71Six-IRB+*!R*K~g8NO6 zR9&`Sth~$Ga8(~nJHCXw``c|f<5jm&pQu&MgS&^I9&z$}=MGLr{ZsEw7@&_q1Cp;Se)&*ylvL4S z#^97YD0SJRxJfH7qBQT5V@kpoq4d6+8}-QCf)ea?ZHpd{MZHF!jVK+KiPCljHea#1 z81RJ ziR*@DHC~>N5~r?8*vc9F;KPo3|e&A3E5(+2+qsH*=_;Y{E^HlGf|$n2eq% zxoq^w(S-w1uaCT+1g%7xUs`NlpN;2 z@}*ImP}1C}V*QK*sH`t;%EHj st#P8`Y|V>(1JBNF$v4r?x7cpe!-HtDGQW+6JnGv20JJbM$rmvI04WgbYybcN diff --git a/tests/testthat/_snaps/output/output_custom_xgboost_mixed_dummy_ctree.rds b/tests/testthat/_snaps/output/output_custom_xgboost_mixed_dummy_ctree.rds index 44f2e59cd6f43adcf3971ab49452f6de8563094a..5138c231bbb15bf1a4c6db4b0d2b1027b6606ad7 100644 GIT binary patch literal 4027 zcmV;s4@B@EiwFP!000001MM3NSd_)~-v{s43RoZ^Tv1F#1bIL79~4aEAz&hzwJq=i zo6GLDyCB%hlCGM!%!16ie!U;|&R6f2ykd4sQ?kg+%qYt;v=kFdxij;h+5Put&A4IR z@9XZz`Och~bIzP|X6F1e^Z%6lavZ1P)CvWs^1wyTWA}@+qOKP zwlOgWQFCBXTbyco`4?L^I@*&>%9-C@V{S`$A~WahM_+GCdZ}mF%ZU#C{KmIC-|zV6 z82nQ7RX=o!7YuD zti8LM{v7SeGX9JD#ZDp4B}E^269Kk)>&#}0Nmp45bdcF1ROu^idXrJRP_USwI?$-C zG}Tq;jXKg|Wg}i=G1W7NeT-VGuFh-_tj>xGovpIgQK7a90t=O9z95*XfVSFX(KgIt zLVBy#++?dY8KJ_@RBtoa+q72wLN=AvwkESdfN1LdSeZ< zSZKtfz?hBNYC&hKw@6JE8qEfsp6T;4YHb!L836oRalOOvVv}jN3-nfImcLQU0_)%l zF>33L`fKY2H%;|cp-SsE#=&$|#bX~TEqc8A^$uSH9W7R~LC>5Da@1DTSI!q$wZB*` zju7Wu%u09&u-Q*$dl7LQ!vPGR;yHs?gW^J5#tDr(jA0~(FbwlBG+=lGLpSEh1m0jw ze~+ONm;Eq=;<6cIGArN2up2`=hU2)7^wo;-2#oh*oP_aLpgRsjA%-@@=Z z<{d}oFNQT3p2x5p@DmuqG1xJT!a(NyYod+Zhgc5FD5heF#Sj28Cov>o_yxneqAkP+ zMGP4ojHh7ShA~cl+~*h;V@MR^!(D>wGceA7R{2lObQCvfzKq5%hk{Fo&A>&M6FaA+S5^^6V$c~+miUaXIl*~j>pKE}`b9U;?m zF<|B=qvigxxG;Iv&S=)o?EM?y7#Tl{!$?^iBV>NW$@q2xJwetV^OxB_PR2J< zhW&t_#Zhj*95XpjSv*-gi=TWxfqu@JAIVz36vI`Vm@8*sDB#3Ah1WJWoufH{y9~-# z5_Ql{_;N8^4RR#Ul>kp`TLdm)UTcWZXzT9*TkFO!C|yd!r}}!!h9J z6x~LXTuKf^WZ$g@enR_08{rKBdGd@5!a#C9Ny=d$N7^-z`$q_PT0SuK%Qxsg>%>ZLX?8F{-(W}6hG{Y!0@_apV$oh?$3 z#!OnT=K9Bj)hRhw-K{*NM(gIR!C=s3{jPe9a$VI zr6*Ftp(GsAlXr_uasY>IHIZ?5rXIB8pUW|9@D7z{WE*)hpjr$E#Z5Wfz_5p}Z1X0O zA&H+n7z!nIL?`KUC@f0pq*IF?dC5IG&qI9ruQ|jnnwigDjV^~&pGLRF6V17#Xh$0N1Rif#;bi+jwnF|ON3uo`=iDBUM>f$*9??T#36U)c*)p�NEOl z$2i$4knKhk^dAD4=;b))1)KB|PRY5ygi~|d zSIOGdoNESF$oi1hsom7cWmRtYRBrg>{mN~X*2($gvMO1fbPFKWDX(|O?@o_9{qlJk zz&W=T?%JX`@uzSD%HIg?wp;E%?FOWFNVl9)@Ev4u*9YmFtkLM4_~u00Uq(i8l#dPg6Xo7&Jdc}Dw?sP33p9@pR1y*-KI&e_HG zhlUIZ3u6nos=G4wu$n;*P2fGcE?;!+j}C`QhNQiI7)vpCy(;`-x)*smo;5M z+jk~tXnSwq5!$Z!QPlI{yv>yMd?cOnKkaoXt^e$yy_EmkHKQp$w#Y>JVm}>D+y9LU z2!C|Yi=njrm+l#~e#?zRDSqv~9kl+F=Etd=`i;d*Kc%??D=1&vZSPaQQ&FoZy>CJV zrO)hK&EiApA5B|n`;K4kqx5&rQvG33K8t95NAPzp`XiRlr`Ye{7~1}hahMqAo?}%0 zdtWaX{($fYX#Hv1)#5np?-J{$d{61FJ=eSN5Apv}jAPAXRBqoVw@|*Pt_`R7(AJvC zIq`nkD|>Tz;OBv#2Yx&7+ok+P`ve~B;lUm|*u#T8c4m)MKlYagf9>F}9sK2)zY_f< zo_2^Q5Aoz7o^}>bsXg3*m3DEwI(Qf_yEtAto{bmbH_xBN!+fxd^Wj1}%m*Ik124{p zW~Sc`^NknhTP!cmHzP03w@& z7xUpRkb6q(r)3l`=0h9RACWrG4*3@3PC|c6dC0ds>Sv(s=c*s*IQ&-oe{WpQ_8Y7?3>H0Deh+lL4t5-VFaPiL z+x18ja~+?1SC-zkg$JQ8p$VD{a@Sio_B;{hiC zP6Rv=a1vnnh7hFyP6eC>I2~{X;7q_-fU^Nl0z4To512U&abVwvqKu1eUy}BM&elV| zlgz02>7T!jJ=BPD+w2V;#(UAEk6*a9TvLGxj$ITIY+Qwk3vOL;WX*b%njYDa!ry@S zfLANR?zW-Q8?3>EE=;L=_Q;xbsEF_KBKl@-^?5m?T!TtgTb{e-##3l|NZzoX&3B@b zAFP)WI)BmD$(o8HRJdl?=CjpJ#pKH3^YCZ`POyggHUN*)Mtx> zO{lbC{@7Kw7o(zl+lDfA7%G{)^qY#p4^YY1Iis_xu0W+e&z11kcca2xciq2v#g(Wy zx_Vy8cekRF-Al5)6Jt@yvL@s%4h3<~*DO463ChrqLX*soqU3#_dT+=mM^k&MvnzIf zh4?w;tA5(C2W5vwt|xIwy>n9K{;VpL|H{W3SJqlk&hTRgFYeil;y##hTbVi>rG2E+ zkXL+}?;IMlZhRn0nYJ`-Q{KZUY0q^(k+{t0y(6`EZw!imYHx7Ewhbt={T|~p-V+i3 z!3!t8x;h7?o;rMQ&*l{+df_x1)l!GYiRgKr=Hw+F4y)gOZ+!>^^;L6Us`Rdwg-Q5oOPiUO>4X zxs5NE97dV;Jq9u#l8t4bk$IMKV1YOvTvCww*RM{@+FG40QJW~EC(7ugKk%|=P%U=k zXAixxN@&Cu!doMkMvYe6?;eM}U6Q=sbNkZNqsr#|>NpS+(r=Obi!twf%{mebn_zK# z)l4G99ss6_YlKRh-Cu$}eIq2uzbL1(CU+^u=D|0Q7W hA<2i|&KJjSr-uj8WMO_A^j7NHe*n<$;L&C>008q}2ipJu literal 4010 zcmV;b4^{9ViwFP!000001MM0KbW}z1&ykZHlLJTyAz1=JAcR2f1AYe*4j~~45+b7G zB>723CNtyABqoT85|?WgQ4Z1Nc^`PoC3sC_3F4}V5siq57(`JFCgukluBz^?-`)S0_;MVl;?xQSr}Dr>&SSA!3zcEfVspOj-n;h*)CgrprZZbC}Jd=_A?vrmeCcf6*Z_6l$ety%tEgv=i zb0~juU4G#E6~TOa;>_~Q5B9Tm`^SDyogIJo@sT+mSG#7ec%WE7z6HQi*;S>lUW(@edwoRzN;s?AVV<>>06=$B_Q+N!h_ zx-y%|BJ0k_V!9=sb?J{mNdnT@*?C@WSD8U)Wp*i{(zje^)5Y6#r3S&Jrow_X$`k~} z>y0+SV$>Ppt%9M#B2?hYJ^&X0u9(wAyOPWoHQ;dQ&FP=bA_y>83Nm@_#eWEj0z)*I zD7G&{9Q-KFALlMc`+~f@Ea#IN<7qTms&xiQVBBd@NUZaalvR?l0W^E`SRlLjfE=L! zpV}(u&(WUb+K&2niH$;>D~e9AHXQo))|t%~ldh}^=s>eYDA$+S^d_Tru3#}ib%0S@ zW~wgL8+D|`%0{%(Vya;d`53iUUA5UDSe+H6I$K$lqe5*J1QrU-96>Ns0d0lJqOG0I zg!ERex!zV~GD1Z!Q;p4BW7AsobJS@zg>y4Gn zVxbO4nK2u+6@t!IW09IH)R_%BJ=5o9)Y>dg(jWM>;(CVR!zR;iZ_!(sSs^u6prVbkvsCl+6)XwVzlmhMaS*J|$#rHeJc|%qN~; zIEdj(JPGjhRrJMWoPoHb7zSYo!!R2|Erz!+v|*kM;0?y~PZ;WOxfg~|TsC7&rrFyV z_F!nja1z&%zE)y95aRBW=PLLd%Bppzu(P|#b5+caVf6$oO|20;8T!>|HF3xwZ1(^BCXt}>EE=-=aGn%zC zd;bPFM#j(LFh~~12$>&ovi>w+7xRzx!{ix1^NaPb0e&`417-SIJ?pm*(9E9UfRn;q z^)oEziC^{xbWA%lHP#a4+Czag^IH$4t&s7EjjB z;wPU^pr3Q*N3zzh#&82C=E}(!rgCDQ!fTtG#L=9nXyTqcGBiEYbrHsDT&+g03iNCwvjmKd~bmpdaW| zf?uJaKV0I!zl1Ls{MG=kAJ`ZwwyD^-u`RS3;^85w^Keto$|^~n8thU@>XniP|5BUf{YZUwXNwf1F_YG-xvueGbxO|FcV>%+ zq%ZKn<&f!V5NZVjJEpQjk0O~BQdl9C71CHCT~wuFXAp-<=@F7}C<%x3sJucZ*^Se& zn#j021ozl^&E;IxbEm)yvW+|$P%VbT;-(y~OxVL$wt17tki<_O40)0|qLcL58y2N> z(y2v{yyPBT;UPZ%*BoLO&CF-7I+s(YPo3jb>OALp09N(1RZ16a#+qt;L@oPoNY5)D zJr)VasJk2e?o8Z2V31XgM5-$#i4^*wmw%2s1%FXo>qxdN8+gI8iRN5Vv?Gms0*^PW zaI$?MTOmJ?BUvMmb8ZjFBb(?YkLcd8gvgeJY#G=VfNTxOW1MUi$aW(N`VRq2^m3f@ zMofBZrsUk;nyI<2H)~3nj8Z12l*uaH$SY<1N*TXW#;=mKt7PqJ&NTxoWPM2M)NbnJ zvMM)xDmQ%ce&x1G>*RcLS(U6#x&@Hxl-IlCcc;gle)+ug=bT#$cWu#}_*1w6x1-7)@XEge8YSa5dJ;!34claY7qVX&*I+O`L;dv?*iiq8{yC2lR+Gghlyj~J47o+(_K?ic zM*di5=d33`zF@~0rm}wXbc!GKc#7iVs#J9`p@l@bDMdcEA@22#sz;zTGR>V^L{E=G9pS1QU z=vxYW&r-P&v9lmKg>1$AW^w0-G8L?t3z_h0+6x zH&gx(R;E$DJu%nP_V$Q%l-{s2j?&-E%%%K(_r*~D#r4>%V$zALajH?GTDj%r{ZK*e?gr_J57p?!I;b|(Tero~KPigMpGRoJu4^o8APSbQk`i)jaK-*xUG zO8@vG)gKn+GoRKs2mk1zKVs<|ihCU%O55Kv_7mgWeuB#Xkl!IOj+IYQx&2?9v)o5J+lVLtOPpLv+ic9_q+IG@ug|AvJl?XX^WSTA;Qy~Ok4dYQnB>t&FOJ$OCZ zVLkG&9(h=gymLKjdfiZz&Wr24lNZ-JT_1S8&*8=Oe%|g}@0woQ&Z&6FC%l+XZso;% zveORvgctM4c^CaSU-6Ky?2xZ`$X7heSD4?o<5?pw=EE~~F&};ma?gqVtQgFT`Orr7 zN2JWQL%s#M)6m}{9`Y>@`S$I_O`7J2Bp;H$D$84zQoJ;FJ;nP5jidNz+ZzN|#pQU* zo*$}meKqGi;E@A!wB&K|D0{F=J{@e<;LY=zn+RiPtiT)cX!uoPsibM`7hUR*CS1!<2b>I`4Mhe>5VJ9 z;EUq^)C)+LqZdo>icwtGJ6Cp_>-c`lY8J{IhmsOjn8^z4Yc#LvS~!Aq`MydGzC^RQ zA&4IG2CM-b3OEcfe4OX_PGKP6L4accv+ov$0geM44>$qvD8QouCjy3#0#P#H6u_x~ z(*UOf&H$VVI1BI?z+(aPfSJP(2lhcHO25i>h_p{_S$V{Fj2RU?fA+iBBXuaJ(O%nZ zd=QQK{FR$aG^J?jiT)wM#?`1`>fOtZt=)i9(juFa`P&fh|9WZI12$B2n>CowdCAo; z9$UK}<@2pxMBlU>K3mdDG^j|m{iU03KZ7QPH!E9V}Zh|=|g(HQfSC~5zf-W$_P(D?R>tkT`zB7SDc>R)&5MOmSd8%P{d z?i*8fAhR4z+4}jWbOQtJ=4rxKAc8DOQK0)X#Jp@`^9xy(2@{j|f1?6Beaz z&V3vu?!EO_5|_yx_oj60i$U?v?F+8mxe;YFtunsgJsR8?#Z$nWGQ3Z(D{^ zV)sXlUwJ2*R?t#dWqB3F53lHGoqigPjKBTBj%SXe%oW=YuDsI|B|o-t;KJcbln~YX zlsaq$8rgL6A4|utLMeBCHjMa_GMXP?TzwBpXwYvW{U>xDb2}fVMDvP{eFIU(u)}T3 zW)DSaHw;&YJy3&k-`HD``JDmf*&f+ySelEnZmTzwcx7h3^Y>Sxo6yvC)AGo7K-1Dc z+g(vni4tFkY&(BqGs;Yvb#g(l5oJAmY}De^DJboM#GF0nPomU!j(3oGGOae`p5aP= zl%gwCl5rjL{iMkUG6jUf6FP{#^w)FawmTOxlR3F@J5M&C8r;Lsud*_ zCTt_~Vr={oVqQAM^T1-uYt^mBxCVc zWS%7-yhWT3E-6U;+gB%MZI#Y8N;^tMkCxGif8b?Lk6P@=&mMYXxlo5Kgtta6jT)`C z%RLTzyCiwN=k}$kN4d@U8F2t6q#qY|6=UA{nsp==Ho@ZfOqoQ8JpfFlHwk4n$H&Ct z$H<)XxS(RopH2UZ48N-TVY}#?L&xP=tjTU7@S$fu0t5nS z7-Eus94Gl~$;gs?I)O1AplOon45ZMKFia*1Z6}46bSP;`rZEt^Y1+~z1WG&bqk*)A zl(rL6+RTs+DOT@JyQimT39uWJVNwr|-M71M-|oJBpQn{Bj^nJHV6|{on}%|>rsZ=N zEz)SC4Mq;?oJze;<~N+(`SLhUha0n-F6;2IuBS#Jzi<5Ssxs?4Uh5lIdHmg5ztBS_ zw!PMU>Z{FWdrzNjR`6fH>hrz4>#;e9_Vv{rx%;QvAKzlO|Llp0mp0t#B6X)nlVrIjoouwXYfi5#|gZ~w{QaI)a^}39dcSj zstx0FL?Mw($bgTyFPTuIVyhHUlM2vAE$h|<#B?Sc@D_3^mnY+r;(4HuTHYK>v>>Ul zf2WdM>p>eTw8C%F{>x^wS6D+MaVd?4@<4R8NUG#frEpv>ptLHQMn=I%Pb{IzN$xp7g@yW{nY5dhu--RB)v68OJ&{y8q&O9+Vp=SebpnN3DLf9Eh2e|r)to9?CtimCeyj0k@~1QM z69)v-lFK$r7Tmi9Oe>R8DJ3aIqEN3&DRN6JqQ;U5v0GM>=vP9FBs;>fgrsxQm;!A| zGLyoYk`U8UM=CC-^MtUZMxrJ`NXv2y;MJ>TIb}2uTa${oW;r&BrNz`bHJVId?2;KZ zl~KiXtQ(VEP}ijpcSMs)tlN}!85W6gsSP`|tFew)q75yUyR=b2;e^;KOKL`;O_sY- zaVduS90^fX^3@8E7jr8DWQb<6(e2t;+MJIG5d&+=jZTP}M65F-7hz@6a*J3r#-ogB z=FxnJC^2n)h?%}tnw)eh9z&<9Olmk2SuG=ZM2?&rAud0=dDs`U>0qsZ^v5ZoPZ1jw zq}htl5w}t_A*b7*A)TjqsK-JTx~+x61**NZNLzuT(>7ommTzTjqYK?XZ8O^s?Q=0( z=t9SgrVHG_cp#1E3VlagY*b(1L%}X$kIQT1IJ;q5>JSMcQjbUjB8@p!R$L-XmGqWi zCJ9dkhsG_}ps_r@2%jxHQ%d!7y>=ASTg=8%wwKa%HQiV9p_Kf!VpYoSB7Ny2>%fu4 z;9Z9Ylz2^3L>yYBC(JF3Vpn)O;8r;5m zFGZ;Ly8Yfjo}g9S{y>l-1cGjVu#qAJ8{Gk~FHg`a?m$2@WH5<2k{VQc@bsdej4B|Y zRn#DjplFzE@4F7cVRow%PC$Z z;1z&78QD>kZAf!4cA_7s*G|zf`Kq~m!rMSkHRS_O(H&GlUS*MfZA@a0#e2pQPA5I zyBZGPrKRBVFpPJje&#$%pSJ`iV}|K;gS!dro*&!Ji8~ccq)*4HtUGMy%oX-iJ>#$Z zf5sP|@daIBR2*FeS8r#Rc{R`9UTpxa!)_)|tG5>jUQg{tMiXD{hO|bOUgd7mb?W9{ zX+DWbXvO@EOJV&v0j8w!#%;b@RpgqB=92?%-VQE*M5G=nIQl3{-=FB?G#+KE%%RIc zoz8LjcUt-_m*DJJ&&ctNEMG*PXZSqBw^DWb#9%E#W98VktUiGo7&nY3NBLjs zeT253eQ=`3MPQ1(L}BGDFhl_dF~@iDGr*08%v#{Ug(TKOKTrd;jCn#I_^57KiVD(EDHWI3iEHIpTNGcW z*)I?_7=5{EnMM|lC>zez3Vx0f9N0CtRz+ZsrOhmdn{Q0 zz5#3dUjq0d!2Pq8``X`F5PvD8)z9zke75(%iWQI7ZaoOF2kVC1%D`Tz_ZsrgH>@z~ zQy)|Sb{cZaj(ZC9OnorT$fp^(9-ynN{Opx&4X0+GpC8ibE2N2s4fyccj4rq0%iIKn zhTJ38DIj+U>8v~>cbL@!@~SR(@}oDRy>!3GNBMzrhZue)MDxSIZZ>MIdx zMg%`mJC=*EgctjYn%lzBZvx(vGJw?p#{e7;5Wd)x&jGv@;OzkK09XTX8bCKd4?r)* zJ7)*}EQ8Du7RTr9Y9{yZS#mV|-hW6_=jPXIcdBIGSK6iB>zl~ZdV9~C@2w)UPQJ5x z->)ZUg$`Y#Z3psUf%B{b6!xNdZcF`nSZ#c{pj;ivS{hCr%${7 zN#p{+kbQ0J!Hx5pPW7N%)P|hy`$`+w3W=Ab?3Jh{&pmpa^Uk1^WXQA zdnfPW|9IC}GB0{8aN$QM$e8B9iAg`WK*;{?Uu^H6LPFERzua?9B{QC_{MxFm;Q@9m zY4MCNY$VEf{8Zxb@<{D+OcACfwG*3l=r#*umJedm0g zyNPex?mu%+q)5Y<@7cb6GF;+DSK{cA5~Gsp6ManG&(s4q@UZl;T5Qfwn|2wMyEF^o zmRG>67R3SQAiNFs=S$H?BwLG`|7}U7R-u1!GO!tX=SoR>EL2%Bf4ibb2p524xLuB@ z<}XZgzfj@w+np8DAJebI@LLBTwvsn>^YFPwif7ETX&L^e44)44pZDY+(u$^sP1l6) T1VTKPHeCBJ2xjHxUnl?oUMdYK literal 2642 zcmV-Y3a#}YiwFP!000001MM0MY!ugVZ*T8w{NWRV5eTR&;?U!`5B}A$_Zdua!Y`@g zLi$_w?6vRg^WAxG4~%I6H36z33QY>35iL!dK$|o)NdYCa=~*p}Xi_lHib_o&Q2^0I z&`=>YQ4qfFzI(IxZhaT98xx__;xY4P=FOX#H}AW*!pSgs)1<-msSVdOxUqM~Sm5_h`fG8b`_jq&JBvFwS9mb#`NJ>Bm;v}fb|-81?tj?R8*+padf{p3?q{uA#`qKY#|`cHNh^4Ip) z3wx|c=i82QQ%}tKP5-P|bM53rP5&MH%6b})c^HOcRlbSg7>8zWMC_L0DpG=tPZPOF zG$Ijv%#vtC2@36Es}hw7ZQQaxRX~U*0)9_6r>Hp^7G?LBv#ABkLyP8^uoTY_0;19y)CpW%lG+Gf(j`eT+(2lL%EGEBbl7oOmo80xOGk zY9P_tB>{O%nw$dRq}OmgNmwd4G;X>9&B$YO@QsBvlzjc% ztR1=Z=CU!L?fGVwKPC9DQjcYlD%6^MuI*h<8|H4->^kid`)Z0_~Jd zkmOcEcN%0ls?HH;B|7Og7Q(ZUx{Vn+iA|I~D=7{pGm)(ZXd<|YYGbGTagz29ipNs2 zwBIHoPwRjM&_KnK;%L2QRuKupbf^nwkrs6hO|7b_(T@o*T%-U%CJd8NCu%H^+d zSA9b#X*E}s&pj7N&T_5h@_H(O;wV=uF0a3uBKWIa-YO48sPedc9)E_QR$M-RB}MR8 zx_p&26rr-l<@b0q1hwMw`&C1RlbBr{|wswLS5PpH7UpnC-`RD}T4Dt?Qr=7{(g{_2MK=FzQUPy3On1EYAE88nGKw6$e2+&-N0@_cF#|2=Y*Y#Or+1os;oI|W%L#HGd<(4|9{5kp7B{-K~!wLS$Ani zuYT9g++HmNnn&GCmR4`g61l=R50{WmcBpH$7wjq7VAToh8mq=G7qct<15SLetd;T zS=J!O8f4iV@~nZ+8u(_aPM;XeIcP>XV_Ty>ju{#^h$ln&pYMHyw%_>RM2`z+DAqj1 zC}$#LRMOynWP@f9eFk*97v@GTI#-r;e>~JF!cUvHionQ zZLOD=biTeY{35T`FFsi@C3&!=Wz*zKO&Gd+U&YXOayph<;eQ6#=h=UY<@bND5ZBB3 zwHUe{{|D&9^-x(H!`fp9u>4C8%*J)gx65gL8&5jTn2u(S$FTWO0hZsfbz=RBj_T9b zUJvpry=CdoU%@cC>4GNL^7VJiFccfsYjS_Dzu1WRwG#tr{(Gjh{ATP&%aQ{#vE0gp z57Rf7m14Ru(Tkz{R2Qb-_xQtDZt6o{NfJ4p$niujNz1AICP}|M={HIG<>`JwPW2;6 z{NRZnJmtrnCyrw~w7BpjE-)nKYB3M|c@2xri@-Imvlh4jnYwLpa#P=8D85gcb`d8X`Ols8^^%a0D2L!%3+nNQkgy;H-n%=^} zZ$!LDb^=QXoIv0t0?8+MG@ZcD5%_rmXA)RW;4A`N1iA_IK)lm-!0#x~JZ@3AanEve z|Gve?0+$9+L(i5Yb9N<*whZgtD z2{hScw5Z|W9UnbkjOIP7?D)>%7tn%N8aj_X6-4(g9eCo5^D3Hu{iD#E+jpXcFL$5) z?z$e-_(5{azGu!4wF7P0^S382BG07ow8PcA(XxsQr;;x>qkELFMmub-q@H z(Bi!Z&K=#|ggkva?N`J{(fqo*9&I{VjAk5s;H&H}zKHIdwugQD3#F(rIN-nh>*Hv` za{sBRzr2jl^L>AMY;Zc_X9Zr}cV0oYKQ4NB<+g7Qv7@Qs_*=}WWoXW`ms>l3;zA2t zmsibP|0Y6zj0Sgw6R7eB%!k##TZ|UU=Cic}kD!Hbth>7W#U|wY=eo0PI}f1QrQW)g z%7j^UCbQj{A^jo!@(jOu z_+iU?Q`ZlltHf|ZKbzX&M_}-Dp#5Ga^N^M^JuI3gcqib(p*VK!ze^Cz%Md640Lk(? Ad;kCd diff --git a/tests/testthat/_snaps/output/output_lm_categorical_independence.rds b/tests/testthat/_snaps/output/output_lm_categorical_independence.rds index 05080e940ed7f83da377dd5f6ed2b4755fa58463..25b0487d0858fc14301582599c7dfab2477d05fc 100644 GIT binary patch literal 2480 zcmV;h2~YMPiwFP!000002JIScY!t_JZ*T9;XX6iWTp9!=(6oZ|dcF_aXG6q|3)G+n zNO1hokg}}pweP}t@4UBX45+D7Ncus8qlyMf1R;p3g#LgCHEw~}R;j8;iAow$QmGAX zMOvgbZBVKvsVKhg?!C7+H@*Yx#zawq7{52~y?OKI&6}Awv)5kCah#nK>^9Es&{59O z*t~r8YMoYTGBVKMlo@rhvi{QUc_)Se{v09l$Ex@h8y^opZ^CaW3rS^5RpN`YE3Nil z`0FpKx7T)!RWCVt@pSo~4E%4O)qd{cXE$9u_av#Q`nzNA#cknBvo@54+n%uaww6@e z;SJoF=k~s8|66m$?$|(vN8Y-h;{;yk+c<%98}=$vubkA83e)%uQBdNF4ET&SaYc)W z-BPC(SAjNb-8Nl7Or|=5zFbaOb37)g-u1cElD4SQg{0j6-D-S`7i}oj3qPp;NvG4- zSVKEwQW6d2fmqxnX_8lyI%0ATrCZfCG74sTqlzZ0iWKuE%3re z#~ZUP0GtioqrEe9X*nV5f0RxcX4Pg!k^Uc?WrH^37JrCv@XxG=uW*Ix#n7I`SvlG! zrxI6tr5NR~d|GUjbpnOkDLe+6h3Rwf^#+x_pH6K8|^A}Ntj<5Fh?>g5Sl z?uvG5(YPXRlhrudrih*K-j1ju8Jr}BZ;u*JB{1j}F)8&XVsbJ|=#aF|h(!>RvfKrD z#b#Mfm<`14xGMHHW20zNOl;L6aRtX8PicviCMKiXFm45HYXWgsB(6rcS<=O(MPf|q z!A_l8v^T2spvCfl?nx9@#BN#AQYvk-JdlV@DEN+bHq-b`#C7QIB zmLj5KExAfXOexX6l$?i^O3Ga##KIX&bN&%eOPO(S`1xwwdjR9&tIgIHe-x?6{6CmGl;D1qn|%hsJF;ps_qY z51%bOQwsHSvv%auo6p8VwinWMJ>AzELm~Ma`KplJdHOPD)`c^R>443Lh<{RZj|;^G zrARMsfJKx|801c%7c;T~RTls{K_}hD0X!GfUEIV)Y@_r!p}4v1LUuCH2DpuCQ$&rY z7}~oj9#6^A6y=C)nT(ea#{nHBTtutwB=pBBSQ<`)ZNmUZht%{$M>t2-bW2As5G=rjHu$6Gx z9ofJuselqdt_0c^0bT<95~g1|;4%2<01y~?H`rOk<(|S$pqEg*GQdj#cQdlHDBF(vl92B03ty|Y9@D#Wf0!)voODf z1uQIRVKo+3YhiU37P2txf)7}l12?sC8WMb(%e}DeVOmb&jwTpw@?FKI?{<)r;ZNfw zWSq%I>3mCIB4(Ph8$3e{Wn;ij&e~x=)+_$nCo4YxiqGi^z2X|k zxgWa+tow8J_UZs=pLR2OTD>zz@Mdba(wq27Hl;nX@Gkce-KReKJI#l&2<;fZF{#6N zPJkt8zA0NzOQo6SqV?o}hqsH%rij!-1xKf{^!%m6S$zUG(QoKajv9ZV_YvBD_Q8ps7lA3x z0)>^c!5mdIdUp;Q28CbA7*-IDO%mQfANC7lF^XG1VAHrjay|uoLX$23z`T9qis3rf zVSLfQ)sWe3T)0(5yXbdnpcXMN=@Z}9ZEI0MG9o2n@>X$+9PNqVV?6sI!eM?pD3GLG znT90oLmXc=Jx#_{P441ylUCNEOafuV$i3mW(`iX6{qyL#boyLf=$|I69zO~2Ie;gY zscRm3sVR0ctk*9e>pL*|)0URUs)tSkJcV^ru041R>Z7Lok@^<1zPMEd*k{VEd&Qfh zXK`zikxw#mr+}`p^2^$L>R(@Wd1Y9qw@7neFyRB2Qifd1M(%cmrrbB}3qbA+(ph;% z?gds4$ZLk&g{v<`M(KW$kMa}c&M^E`nCh3-$MR{p>N5|1H4J_UgI@q9M=8Hha;I57 z)=jznzupXTqYPgSJY(3AxkS)Y}nhLj=E6yP8GV!t;Hn z%^cx4ZUUnxMF1-R-Ujf~0Ota{1K>h{cLMx8z(oM>0_Xwg1?WS6XY9aVSdcI6`TF2H zr@l|_@%Ha~dWk?9k3aFJqq80$E9NW1tKL0IRu4TM`qz%*WZ8nX>GywDLK+7jZ9PDm z$*Nla){Xwygg6I3c}>!yCq(Wa)vj9h-(aCfL#RbmY{p?*F!B$I3^_2d>`NOB(0> z`{HZmZ6ti8_7B^C*H4=MF?0QAYs<*;@4PpB^_}<0(w-gde|eRVz%%#Wxp!?9Y219U z-}m+#gv>wt=>C_-NN8*Gh09f~Wclld*0rC1m;~>Brun||1*HDAA2|+P=qPY!ERcF6 z#E7K%ML$yyF!kUqOqM=Si>>wPFw)@x-9orW<}fQnaY7!1_s#Ka$@@&@=+d%3F)7n4 z^bb!aHp9^sCnUocnygwsVKF>}8$i6{A-PkterS^Up$eBh?(7);7=8t&-#&S_6?_Y@ ulFxoAma=lwBK(yY-aCw6`DCB!@`i`Q(1b4$LM)mzhxR}Cf-JBxC;$Kg*zD5) literal 2574 zcmV+p3i0(HiwFP!000001MM0Ma8%Xx?c2BCkPn0~>OjGwG}2|+?2>FCly{?nU@IVm zKp2q6OY)Lk+3YTFHxR;D;{bjrN@og%>WE-*MCw%9s!*J=85td?+ET<~r&_CnmZ`M^ zwbR-TL$>eTJ?HJ+mt7&L!ErQ`yXV|<&pr2?bI-f?-1}aOo8veuCs-_;)uy4Gt$FFZ zX|)=yoHk^j-cq91$=uqr4^23H6yPthj_v&we8cMAx3^OGQ94A*n=9hZ?Q4ww-~7vq z)3>+0*FSyMFWxz}G)Up$xwDM^<8OLu&6$=`GNa;ewnI;>5YLWTSvqPlG1@K7-7Vwy zF6#GOyKef8kzM_hR+1wxO*_tU0eU#eM0abzm)la(6pP5JcS$a_Xn8o=j-=f2U21HD7j-Ds3g4&wq|@n3 zW<}c~asn0Qf#`0Rld?A{w?>p4N{6aRGzl2(4M&rT8kHm7gc9jcl@5(K4$1(OtLFuM zI9`t!0bm6TkNS?%xRtn~{Y2Xom{kjnBJCfXWr02eM*9vu0O%jBix;>;bvN`k<7Pfq zCwnxecF7UOVfmz380`cGw=#GHBnuLJwwFDy*eRTl;v18pSQPDxbtmK9NhuNT#kdrb8{>#OLNPVmYjC@%Mp8uX z#6j)Ja923mi5e?Cnx~LCDs?DwvRh?UR(j$QIgIigQ7NfrtHr=CWgcFP*@Q%g-4ITo zTIJmdrCl;PEgSwkESy@PSc@SrFj(~9u|YwaEe{=WD?<}9vMCMeJky49EKFhhS{Phl z`djn#6&O0J1NJeuTTQyLg&m*O**p$wb3R?z!upJ*3*2CTAdTm8ZAV>f%vfMU&N6F{ zDC?Doc}KBSBT|D%5RqC$W@bcL@xe4ivTLRhBs}9B7Pnl6W^Uv2w3`cWDuu?mQa$p? z&8K4_-3!V3G})hKLm~dl`KplKdB)Ob)`2sN`?tl1NY#+$9v>736sJ~P0G*6Z802=K zyG^_TQx^c*K_=VB25ka945J&;940-{4wP$W=ooxu zTsGisAg7G6foJFrreIr1o^fraz%0kL$d5<>kr_kV#xe+B`@00KBG;-;DPRc%lr-lJjKFa1>f+=D~ zD7(Sk1a{BQZ0E$C3Lc~{$EvIwZ0C#>_DlW5U;65a&;P{d4252C^yD0PT|LHuID2}v z0kn>|nmjAsp2K)0wX5k(yw)1l8d-Ri`+}}hU;LHk^LPlY7{3v@RliPvN0MFw8`n+6 zneLKt<$#;FgUhCf%tZyqrn2n$iA|?5l`S=x1YR;k2mr1 zdH8u#J8x>YGIcg%u;!te`OJOI@&sU%=BTXR zyQNQ8Nc>$!v4XIFi10Glf^LFw>aUY2l3yd({ezfk|-(hJGIQu=W981A^28-KWZT1EKvNjP{+KffL1(D^5;HzgxlLSk6zW215EgbD8U_EgH zECVi};6I0axOz^MQ|0KEWx=cGKeTW6!M8S% z?_BrY=&h+=6Y|KO=a=l6K;{)4skwCHWHNu#uHwBemDK%r^-mU@*hU(Ec(AKUo=qA) zNsW5)(EA1TnDv@}s%LZ!StP!&W7{kDli90I-*aKYI#T_R6nf*p{p7ZNuY3PI#z%q^ zx&A$eUnGrc*9m^jOmfqf*s0?`IzZ;nIv#z$V>xL!y`^>8Q}2-h^_h`xHH9J-h(xdUQ(6N`7Za4IpdrxW4#lC6lYil3O15pVGPF6`(rn=u$ z4_w7$=`+>Xcs^}%K@Ts_{*V?jc+NVy$;7ZAs(Hk<6DTTz0#&V)$eD6_|eO(A`$>F2G1W*UOP^BR6&8 kXI*&i&_CPBUe)Cd51TFtZz6<9I6+POA8g;iqT(k201XToH~;_u diff --git a/tests/testthat/_snaps/output/output_lm_categorical_method.rds b/tests/testthat/_snaps/output/output_lm_categorical_method.rds index 50996c361b9e0edc4550b27454eeb407edefc033..f91bdfe456f8ba2eca32591914b23ed2b007bdb6 100644 GIT binary patch literal 2954 zcmV;53w87#iwFP!000002JKr7Y!t^8p8NkXHU>irgp{8oV90UY`M^J=<(32jB;_y0 zK!C7WpV#=v`R;so24h8(hLogf8)%y-ZIq-53jLw2N`goterl^~rKnVdR4u6@5(&A2 zwvh@*EmUf-`}S_$?z{0G{=s$>5yZ!P^XAQ)H*aQVXWlIvyo@m$v)e4p<^YyC7S-On zd^yOP4{oA_u&Gydme`xD|b;^m( z+y7hl_u3cQu)Z^N>}1=IeBIKF7hj%v{^^ySg~tu+}FKnO~jOx|G|7|(fVk- z0Y&-!ds2xVe)ORjVBHP>^z`&x7afhnlr%bO-R~F|H+oamsz2*m$w&rQIERhj3-jfS#L02W>zf3J3HZRgpYB{_Th`~jRs{} zmI7GJKFLm?n!7R?)=#pzoiTO08WXoG%Y0-ik*Pwa8kw4$DO(Q{ z)--(}`!(TxO`aM0YCjwcYA6@xP%P?xLYpNQ&Ju3)mH;xr0nH;We0Z3d3*ZK1UlRp< z$A`s1bWz_clyQH<2g1qQI!S*n(yv>vDFSU;i5)j7JBaNY*>?+e?4(~hKG7a+E5-)L zY1X${|88L(y|_o0SNbcfe4!eD)x)|-EBUG_{PR%cE!RrEU|>Ev&HT#-26-oGNBu1k{3+!;j>AQ4V_eWjl#R;uk+;aoaF3`!CWOqqfxRkn zj5Qe0xuDKf=v+wW=IPvgovYNjDxJeFtQETDihgZq*_g@U$FJ5`?~2XoH~qdq2im@n zy+Y-Iw!c|DQUAr3AFMrjVDU}c8|pX>c0T&hTiCU&>$~r*ol&SfWbwU8+NWQA_`{!n zJebiJ8}3`;%e{!~wIzH%(w;7D-yO^M*KvUHEO!C?B47f`-NGgTZUamP+z$8>UaaL;10l@fV%)Q05bvQfLVaqfV%-cfabd&Fc%O2z|+nu03pCUzeSoEaWq{>?`vDICz6MwUSP57KSPfVMco0wv zSPQ5FtOKkEYydn2*a+AJ*bIO-A={FRy|znPaF=op*Ts#W0JbIIwk{`AiF(`)qYbhW zi{;#~_OSeH!K=b1I)DU$y@#3S0Y2R!8t;L0B9&1a*sx!i^(;bob^VGzUHSPZ!jw z(}tj4$wZoTfjzCl&~tq0qpF(BHjo<=DS3M>Hj1X@$ zb|#T`H6>Efc3s<>^+=8>Td`ATCfXd0Z$*#QHi!@^$K^&<$+V`Z%W7LPrbN-6D=ueJ zMzNUd%ef>MpFMCn+wG2MT2C>>WelvYR~DCB3C+%$} zZS6!(eZV$iy-o0qg7!~+7W<)NHuHso#!Sr8i19!fy@+97Rx&p7Zp=Fu4^y5b#`5z6 zH_CO0GO^BTQr}m8p-?~l^~21rnU95hFJ$XRw)@JfnCbTwt3rO8^fhF;6>aYE(V#g1 zyw1`*0?onTRhR10{DhquS4x-A2CsiEUUsqGkFAB+!|SGp8IP`0pcc+sNESnv*Rr<9DrO5`*-h;=0<{W@-)9FFP5 z<=J7lxD4MNA@4pgyjPLD6R2?V9EsBnzFGL&bjaSExYOHm55ujoD{F(rjIj3>f8wuy z{=}Pi;~kleC2vF+d{gf?t59zh>TRTKWBKD0Wul(gR(lFG2 zF_T5-Mf`@ySpcG*h0jsxBL5S+HHX4ya*h?GodcwO*u#GLSTuOxJ>G+hn|`Nvi;6HJ ze5SsBSqqly0DfUN(p1=AT(~(!8)&+mOWi_3zjun?vJwrXo0Mcs-6`)-qg$IWn=bwy z;>iAlQQ-7kV@rJf!|DL&uvZcopNq#c;y>Cc9>+j#*v-W~cv0kJ?eJ?-4q0VK?)yJgO?eX-aHA|!g z2fi8Eb9T10tSWNXuBY3jm6QIw`Qu+dB`vzy!=kfxYf~KdW)}hjQZ)JF6n;DBh%JP=dfJR4~)l}bGx3n);dR;-@g0k z;Z4V-z#GpmI(_t%B>A4JRJZ(18oy@SxpV3Sy?oo|gJt!92}=uJD%tbMzWQEzC>Lmf zdtrgYMpAB4GC?^glq-aCXatW(L+Y{qd^+GttG0oM{H~Z+St`rD&Ovym>^5MUigGk$ zjBi^?pg_NP>D>%R=S?bFEHY|J|8_=;5N-g8`fX|?qkrL&`$C2puRELmIN)+LpMKlG z!&dOVuOBzJE3sDnH0s9xriBRz?eiid9cQ{c9GWG}HrQj)barU}2LluZ;<7gY06UfJ AC;$Ke literal 3043 zcmV<93mo(xiwFP!000001MOQ0a1_TC?Y$2nA&|JiT(*#5S?>Xouwu1J9 zSmM+L%oeSiBI!4E^krNz!dAw zXNAsqBCb$=z@kJv(n!DpoJ6bW&~FB6=MD(pcGOlbc5U zA(7BOdRe$i@|FFxJL2IFOA#m0E&WOxU|tJJcy@8a8GP+|zjq(7-{ zpqe`p<92Vs-U%Fi0B0}4)qlu&M%}8iO;P#n$Tl6B3S=sgsX}H()|8{2aBG%*;JP&7 zolTw*_=bd>nYp%4g1s~ADFDiE#=F@nla zAQFn20w@F`(F#Totq4RaW-x+^8G&dhYzm+dh(^JY?kutb8U!~n&v$Mr_fa~S@&icr zB{zujJ{mAT)hnj;CA92iYx37|HRgBtUPsW_HEni?Kt&xK048>xw!e_!E-Ci@|AlnzPCv`^{W$q=<|;UGxo)X z`xgIlFJSiCBDx=GPnWju4yOBSDPRc6UhuTr)o{QFz(~L-z-Yi2z+Hf`fN_BFfC+$! z0PQY*51J z01p6a00KY+%mmB=d=@YpFb6OfFb^;vumG?S@F3uGfJK1CfF*#XfMtN?fE9q1fLg#R zz-qu6z*@lP0qX$k0q`ay8?v$2b}1X~QtrOGn9&o!<^xR9Z zRjM6~*{6cJG352C}i++FY2Oo1&K8!Z=%1Llq zu5Y5{fytE85UbC`5^-s#l1gBoaj8DBr7jkiwVE`hX*Q)2%}G3O#ig{oC8;WDQ&1;o z>YEIKGp)eTvwZPGijveDNR5efk)+C-uv2#?wj~zdgdQs`5Fu2KOO1-0X-=^&D=kS?j-fqIT*{=(Vj6i+`GgC-*n$mF6L#s;6 zj0=06N14k)j=Y1BIZ4M`lbxwUJM3+OZEItAC)3_x(bmbxSs$_2W5M>%`poyk zj@il=7HrJ;v7rczGvs=`6mN3ZIPgni0 zvTNmIKHu}%x|QwD5+zppoy97j-xhuKTCzl&dwew5OFiCC*~9>wRKdF|tIH-FoW#5% zdbl=tpYzbNhje^wZHzsDbUv|Oc;$s(plhgMRGwH%#UJ8ks>~Rn?L4ubTAE!H*@eO5| zq+$IXz}R&&a$J1H#9Z($YNwbPgPoDH**>f*vgp@!=Okq;ZzA99gPTa-9r|+)_C(r&k-Qb&rzD;}W&51j`Bl|Gi8N0GJSWNNy@9-!7#{Zvq>u&u0v$5oi2!row z$+?C5T8vw|c`bHP>gaPf?W}osj$&6z{kcu!Hzz&Xit}%#pVIB{)4!qh)3V9w%7N=w zmFu+6HRvO$f1zdMzzVa?CF7G0JR{)Gf10J+P4|}&^Cwk8%bU3UcQGuVNv$riq1L-C?sVY09?MiG@6K2!-A2?k4ZxVSk9^!Evl z&(EKKc^|Te1Z`C;6|S_m%W~nnt!LZY&(=P$PN$`7x9T+f(o~&JzUHn;E!zCXJoUH$ z#d2tsF!DXf2QmI=s=-fE*HM2)4w`gbqu`X`r7)yu9gm9zF9JLh-ka75(DjcT99pwxQ`PzZzR@Iryms+3 zr*xXw_cu+icKrtvbt=!?rRn{t=F)7vzItd~w*Im$tG{0#NA04Q%XGbs%@JL`f8q#T zE)5OqH1+I5x_sf$y}I6*wX0gGo<>-rJYw zwbFGU&~+ftbs*4n@cLIWV^7b#qR;2qx~hy$$FJP2)0!8mb?RvU3-?2*qan71n6FqD zF+P6Qm#c_d3G?x?<)8eUP|x)9weP7spZ%`Nd+J9|`|Yg%p8C<%esfZwU6Er*N8`|p1rbBtSWuZ_0)M)3}2D< zhrhN*4A_5ta_`E^2E}@wa`hej5Tb4K7bp*lOLxZ8BbUt=tB*ZazxRAdoL^ag&m#wR ziHk@6Vf}|cJ|ND#?!R&M{Zetks;$0(;jfBwipT%-Fu7lR@Rj$Udj8cian_Tkx0Wtd zJLt{6-a6og7yl|Qv~3)}T6_=7dHuk6EW7Z?qt}~*;`E)nPyA%vFU8RDqchK(I4z2S zBNfVqcf}#gHea})j5f-n)<0KL_s4l+^>>T*ZalQ1gC5E`n&)1a=dh8Kn&eDa3UlQM zSC01M@u*ilHl9xxTxpdS@Q~gWb1I7^slz!4@02%9Sf-*}4H@%el_DsxpRjanhNJT* zWi1vNC1rdJqeTcefJEJ9r9NYPvXcGeg_y59hw(VzatevmP|~Gqzw}G!_b4& zQ9iX8gmRKRL|J)!y6d%0qch3YY;5e-s zx2rfU7f776n(757F6gOq5>aclSp_Kjm)R^PN6JLjbi3JF&C2CMy&cM$d{Z+NL&n*x zt~z6lsmf(@D7p)D*k+`#E<-V>XX8H|9UYgHc2!wSPG*-Hh(XmRmnp?%sp&j##0Nw~(KZBtOmxD1x;j$fLGAp-Z_y9vIhI5!k z`dW$cO&A}?I1S^!g6?Dt<1m!LynYb+-+=)?!BjVs`HNvKhL1&A|VbFK__`gM1kH3xJ@s`P=z2S?Eu98Dhw+y9LDe-CuQZ=z@NR4GKk&y zDXEHu*jP}iloL?QYVuoy)KE`^dIHpAq0aCv`^oPBN``uWs1M=j55)tH0Qo^_^w)`x z)%!sE0HCva6v#7r`WA^EtFVvpF@21m^?Q>-&p^P;PgYm@%i_Z1Sv#wi4`e4O4FuRyP%JE?1$=Zi1`eXhw`)^k8B`R<*@Uu87?N?$Z=ckA#YiIFO&L_~% zdGaG!>qQvu;-p+T7DEXqp9Qvu^;dR08bROsi04PsNVqg_(Q*>Kk{7e&3X25q}&&L@rS-b zfffRM(VS;Ts|Fimfu|qX76=dta(b{aR%W9fVh{$p;-H=I#X$eWjy?c4fKD~|6$SeH z$ovnL@kM~&df*KK8>6H)4I4MM6W2mKbTXRG2c4BQGMX0b(#Ys)SsT-%l7U=SB`a%X z@){qqS{Yq#1Cvp989*m~uynSc3=wy9?4_*gc zKa0>PSlAJnot;#-vchmy$Y6y`R>+c6Y1om)tx|q`B^+wPAwQX?sgfj8=!afBy6+D{C2^xW*|Kcl56dQ=^Gea~H0}pH0kFc!_JM4L zLO_mWjWEu$Js^*4qL)0Pd%_YTTN1KmU|RsPH6V|1vQ;44jX3B(5-`!rah_`~`Q@9M z^L_ayzZPQ|POXqpE9BG)S+x&&wSr%*;8!d7HHvnPqFu{*XJD104>?WigQk?#_~6s{ z;8XUiv{g=1@+oCC3YvTiAlIp+`{MVd$CrNPybR?$TMJ)p@tpKi`2h7bg0JnCFVOk` zxgGK?ryPR18GQ9Y`X*~M-jFhPHVFv7S9-!<6>kowzyDf%jean{IVnex@d(7*gAUHe z`-y+2;_Icy|03a$)Nbax^V>8g`8iV zYi{K?`W6A-b5!n@q$#wXf$pWaapg8I{x?jMDPDi-eo61jKTx@m z-<_iM>bA?wep-Jt_#cv<74Z}skeT2k+O`fVH>&Yu?%3Awxb}o39@Ce#A4sG4@TBqL z`tb1Ru-3T*_dXYUnAZDMY^D7BS7uVa4-zKR_VY2%)B2V@$+Z6G+Y2av$dUxgzo7X} z+J11Tp0;1;@fB@XeIx1laOzH4_xnvI<=^CAMCqTd|Ag}YeeD2>znyKPd`U<9(e`&y z3E__q+Z;vPFSd`R^miWUN%322+9>_wxzA8J?Y22gKdp10Ev9@e3*V!BKgK;y>&J#v z()#6tt66+#{TthE+TM0?4XuCq64f6a7dV^J4@G?Gr9WoTbc%yNA4J>tT5pizeEwT1 zeUg3-|V+_|)#& zTtiB5_RtrI44_OQM%Ocs+`+9(h=gJgi6FvmW)qcTLRVrS;yyOY5Dk54_%|^U`|1Bzo4n zK6vLv4G;N*m-5Mdyp&J&h>%ZsDW6>O(vR~M5BW-je8oe);#t1J{6QCg4EB7{=AeAT~vR}@Tnr?Tafz!`kT)~zU3j`ZeP%U!<&I9xCP_4@67 zqzQ8$CpalT!gVhDn2EOOIo~&(*Ls5)4|>SW=e6FB`ndJ=? z%xM>@+^3W~SmAb7V4uzTml@$q(&@`C_APFFr?X@LU_Ia{z|nx=D?;}d5;p-(1e^qz zeK9c@a5CT&z(WBK1Dpyt4KRGYh;9Wu9B>BUOu$)yM*toPI2&*d;9S5wVCFEyfqjvR zZhdl3?u`A*QR%utyMHXnL8V8xZ(8zjEXvDac{S-c93Ki8c3qUmKc`mM)K{&;yWD#*#5apa2wsO0U4 zgY(NiKt(xkR@Y=7K}dhs;ee)5sI+a={nel5qT&E`dSQAk8vATg!XGRDj!HtRg(J%w zP|-2V(i=y{pn^SPng^$u(D zYoR57AS&M1w_njM$;hy_Wy$HfRjBaE>{-p*HlUJEp3txAcp4SWS)1^WindO1C`$Qo z-H?6XBb1hJYXCl;6voI$8P3~i0RALWT@AJ(TGMf{5Pp^dXIAj1oHj$fX<5#>zJ zN!san1fhp_4U8^-1{v<#Z9dfV8H8S$xBuI^Um?Sdc^QVU3b=Ldeet#SdKY3`-V;Q@UVceG6ezA5R z%HDh?@u_kg@4+zx{95;;+`$j!Po6axW&UDWD~=ubwJ{ccL}uJA`u{>;(NWlg70wk4x@@!5$e_f@qaDscpk zXQ^(@<3==Q!&++(JdZ}6J%5|M=ncdlN&4XYl!b~Er2W@-DRyI>$u-P4Oi@o&)YE>( z+n;W=*u5Xuk^99aY$3d_@@mu@jh!xb*n2J6i$$ML0A01q^SyHqT#_BlOtM3aO0Z81BkYySk-sN!D@GXMYq*irug literal 4117 zcmV+w5bEzAiwFP!000001LZpncvQu;cmMJqviSjmAtag*8jJywND}gMXG0Po2@yz$ z^5?QiZjzPF?sj(*5)?}d%HLD|Rj4Rx!5_3f#D{$<+yI6L0x41{s37=w)lwmff(ixF znYm|n@7^qhlxX|D?#IcQIdjgLbI#11J2UrkUl7M}8cwTHaT*;ia=OWt#dl?4S|n|d zupfp#q>hTRPA_|F%}j!qj1BlL!7G0E*1N2|EpDk{q0`caqEzKeVp5w>KV9kG#=S4N zIAg7Ly}&5^K8GY^`PGN}M~VZ z1TRXR18Y<$2v0RzU4p}EvZOi%OPxcg!^D07*8qMrr-^nonJ-$v1E4pZ+dr2>VBLja z^@3f%f2=ja%`$k?q)}IqS@<~q2hmkwhzDP#_GO5JAFcCWbJwc}fxNP;W|Afm2qb=Bw~ohFdaiP zhV2+SG0!OAjllJD7+P>S7()~;+c757YzKx9F|=d2fN7+!H5lK4@kxx+G5!P|8tF|5b%I)J_!3WoiXEyM>^0vR2Q3ovfO7^gk%6o&a2Mo97D#$b9j#s-YTrP!(>Ar6y3C&~Cx zpm!o}(@QZ_A&5yQ0P(*D!)gpiG5j7w42HMBpM9{_iQS8FITm7LL21$=M=@*3Zyi!Y zJrU{&P>+Q=!*?AZzk?_R>Vu&^jH5pk4>$tklhf(18y~9=fc7CkXZ0wMXY`D%5C7(eUx4uzhd0cL)(y3$`37befzS)H{rdv6Dvpx|e5NL0izM&U<_qCY*@#r$La zFnPw${9^st|TW7q5utkn7ZkD#n4?#r#o@2OCe; zK3vfs^OxCwr-Cn0frEjc#ZhU$5;HkJMLbzMi=T2nfqu@DAIVxT!Eiq(<;rmw$~Y-c z;kC_;3wCK_bhWIF=~2l*E~}E2wK92)4_U2@F1LZnDBCp(+vFhc zUv9IqAGy!IY>|UJW^%fg>mCnAQ*++FGh1}BzQ6~s)2g3EXcjE&yvq(fs=HZXBr9aH zLKZ7zOR6;N4B}QPKZ_C$HQ|t-xmPPBdvMIw5*c5o>0Udpd7Z0z?-Y1Vv5_YOYQ*rl zv?+(X7xwT~Y~ExtB=M66!+05u=p=pig+(c!bXv(Hf2Bu1@(^GB_Z(s`&CF;27Ozuh zV2k@y>N)4>0Bd^NDz%q3Yf~dWqSpK)RlgrUdMpy|QTH|aJ(;*a!60kgiPTh05-IdU zZxP*h3Zas?(Vc8rHt>gK6VG|2Xm=X-1D*g_;bi+jwn8BwN3up3=h+^RM>f$*9?^Ya z36U)c*)p�NEOl$2i$4knKhs^dAYB=;b)ijhOt_OwIYeHPdq4Z`RZb8MQ)At&mmw zkXI}C)e3&Kf?uO(*C^VxoOcFRDf*Dpv_5D`S&a`qjSoI$ze-!>G$o%>R->TFw*YdT zO1dw8UwVA$SI)~&&a<`f)fUf5Ka~$q-z50jZutVO50Kj--*UbA1DQxuAS2q@yo#uCsGL^&{-u|B3#2&MZ!w!zI*m-X|HQMbbW$%+WUf ztFEr8zxm*rh*Md8>$VDtH|RD}{Iw>N;)5H;6WkDTac#c2J-nc(_B2U-ONt)&o%r(F zwMS4y%{`V(O1Ea(5+7rS(kobBdeSZ1>{-Z_^ZtpF8uAq<78#P`RA%&d_>o$2Dd@tv??8S4q$6 zc!~|kOz<&nM;DbF-F!NKTzhz2XF?K>=_@-Arc-=$@&xg@@bKuc_5}p@zYu$r)(2H> zqx=WfWKq5k6QV32Bk4IZ zeHX3!y^uxuH~W`R`lru*Lizu)eh9_i&a+Xzq~n8V`}?Sj@W+R3iK6XSI>%A^dk^=e z_?>kfl>YI8O;k?1eLmAq>)dC{C|}!>-&4NJaZl3viDA{We(lg&79U#w#tDV`^+(4A&ZG3h5np=gk6Aj4;^5DdY5P9wZBm>seoN)g1^IjNhYom_(yzK^O5bAFU_|& zQJQb1Ouq>8nTPqz!+aKDKJ(Ii&ZhiZ7Y-9)z3{MJL}|UG^3r-K=B4$L=w%OHk0Pu` z9@Zld>yh`YM}6@9ld^efy?61_dZ+6HulHHJwBE0Zp7pK|-gQO8Lq6f9eDWYK<&(W4 z(508Gyp#_wi&8%P0OVeg`dK}gm-3;D>W>*Y zU4(oKaz8+Si+ISlJmlLQi`(^wV=@9s{;ID%x|HIjNpDd6Nn!!TXFJ~^xFMx5K=J(0 z)S4SP&qs2FIA&u*P+sp2e-CvG5?Lv+FlyV;{+{+5=J2?Le zBb-UPec7c2L*u)hB?AEK0Y?Fj1`MACy1$UP18^eXB*5&8iJ^c~0H*>T4tNCMG{EVA z;d4ZEH{g+gGXZA-&IUXRa1P*HzX59M`j z-{&k{izZxX&3e`JIvVrN6Q?g-rKcxxgQ~IG5Vp}PxDb}fI6c%qaKZWF)85>)qg={A+^G>RZXbmgk{C;IWeec@7UI%=_WK` z`g_rp$xoy5ii;iDRewUI3EQ4{O}z`1o!W1nGb0d{k8>@t6egq6{R0P;+?9e1>)V!} zZFmY5Ka)GRb^8mb?31VUPjziXCG*!O{I#m1TO3MKk8BvW|9gbevvnsU0uUPWn~oPJ zI8fn+{;U1wFGu;~zI$Xx>wBnhXXwanuO*_ho7FRBfGt@~m?|`1bpgXyoa`$xmeNMuzcQ@A>8W{U~?Kxx{BHalD7d4Do9}fbxev zQaEMqoha+KqpCxyOHfYOTZeC-d8&IH$``3e&hLlP!agnzI{pkYTspnIYs*?xWS_qC z?U<8zel$mFDLD0fuR`HnxYL4}w8P2n)pT9e%1HG(B0z=!OII@M>&o?lS}?+ zM7i&$mhKLJ92L$P<6PNt2IX2ZOP8IWg!1218=?|(a6HR(>zQUYxo_k%F{;|1QODY%sY-7)L1TX^MLKPk8&&s}{TW<2rJ`*n%yD_f=kv zdZV%1#SVL~C3~^x^9i7CXwGwf(6HstrvG(@U(@rjUH6@(`!=oFWNC6=wgs^NzrZeX$v5PlSJpnKhmL4+ TFuyHkCw1*_`%_0*+A;tDiLEVj diff --git a/tests/testthat/_snaps/output/output_lm_mixed_ctree.rds b/tests/testthat/_snaps/output/output_lm_mixed_ctree.rds index 0ff13705e977d0db4a0326b4c8732f6fd6c7768c..9fc0a507a10f59205abcfdbfc39f7155f26a25d7 100644 GIT binary patch literal 4083 zcmV+T;wzbqXyrVifN&=LBuUE1d%!# zlzR5@2_MZNcmem&zX)CtlN!g`Yub(4Vq8=H2ntNi(I0qQgCbh4iuA2t?2_-eF?s&! zw1S#8ar^c!XdPFRY(3wj__I;2_Rf=hEDy#9)kKD;CU=;fSQDK+sW3POv36(OhBvd` zJ{#`*Xb84`1ik`fyD|l6F;5*D4f0fAqG)XUaHEt;FpL zPR;odC(VX3!Hx?$>YPYan=NJm%0444CW9?0pEZp!nu}R^lu%}cvMSRs1B%*Qi`h}C zpJFI-SZuQH{A`x{lUSF57?c(GPeVh)4Y^%KCWD>Xr39jXvB6|pWWJ~YM?r6H{~R_!fWcCb$+H;$gPcLiLHKtIJ| z(@z`8gp78*b%vwVVg^EhrQBgHcj)cLnQSVn9W$)1X#jJ#f0Gs_}w&xMYF`ULwhvy7l4T?6nj1wC7HHLT$;TR@hn1*2ohI-7? z2Y6fJ`b7-WaXA1(7%p2eCbM!Uh7U39!SFq%k-k=9+z#WA) zh6)5RsRtnb7hza|;W&o(IWf_`0sicV)IscCh|AFs8x!gw<^&YAn*6Ge66*0#Zx8io zs55-mLGn9<5~1D!>RmbdLvesxf_$f*^w)@w)gz$2BhXnr4CEQT*LIN}EwhjDF@21m z_1jLS=T5-PPga-v%i_Z1Sv#woV{gr|On<$Q6ncy_!+y|Zi_m|e^t`FODLWbNH#{V{); z{as{y@iH6${49=g`{kI)wUEV=wX^ui=M(7X-1(8L^=u52I5AgdVaVacJcZXbH-w`( zfg1(oi9{W=6TVCglR=K;xv{`ccyV6hh5Fx&(3LxG3T#&BY;9Se4m`e^Wh$Q6JdQZ|5%c@kSPfqw+}K>Qp8a=Bn@ zABl~lp*$M&5`G@|^TGcSU`rn89|8ULmB@|<*@@6kKJ?3M7$q4ul8;+qAUTsfH^|;7 z7DEgM{G6iOXp&3Gfr#w8)xb~cT4*D@p&(D5k-->9&L>GZ9OOv5j&tuKV}QpOc*3Af z0e$*FJreBkfqqGUz`$q_PT0SuK%Qd6891=u#V)jJ#bXvrP)p{-rj{`;q$W z%@!$0ViGdb2_bE2OeQny5;} zjw~*f(i17+P!bO5$$N!NvI&Q6HIealrf#<5pT{w*`3{vgWgB@ipn44F#7#Nez_5p} zZ1X0OA&H+n7;+^vqLcL53Kpew(y2v{eB>Ve#zTDL&pE^%nwif&(>)HUe$!otSob+k z16bAERw+HSnaj)Y5w+;QskZp-qsJoQ8g*}@-;{~_I}EbQl}HVRB#}Zt^e)kLe-J2& z>s`r~Wdk2rHgTLsigu;(7Qo{RE1YZ}$W}-TawKa6bMEZ{d1Mp4BOE@*x_@YiJlTpg#lrmYR7kQx1-7)@WQt(!2^15PrY- zgug9*IfVZHXYnuegZa&gIf{&jAKo4`a31d@{$KfnDr_`hmOk_i87QAk>;=c44a=VG zJ`k)RW3lw=AE>^vmlKU&S19tB0(+^!Y7%DX?-z_ErR>gM{%%J@U&q{HLw)Ku*iiq0 z{<)75c8kp+6my;j47o+(_K?ic8vas4!}zC;+;rj$Q!?ZAkrZ#xJWcU8suYS3ZOA3K zRC{H0x^Yj)fI-D)Nk&>U=-xM-TUW0>K5^kyinlFznBsX_ABuMy3Mjv2bPn+SK;?QK zK1}P62XCd=v?77x=gv=~{JqwF4f-m9Zwr;XD`7mXr=a^Np0;v_2mf1!aTISnKTFiR z@;xfo_lNVeUR-;V*-z_>1AY?qtcasH0~rbaSY6vdPxINE+CYAda8-F9C!5kg-S`RRzp$<&#otv}C|^Qd z3~m1h$|3x5!7qo=_UrXol>Y96tthUps-^T3^PZt{>K${Lep=^FFQI%ji{7Vv*J4-E z`pK?^w0`sOY8D?_ziin{+iR~^(fU{0sQ&O+zY0n}+VU$8{ZW-uDGoT-iMH=IM~ZR2 z@*S1G=w3~Jv`XsWcEn)V}E(@*9rbQ!C#*F zE74El>4bRl5KkWB>16Sg+QXe*<`l>4C=cW16vxZJv+*MQ)~O?Tm=8{IKD2SdeBfa| z@Zx-!$Mid4zVYIGOW?)%X6D8D7V8w}+fb(83GV);e z!+LRw>m`X7*UMmDTrcq+_TcsCg!Rb7dgNg}^6vGh3z(Fj#*6E{ffv_1T_1S8Pvyn+ ze#7Zr@4A3p*Ht{^6JE?G5Ab3>+2@3O!i)LjhKGKfuXxB;PRLh0!A_ zmjBoK?RlgLb{!`;F+ajBE4^`L7kshYA9?}lar9#8UD2IueCNt;b6uZ%*{wp6>rgV5 z6~?dv`*_V~q#lkSjlQo^gD-I`ZU~}>d;#kKhXD=;4Bzs(zEfxiI392UVD{ZYXTXVo zlK^)E+#PTaz&!!OH-sn|aBsjVfKvgd0qz61FW`QF`vXn~%mZc)Lmb%mp(uI%zV!PK zE=PGAI_=13C%<~qvp)l1a(5Wk=B@3E*wEU z&ZXbGx@{~iIWyVa1>bx-@rSGcTac%f!gl_!AS3S80WgIzndHCrUQC7f5pYEtD zMf^L)j-{RciulFp*{?>|qV$v6)58`8qVz96&+9re45j;a8FKcCB$SpXRN7Ozq9Ij= z2kvZj2xZKDVCnV`b|JK&OZ@R;Poa#c*=w}h`yq5~j_#^*8tS)l$+qxrT9kFtk&%3! zNBt{u`s^FoR6VU+ylJF6FM4Mdqo_RXxmIsy${x%{z3nu%z5{@&e_ z&X`bg-ob?*Ok9R~3h!2wKU#qLj{D;C5$17dAa}BGV9<0laNm%dvu8bmhCOxaoyn6H zqqGYbK0crN3Q9S`>)cZ2(H|LJKJ8pjl@gFCAcxC)!vJ|BL`KuGFzSQ98uJ10Z_mI_l{*ISD z&1$hLKWmKUVqrSA5Z)SjH0t#FM)x@E?ULm6p4XSAnqr6htK%SCk$#KZSd4k+Z#9ru zI0T#Pt7Z}*_5iRH-YXP2T;Cpx-!60RVMZG5o5ghwYYc4qcaL(+s9^*WH>g l`@aP2JtX-5kNO*ZDY$!Mpp{Rc^aB&%jJ005prH}e1h literal 4065 zcmV<74<7IziwFP!000001MM0KbW}z1&qeNJLIUI7!UBqRX>;Sv}o z$tM|^%#1S=1Y|WF3qq7bK$dU_cmOJ1cy5G=AP5UY4iOiEawsb(K~Y>pAlu!)dgjm1 zAZ7`=@453*sqX5k>Zt(Sj`V7vMvKKD9iD``uh4Ca=QwRdK{da5!BUXPvk?D5P!t$q z!9=lr5gB*-qjml}?pAeQke8R`d{SeYnatKwy-^YvPg)cb>ok(GN>Vn0W=)d?vVjlC z84B>JZW8@D+k3dTqt*>#qY&qcq8_XbhrYe_7K_!aFD!w2ki{w#84B$Nvq?8yu$qA! zXwns$OA8DpJ!!GA5iPcw%a}txCY?=RYB35n7ok9JFD!8q)HXq2q0mki1Pc|=O)^_` zQ-(7kgH30dW-l?DfZ%5?vs=pSI-6lSo2qL2G>dcEmYA)E=}vB6YLU*UFJ_%Kvl~hc zrebEXFcn9cF`IOg1iih?Dm7V{YBA~!OrMuYXScel0l=>l*E0+sHko$&u))U63MsP* zMLLf`YfhIzA~vefYQW3Y;50ta*8jBhHV(?Fi$VwZI0^~F-*l}KMbL`Y{8gJ zv+Wo@!LSR%kC;aKT8?oWjK9FRJH}su?gR`u7>2_{eGK~l0K@y3w-cF=7}j8T6+;E! zjhvWG92nYRAd|RCw2?cC<*RPnunfa73?E~N z#PAOIvlrGnv3ou)M?q|isGGRRQRGVUt3*nu$3eX<)T5xz@O}Hq?*K}GdON6h=I9T_ z0&WiS9lFzB13p#{hxYbBXZ28!XY?LhMS7IXKE}uNF@Dx>8=0Pa0W&{YUG6W73zKK< ztj^k*z4riaE8}Nzh?B)JQszg3tUoQ-#r$LaFnPw${9^rUfuD_28<~DaXZ^N>In-lXCUfbLtj^+ez1eC`UbsmXY{>xrVc-Mta{$QYfUUhGHjaeyNYG38dEn0j|A&Ds zxuAa-^xIn^I~HWeLqB=YFSB8UWZXzTZh?X1O!C|yo1GX8(HQV^itc+!E+r=zvQbt8 zKdJje8{rKBdGd@5!a#C9Ny=d$N7}WVYugtMJl?<)3T+DL(+lbmV2>B{OZp?v{3bSN=X~j zqmY19Rv{^?CGsi{vT6xkY6Fvzx2t5fNkQ7b)Mj}FOx|& z;&iMgGM)~>O?F;$J6AQ`De$IjBToiYhvA&KDTgZ)_VAT$-Xt<4@skHbj)X>Zl0I9& zqLfZLwdj$T+@rfZ#5ew&L+qxR`Rp~-?bPWr)p;s)o%1w+RZVS`(oLJGtP~$n3;&yH zv%4QX776F5dm8=5Ox)jLkX6n^sxKgk6#Ai;f6hCF08w1$Otvf=c)_xX<=j%VGmSR` z9&cFTWcxt2LjE8}vPKZ++8&TcHqlES(Jf#Jku3??GO#TG*&2|?IN2(Y?M4jr9|D-@ z`jFDp z9%yn|l?OhR2R?bfa$BV|IiFlsC8J5V08*WDx+i{5dOYcu&&vSLwYBin7R!l0g$Gdn zM)0)V@&sxRAhkof<&=VN6N9HdNZ(|Q#-=CEDJKEp_li&W+v3-Q>F<9Q|3*KU-<+7E z$awhR?Lj@~_7dU$l|QJ$MgwN)W8aa1^4h@Ovi#Yw?Ah)G!3s1KNw5Ba>MeWQ(D40( zB9|$!mFO)-VVdq?!BAYn?)>F1Yc%xz$}Kk3r|!ar`VaKab(FA~t#+Y^b3b6nEfTkf zWR6zzm+I@sK6mJ*1811xX>Sjwc%9~Xioa7OQ+!}u4#6eyJ zFQT4hu@t8x1HqrEYwD?7|0!qFGIs^X)U}Q0G5x8!1KlY;mOs?7J~%imXxAKqTm2Yy zjMk$^zD@b}FHfO-pR^rA+pk1!ruD6R5@`L*r~#DUe{oyNKY!W-wEbWgEp7if@DgoT zTo&~l9k+wln?0LC`CszNqV&(#pP>8~*0iVihjKIJi?5BQ?f*d8gg-Xu^-$V=y)Ki| zKYX+W#Z{Fxlzx293sg?MZ8p)h!@l&^Zh$CU3{%nDjR*|~t$ZysF9;zR3~&AVxP z&GkxJ|7Hu-9~R?NPU(l6f8(Y>u3Kt!;L@K|4T8B#m`f@lgDRKz84<~r}+Ht;ouc(8{DdmLa75B4~iJyQMHUmpB*fWHp#muLP;^pkixAf7zLlZSXZSUjcn zaHp3z#PK@J!+1Hw@zV2bya>N#@^BvJgF~DTtsF2Pc$g2oI3MOP{SKIKyg1+Dd2zm( zcyYePIK=rjnCW-GeCA<3^Dv(sFrRsGKBrRtt@AoNV7>6LUL4|jN#w=#GLRS7OPrfM zcs)8`J@T*~d03CUYdvcHCgi2^;(D*=#r00t2VU=!d2zkpaJbgH)^Epk6%YA@7xT#@ zyqHh+I3S^ZWk1$;6BK@R~!+hlfD!MX{e{?RYUC z+Nu7?p5q*lZ$a)V^!GRq`Id)#yM6vH?cvBCJ|uq?7agmhxFY@yiciG#qxjppDuPQA zGQ4Ha4^@$&lye>M$bmUl^0-*X9_*42M}GBp`z=D_evRLP+?hT(->u|tr@yiN|6cr! zZNFVVjcvajy|Lr)TkXHoxZLX3RB>pkdQd!n%8h096=gN`696Xy?gF?g;BJ7s1BQ(%L;~5AR=!a@Td(eJ#5$%B|i0(&D*M zC}VrC&s$%96!rCQIiflw17(kxHCGeZ0p&zkqTjf12z5J`_Tb9aF(`HQr9AK2m(kFF zSH&oN*Q1=;R}Rcr@*K)Ob|YoQn)4{to_mbZ|;jboxBI-e#BR8 zJ-!HKtyWyvbZ$Ay>Rj{s#&h{-@bOEV!-elrR?XFy=g%00GA{UB@4KV|4IMKtCZReC z<=X1XPwHyX;H4e3GmaOa?EOd9UYu5maz2e#j!E@KgR2J(`OC~bXwdg@tE+a_pv>yg z882U6hH_eRKjkU%P}b}5(&6`ETum(6w3GtI8>;&+}vu&F4jl^*qZ@AbH^x@|-$5#^Rcpq_!g(;(MZ_ z_YVhA(z_q5T(CI+WgOZwz3S>PGh-J;w|4Pdl=kcY z`U2uVi~r=x*r#MENd4U0h6aoF1>$?H9jFHJQ?cGqXbfw&_5xVWJh^Ul|zC$X>#R_ABRBtq-~U@mx2D6~62 zCKf+N=3K`G6~RABzY80000000ZqC3s_V|_wIu?$Rd~z6iEmlA!(Q*uR9>1qLS}- zZVOysb=h5a7ZEETMX6YtiTU`V(m(t2QD*wvgX~iMlvWyGjq@E z-o30Dzf}MC)qWn%%$ak}oO5R8+?l!8@%|jgX*jJ)#c8~MaFO#GGdinh0;Yx11_^s( zXhrHMGvU}{n=H2hjse`2wb!&h?szj)^&nDjJN@abYmKPY7fWYvIQ6nqKB95{;Wjai zHGVw{__S>qHN8vEP5%0;3}<`qn$PQub1G`uq?BfDPQEDqTrx<34GPTInssT_4I;`n)Id&IsxDky!*NS9!pOr@o#a1Y5G7M!<3>;=LJBsuLhCGMG zrs&SkW+{zhT?S!L&&7Wl8yl}G?aDJ5?947T5dHIi4Gu$`!;otd+$aS$tWlvLB+h7d z2sX396lWJq1va4o6K?^y2JpK%O|+}Ye9;1K3%xP(0cLi=8njl!IfWE+D)6W>igp78*waigu zF#{pMQsS_dIP`YoEH*2(jxwurh89_D##v5(ZhvZ#-ef3boq9Wr#YS@>vsjpkBgvS} z`U1h=D6z>+7G_#a1|!qwW7a!tu4)kQ>!qd3rm$U4yDc@^nOT8mJqxUpFVw6rF&n3s z2p*bB>_Wa?5o6clQA5&Y(~L~39AX`YqZkh1fyL8KMHUxMAlwNI(HPocn2ccth8-Ax z8Zb{H@V3VFlNe^=asY-fT()A|5#zTo?88ut;U`QZeJ#hh3&vkz9FOt0pgR`BFbtz$ z!p(vH-^TDJ=DnRvG7ME1He*->_@5ZsV-PXihJj4XYRN`!KbFHXssR{cFa&|jMGU<# zT*2_6WDD^@6-7dbaXQ8|7~^Ea9l`K_5Qg4Te7J#_-XG&Mj67{W2U3jXYZHA?JWh|8TIHYRju0sW!yRphrCsi7VX z^(d%!f;z)JKO(=~C>H9sLH!PCX`@KMtwFwfJpDD{WA*mX-WBMq9tQG^-e;?SMDL`q zkMS{mjGy(}MWLq~VCE;QEB$40Ve+h<)mb~U_g27B3Vs%cXhj^u6@J7j`qP13%sf_}MshQRruM*6%G)XZG9w7*a5#a#DU7 z0rISz1-9XQ#3f-EF0*X{hDjhl1b7H-94F=4@n9FJj|Cry+!)Y9$_B81F-K-g2Jnvn zABdlsAU6zbO_bR<7RqBmFX88be5L%)1Ab1?Z7a#8Ah-oM;tWj}JCJ=r1$dCcT=E!Q+2jHc$?eP_0K$@&5x+|G#JCSitPVy8@YSW(@@ z3Vm6jA1frVLVrn>hMg;%D&;3Y!l5P{@{?|*Lb4f$TP>0CbcSuQbC%m#spU>@*AyFh zGN5`4-$|Qtxba|r4`0RRO(sJUKY1_=lhKGy(q|i3l=4ZZl|1rMdh|OF@zuZP5W8t+ zKKsmcJ4yP@be=R_=R7aKnwGXo?WWCKQY_evdH+k*`}dC?i-dF3J&k^IChi|F$QoxN zHRO^+3jNT#JLe%kND|jOlP${zKCo;eIkyz;Oyl0b;|nW)oNOP+RwxkUNY)7ET-yWk z$R>KpBf1SNA+jYQTL!iTAX@|S7$;i=vfbzm{f7c3dO6N@lO@0HQgfbfyR=->8!@#) zMy-%jD`eFkAQ_HN{_h84RNABb5iW4`>215kZ`74Jlvz9muRFa`D^gViLI=}QG; zVG(<+qI{*~Mc)El=ZJ9RcQ_*aiT=3`M|O+NA>?!JM<%63(uSAJ(Hj0#W8=iko3&_V5!(d|e%_KN-B9VpC-d#T$Q^LHYYsodA7{fbRt=*E41! zt@lIIDW0)>ha3Ovh6xm}`Qd&^@ACJlT+)RfXgz<=HD*7pFAn%c(o-2paT+obd_cRW zk;)C2aV&LkZAj;as2Cp8pJ><}PjUU2;o_QqkdSu4wdDl2{i#zutw)UAPWeAto2a*Y(oT_Dii!(RS5YNzeYt@6fvUKN2Ya zMxSg-|8mVi%Ku|kSBlTgwNSp8LlLz712mNIM+R>RqwQB322=XKXSboadi5Sk|DybV zc`B#f@etEb>)g>Ll&_}ZW6F2A^9ou&d`B*=U#nZi;zR3aE$`9xJy%xK`tcX3{&t=H z=2H6J*2mrShcB8&alm)oY5Oj72Pw|y&r$i4{yuK}LG7QR^sA10rE&P`m_$!MN$bZx zzu%2NB=8$4j)m)}+~F@CqmtIQafu9F{9{5Gz7v=mphXs@K z2`qm{mx|JO?d4&-L}|PXJR2{^MQx?z)SO?oaq-~zVXt0i{YjD zX6B{&)>)M1+YqK-g!#m}OF z9=sk!SdTocM;_KA?^=(#fGH#U^U`{6s=S{&J_(0`GlA9 z$$h+(Pj-rsPk1SxTy@ir^A!*IN`!pHL%!l!zQX+emtHXQQa-#aO8M{;klP^jQ+XRN zBM|E<%3`c*wUrP*U?8>q;_orT|x*fe(dRO)4n%;jRv-@f1S7vsrkmo#2Fo+X3zfI1+Fdz|nwX0JASKdH{|E90#};;NF1m1RM{z58%51 z_XXS!a01}|fD-{H0Zs;-0yq^g512U&abTa8qV(GBLwYRhiUw=id^vc3H1!qX^i+~H5g<*Y?n8*e$YDRv|pvhj&8`_G$<(q{J?e(=qmD5Y`7F8h#` zX!uWM37ZU?(ZK2_k6pgD3uUIHmLB+iHyZk8>$(M__Mz;QH}VUT4UnZJ0 zlrePm;)UrdXB;x#4(hx8#V9mjQ=ct|)}26^4@}5f_V!SezTl~ahTSI-Y6wQ#+ue`S z#rXZj@rMv!+0bjo+)F5J!=&NMV%MRRX(=)9*d9gbk$1bb8~r>=kJx>&X2ttxz^Sv3 zm2T~d&@Xq@Wr{md`oVt=zEvAfBmSc|o~)nV1*N?@??{(V&mh$Crxm3Ub5Y`O%eIQK z=_uvwYlkmBhU2u$XJ5wbN|ZKi>)rFJK19h|PDVd78ppdwcvtV*k5FolhchNT&;upB zl$aZsn~jo!U)_7_y+@kFVW4jJ<%)N|M+tkz78&P^Mj3^(o_c>_#5X8&^ZWB&tM87o zKHYR>*6Avgylwu;h9%ul*2HD{sh`)OfoqRs+@}vkgWjtZQ)bRb{R~I%?7lGy^*=l7 zO7_1tqU6NPGkgA1i83xd`rXQtI+WGPW|-t%js^;1*0e=CQPQB+ufFugFDT`}rg+wz_yc}%p|7BXN4(ziKROE~?yjp|5|)cn zrc8bK<%r`bYjgR=A!}Yn$)QftPgRs)HJL$EnNrX~?$4**NbyLgVK9|A@78?T|3+Z6)m7Eq^}G9jM*DLdr{T0J6{qok!bQ$&#PH0n@t77$8zk(F zp&6;8jQEoaHd;CYjse_>wO2L&(Xl;LRfg1C&wg4~?~R&$zGUY5Gh3bV5%o_UYY|gl z<<~WzPuYs9x|jU)&{tn(I@`Nf9j-AxT3*#6sU&k#;(77s;{M`<8qTR-yZ48o3wyT| zukOowY}mMeef+s)IVU52Jnd|c7#lx7CTS{&@y}hat{km}C;%DET(5QK29t&S-WB zHnYJLXBSNQHX$Dq?*h01aL1e`+SO#fXaTo?-k5oTSfgMS@E>!o0Ar>ib7&#{2eDCM zhy+We_C<(;AFcCextrDfL0(x_^2u%THd|~(29qp4p0ucB)_KXw8d=!{n!TDVo(+6J z&QOqlVOP~dk1asn*I>2UEQZ`ds0UkZLY^_#VYHa_WrEED22I#SDZ1 zOR>XR?9khdWo*`I9i>+13@o(RjAc%4e`=9`-ef3Xoq9WrMMiT0vsjppBgL4_`h3CQ zD7MK>7N%QG1|!qwW7a!tu4)kQ>!qd1rl?&{yDc%=nOUL5b|Fu%2%2lQt07CWc|qnu zHt7z-2@FT^Na1;+YKhBu#dD`HL}O@$;UNsuFzmokhk5z}Z*yEHS#3Hl2Ve-pWh=&i zZ83fa!vPG{7%pHM>1#R09Wee9;~p4)4Z347491WHGw4z1|6L5*G4H)()?lc>un9vs zV4N|z))+(#9WjuZRw>!Y9mH~2MwNyk215|YT*lB1!!-;aNwyFlR8b^^7^h-fg)z>Fbs5(n1_Mhp}0*a#ZZMHCUpSB|6B~qFw|oB z1VcE6H^86Wu&9XL^KiKx#Kwf~&!;~WzLNY_AvM&ap&kYGc2H-y>&N7`2gO3YBh>Gc z)+&kw+#KXP_n^N9e5~FY+B*TA)x$uZ(R*%@=O|nEAPmlE zT$ns-XLZ)j?7bUsl!BkdAzBf~aD^YSivDz97xRzx!{ix1^NaPb1AaD69TfT*o%MSc z)R{f^0`A$`T|dK0zDPwpJKdz-MKKP{F6NJNJlJ@$_HK&)n7_>adlh`q3LF6ZERIV1 zm6*wSE8@x8S^Sjq3G{QW{7BY+dKQKWoRljEU>L+nc?z#>u0Ka}0yiAW5n{@TXL@56e+g_Uwoi{uOOfW0$(f6wdYfVjqQLZ0&MdG2n9JE*w{{HqYh#a47%Dw zJK+n5{)ru}0os60HTV?<`diEV50ddU2fuZ|8wfUrNo^W7Zfvirg?M<$XkH%ZtgMmI zv|yJ;Mpw()m>!i3;v&Ij%>7@g-giEFEE3L9_cZ#AnYh2hAZwh7)G&!8Qs{?XwmA>}L6W%MnQU1$ z@PTC$$+@LyXBzhg9$#4DWcxt2LV+MhvPLlH+8&TcHqlFe9?>me36U)c*)p�NEOl z$2i$4knKi$=sy%N(aUkJt0(#Ol$!H=J*DLuUSX*fGHQjKS|O|UAg@;Ns}=le1;0ko zu2HmWIrj{#QuHCGX+6-CvKkM38V`KRewDV$X-Yn&tVThTZvo^wm2^-1p7eOqubh`b zoNH_0sV$O!lYS}>p#F{EX}jeKv>rfihkVN^2mdApPkoTS$r_DJiJLQv1ccu$J>hSO zH;2&Q|1JKFelWi|DMyj<@Wb1KdgqO({L=m}+F!KWrLp-1>+aFBWa{~>VJ~R@Y*?{d z@qw5%Gv>+PH~`gG@sgwAYY$a6Q(!MNSWQByzC%84k3?oKQbvTk~X|#j#lw!>g&h;ecufc=gflAZ8;Rb=(U#Ovzp!%?|E@B z!G(brS0)>)LsB#HPLdouKV$Nn;<}Y9Ysb&KO!2Ev&82uwpby3G8%9um%g8~%cZtgN zsHvfU^=E?DQEXZkL-B_1r&0c%6{kR7Iq5?{MRP%P@xG)!#oN z>0SN-l}otvJ+0^My}|6K^@RbyNP3nk%WjQT~sAm&a4S15smW`^E5ew7z9mEUkYvDueO| zE{>x7^Ge6j_L^=w+J2?k8QQKoFX=h>(0jD*{Zc&T-{6x)>0hiqLivBF=tS{Pvn-S^ z=4b?M{}2r#{E@+%!)W`px&f5_@0l$qu3WX3(m$W`GL_Trc%12{b?(F>%2zf26Uujg zwfzcOKX%_FTE9`VlEsJC&s%oV_Py6u(fW_CQvI#k`^}>C{mp-L(;r?wh2ns3I@9*u z<~CBCFaAX3Py740@dvejfzq!#CQ9S*P=G#D~UxfM0!+hpp zK8rA)d1*fPq5NB(x=)1l!ozwIrS%fWOY0?*m)1+Pn>~0vim)DeSdTocN8Ys_bpaEG z_2H%UUe8N^>z%F-yxynq(t5uxy4Jfc;Js@a9`Xq<<&%ebDWB{TA)oM4KDq9uALlC` z@|6hriido~vwVg5{ja=Y=B0diRh07KK9E~4^|P!aFXclA)gRvLArbN|$X$m1=JJql zdC0f#%&XSz5AW$m@>fA#Z8^o|G5@6aNOUU2r|K$y2`-FH_fU>)Evz^wqc z1sn;u1K?=DF@V{Z7+nCz0*(XR4RCkB_XF+$xF_HT0QUmi8*n_}K7jiIP5_(;I0-1Y7~;Ub1x2aV+Xi-7dJh_)Y4OE?gPl=-wr0tPwOx9mw9k4al?pGQlu^g_jmlnw zGB@0HZewf?8o1%Gz*13zjTk<~R8rBqZcK2`WE%6vX?M(K{1(4ZsF>7K1$i?SZC zi27yZ-Ue~V%(kD|UpWA!EzX{~vFl-fl=^V-mHjbmQ2L-%3+JV(oN-8hH>lUPSEEtd z#-5vxu04%1W{k;P`tBf+ z#=eY_rX7F0>pLlMQWi=Geq;aL6OT8DLqFY~ ztMlLg4#n>sS!jH81WGR`d+wEgpl#H~-Au3LobW0&eD zAKr)htvR0lus#&^-&rjtO`nT;8&2Hcc|#QHbH40a*1tBQ#J(Bl_I|eCp#%pi?f|3qxoc&4lEIdyVD%V}>i84=rtz9?HaUJ#7 zl}EQ*I28>TeaJ5^bPI}q(rc&xi89o8Pfg{buw0ZhVe%8NN1Q^Lo91j7xcYUJXzD$1 z(YYLyyj7hN7M+05nryFCD<-1;YbwmmIzNXJ&Ru-an)No~55*j~ICj1w1!;f%>cpxq zG&s8JyDRGVE9yOd$IG67Cbig^pS{R+;&f~wya#h@)amsN?s3@rGT94DkFSBf@*J+O zmz&{={F~;6V$3^#tAWJAA=sQ>N0SJ#2Y_YLWFgn#{DxWj2AXpn7c^}7v*~}6;ny@i zY&U%u>byLgW-t{y@78?Te;;7?w&VkH*Q;=k)5D8svN69+Mmu#1?Z59>DR5ab008mH B?8g8A diff --git a/tests/testthat/_snaps/output/output_lm_numeric_comb1.rds b/tests/testthat/_snaps/output/output_lm_numeric_comb1.rds index d81f9b74d458362710f62bd985d167cf736a99a7..acf46dd4b721a01fe7b0f246269401596e0e671b 100644 GIT binary patch literal 4094 zcmV|r{DjvY)jWCdVA;n>2}wn#oqDjh9$SJI;!Y@qM02T`PyRd;E%(}B3(kuw{s7TTGID< z#lK-t`Y%pvR(WG@9xzJxbeQP_!}U*?tDLBBIokBufE~+7%h5k>AHOO7Y|96al_uSC z-F`vPYpGr%=!I~Wq+P6)+_Yenlk*Anc86VpvZ2gj6I~gls9IpPS7Ld-RO>`P#SXit z1}eJg;tH;vaF?S#1KWzCq+Lb-baZrF-~+PQL^lSc1z|*`=n*qK;u4z_AgOXukDP

g{aCpRoMofLoUDD)ghpJJy-U1hSE23J%m&n<<2Bm{F(LY z2~y^$ne|rhugRd_4?P|J(_E5i+{8+BI2pb_@k(zUKDW%|Ev!1X?~}}L$TH2y=Nk*# zy{U2er^aq*^v<^3*!0XdYZd*-lCsv(+K;_ik@|?G%|C7VBD8Erl_AM=Zt&5()y<<6 zd(e{wNq4@`{O%6Y_mh3Y2GoRk6Zdo^4$ql`{?Q)wL^JQ}xqt2dfN9^`9czF7&^Bxz z{i8kVNtxlMfosn!<}MdqrL`8iOA8|w!a>3)1TWn0ym3Qvs#ca2_-I*+r?L#J{hZWVgZ z3a7Gv)i_+%Mg<)qM`X5%)!1mL$69N(S7XFdgJ|&}*lw-HaWp;NtA&I=gjQofJe>=cZR{&_3>kyJ$vj9rm3f zvN)ETYemc_O4(pDB#($A=NGEFt&d--UMYOa1iw-lQ?qEbSU}%T)y{I!Mk8oYtK2*r2l)j=e*4Dk0r%+Dsh&5v=KMB6mDHT&HgUfd%w7-`Uz5CUq zvCEXwR!Tc4-3fdfrT&y!C=I2=F74-hF$!-`J8GlJqcn_C6xe)2DU;H7ln(e}VL527 z5adNqlS{dma&{B(9;I6-W%>F?D4_C5l;=<$>+4%h9P~pe_+&d~JoueQbw*zwY6$en z86cLwh0;b!?UW8t8c3-b@@a#692R#IEhj?X*vJ^)(nkjRHYcKmdMebffO;a-k&iye zey@;ps1JquPXzf#l7aUI`;lYiUnd;a`-6Ts$gv&|_9!3sj8C4(#fLcbhj?r^h4V84 zIOd6UK40t?v`0PGQIGKs0e%IC$9_oV`f(taM>^M@5#qx9upP8VJm!V%8v&2wl*0K( zIkwvu>KIQN@NxYE{Uhgb$y|R9@1j168wZRF^Wnz>#}oCLTzi-=#-GOFQaRoW@Ys)h z{5(gyP_92wkNwBbC-5)$*GG1(&!j|enB=vxh|+Aqw@%S(TPPIdH9?pUmd1GBpd{IIeJF_x%enGX1QkORvzAMA=D*2$_E%b{Ejei_~b z_)^G!9>h`t{^vovQ&hGK!S-5crxe=780M?SjqP!4Ut@blI1tLhgUGRLP{|l36l5q5 zRq4=Ah>Fy4NxBd@fe`pXvm|V;D5|u3c?JobxG2qFsXC6cY?xtBUnJInb zyEBIKT-*V;q$yfKJHhZ{G+Nwi^t(I z+oa_Tm6h!hkzmKJ!5G26a!P;imXmU=*t*cmvnA&{%n780tqu6+a)4jX{52m@dhnHLL^!D*TRuJ%7^hc=#zKiW?8ICi||CMLi z6fpb>-@#st6QPHBSPye!_qhL^bHH7L0gt_{mFm|4IIFoA7M)*VXiCt5yGC@{q!s3R z$y!~52ju+wo)GyJO&9mo@BIMx)jwi>{`dNBhsz^X3W4uT`G|ZskZg{6O`mskEPUk1 zcP(`7s=n~$(=y+)c>(YWjxWfzw#Me>SANLWx;uu(hPOPnWlOtfh5>jO@KBT^9_zB* z@cLxAUf*yC_+jKS-cep0;HSRfHLx3kb>OdZ{Tynt{m`s-XF$+cG*R( zu}L$oU1_574bS)eOy(^`%`Fed#`Zh+Gl}C>GCuXtdcdDXJ=pC=TmZiMQ#+66>~;m< zn^r8sctBps$ANY-e!F3&EdRpRD9c}**arN7EdO$C8Swe&AMo{n+mCv*M>`JR!0G2B z4&^fb;Jp(u9?tIp-k$f*m6CB^b;SO;1 z{T#lL$D?1A%XsI~GW5^uF}{F!{P=oomyaLqWPHgx62`;jcYx0y{kP!!hxum0`HAxx z=NrSXKc55m(;QAh9NKk-2i$JN1>jZj0Ir#DN5L1h8Y6bywZR0}y9w75xZX{;{`jwV zW3PeZuLZo8!yQ2!)@A>0=Ptm9qJO{*;oIZ<8#sT5FdpQHZ-Mm|?SO{`v`ghLHnkd$ zJT>eOCf|DgmI>Bv;1wKS5ag2)_WYf!+9Mvq-CXr8*}wc<>^|pGf8D)*>go8p@^`Uz zx~uPQ+&zuIRQ<);xm5kd$19&FzEZ}2+j|C3jACfD9j|V;h_(b57fKLWK1^86p(|~6KHvz|lp&#(G zaAHc3w&bTgPiC)4dNXwYRx-Erbh$?P7Wlc5qBKh`O^KQaPFaP?ek(tp`pED*wyJI@2

    0Aq50F`3KfWyV zcdczB{ZE9R4bdMVnIA}Bzg;_#-5 z^3i09_~1s{Z}l|qgEcjO&m{SK9=>m5+|}gDA+PO7a10_7-zy&Q8M{h@E?r$5u{g~& zq9@Co#ns1f^|AlPL!lmxSUJ!MVaJXQG(vc96`(Yl&7IDB@cmX-F9|W#kV=pLi{)rq zQGdtW*$lIbaEh!iJd#WKBAWFOZUBxY*Gm?U^4+rUyJx}wgrURBAE$p8!>_yaZtL>h wrE<{9 literal 4417 zcmV-H5x(vpiwFP!000001LZpjSQJOrJqHXogP?+lAR-&W&JF`=0v$`sw zp&4$Rspu!rVVjZ4`U=IMo{j%BH#gr@I%KjKoy;LM5QEB$E@P_8IMpI}QOX_IqQXE# zs@dui99E+x)hSrY9YQ%Kb^^Es(Eia9vuZL!w15+#8$S>Ws4!MLoo1tzWdxfuJIp4d z#T~iJAuvZmaL0mOz<;bJp{0g2$SN}F7U6%8Qx%2;h*07$MjZTTo4?Gp)(!%F<+V~y zFH5z*)#j+8-mtv-vZ9iC=O???$gVAlWZlI$v~V7|b3ogEs6tPZhI;HH**lF&Y?Wh= zbodE%{d3O?fsf^)H2sU@3Xda^k3o&Xkpowz^Npj*uWUb?b`?!m_5MrUsHVoG$oz8| z&(}2;SRP-n;p!qczjsl|j(+NI8q-6xLDM!pCjQ;OWPQ0Vp1;!VP~O~4DQqe=1g zTQ?nFk2;;*p4_D}pfPT9b6l^Sam+r`XMCiZ@YDFe#k|aKKia(Lg_WyW|I9wqXM9wm zdop&>#fKH^L{nz2f)P-|$oMHl0Ir3s2=bwjXF+Gwtq; ztJ3B$*SV#Gs7D5iv4VB#?=n}Jtrg5;q1I?}F=4BrTrj$-9deh2TD!$)X7+SegUjJ* zhJw67st#<+avEs2Gt5rrR%EpkFF&723ugOaYE?B$hMQ!v)flRb%)wCi#+NF%jBF@8 zL|Gm>dZ_ZHFEOJ%O!puejAoMw_?>0_)EF(;gIYN|%ENZLj1HHa7vbS~``&@>>Zv&Q zCWjf{mzdpS6z1kQ?G`hW4|h|iR-2{?j2t47C8s&h-G&HtfIEv>w z-e^^w@io5H;?848BB{VI1w##ntr#w1nZY320kYZ-p6nd!wwAJ zV;bpe8OG#p=LE(X7@q;#eK8bbD1r6(1oXcR!(Xs$AF}Q+yn@Ui3zi9ywaqg70mi*X~y`0kAR62osWq)YkX zMq>IPjPbp0(C!KC{v7?G1i&3Yzjp@x zwUA@&7~uB;I%`LPKBH%Dkmzv=|Ck)J$K+YRi3&US0A_KrwlZFp7pBkntj+k$-|m2W zDCAilk`#H2Rm9O((VrgtV)3zlm_Czdak2jOAkW4rQDL9aS-+j2&HU*DI5WoEKEq16 z1Vui3wbD*ej05wF#iJY#HlB>1rs$8w%lz-7kV{hFV322dRQj*POwV7DPsV5YQ_d%_ z&w1)2S?gmk;5#5%D@S7};G{Z**ETnbqcwrMAFdxF=73M+hGTdH^hlkX4Dv)4*ClQo z(2GEi^py*G1V4yj7=~<4sxK2jpIwgt-^f|O5DepGzCD29SD-%@WC(2%C)L`?;1_9^ zLJUN2BG@6!+S zU*|(NKt`AQz;u*+ox(Rc$orT3tn5b~voBxdAkUec9>BHC2c!9O-mx=Z0%d)%7}&Ux zeY7KnIM5^a;_(=|VZiqn^k60o^vKhO7UW4g1b9R?QWi%z2C`R^%`_VH2w%^64i>tB zOaRD40Z#>e>Y&{P{Lw+bVGu`W&hy+ruDe1kI_N7DXdxgM&3O(x)Zk+r$aDkWSk59r zPY*uE$$Zp94#L4!Jn)HJEc8$OhymyVHq{VU6xffE#UCn@>i}`xx-*88S+)Zz?x18k zr23NTTqvWlkq?m3*lO-EqXSnGZ$^*sOh0oJseJ8Ca8*6J$! z%x1c)<}Z;j7QB0CW$;UnkA@v7Sd3Ez3wxf|(Sv*UX+UVX(d4o@3>Kk=$avNk+Zhr# zsamRG^t7D!?!k5#Qd!9^5dwN-4Tf``%1Npju^T0=BRbznwI@wt5MLjT+6xRi|$L_mmOdBmGd$bu&+7G<}=56 z=8qiIZ3ImlLF)tLey};EgrIf?Uwx3i$r??_Nu4vBB!u5B?U%R3Z%5GIe=Kfe94u~5 zs!?P-0`Xqn%ubpW?*Z?&-Qqpse=Nc41?Rt|;p?qx`_b4q!~B2ZGMNIp*VxO`+hN4D zGY)8HtZy6kye#&*YtXS{Z*!UabpV^yiZ>7~-$|&7m;q;{(QXlD8fFOQib{4su6%*x zN8h=$a$o)BFK}P|Z;a3LLf&a}xP&s!`z5H-Bk2Z`%+W^vQgiczuYYn&#I>tp<~t=6 zuk?F^;>(&WiubN8B)Br=08pGoDdzw z|7)B`h(*0khZhXbc$=1 zZS|7hYdP9CZOWS4pZZZF9dr|PulAWaq6z3o_!H2c`nyFr1&8h6s zJ0jvQ_DJS2{rQV~GbnDFI9^;85fL4}V-CTczmIF8?QW&-Q29N}22#0$JszO^A7avUr%{rIXc zsQkHCdQtq{Y#WtJKH81)KSBjWJ|X<=D9XQaaWtiW@OVdxw>0dd^docrK=rg+f5Yt4 zHg|F{m1|tMpUPd2f04G2^`A=Hw+^ge`JwGAwht+P-;D;^{`M_uKRP~eHl=^s;ae~J zvGvm^4*t3~%NHFJc<_e@e?;(y2Y*E7 zkK8_vmxp*oh*yMoc^0qCKFOyD`Q#y=Jmgbk`IP&^om?VHOh{|u6-(Q6F!ozwIrS+1^OY3C>FRhm(FMsfQ6k$E`upW6>kGy9+>VqFH9>h!Q zy_uKRJ6#`my-(w%^?pIpB^lgD_ep6n8#p72sVx#?ve*DD_Cl?e5U zhkC`cdWGeKuC1~1Qa!vbO7-v)(0fzrXK7Dfs)sIWKlZ*UBGg;Zy9)h1%|pHAq29i~ zV2A$G*vvpuzbeX_>M5>I{u9MtB;`_k{^AybEBg))@bL`@dHzn2?GY>4ZZ7)>?4SN_ zcb{{ozqZ~#wYPt**}GjoZRNMs@Aj6zQ~vGxxl{h_=yy5}ZT0_d^U~U{z4Fjr?e>cM zPS27l=NPXVnZUUZU)eXml*is+DbF(#fKSd$+IqIh1;MN{f${v=DMai$`GP zBWD!gXu$AcpZn#1BH$#z$$;6%04ad`0!{^-1~?t?0Kgf5;e$eSFW~zCX8|4vco5*h zfQJAc3V0acY`{EV7BJ+2eb0^fXkkTu;zm?3FaC4?T`!^W#RpZlPVi{t58H|-{(dyd zf1!Be|9p^%Myv@mq^`H3k*df>)v0Q9?_@`xXI5=PgT9?xmwHBrih~v&-uOWS8a00Z z>ZS=HXq2w0Hu-@Rl=n>BtGeTZ(75YMSDoIQgT`);=sh>XipGtf+adhfo@h+$l;M3s zL^S5i%swaeyV2O6-kk2gGZqzXDxUK8sO~85+QKEBvdhr8`33VPkL-%ZNA;~=lJzng zv-?TGez*=5R?o;N{xk&@1|E83X}6bA(b#trhZS!_xnd{R@|#o9$cK-`Z<$<*3O|hK zz4G09G;CqVGjH>x7lPUM)qVOybXVnTJq*zrfl* zA4o%aMP19w-hB$?265YdL}6%X+g*0~+C_AJJE z$aAgR)GY`NZK%pl{G=ZmmU6aY%;_sHZM`!;Kerqv4b0Ye1lQ z=^Hd}4MlnHoxS+{fnYTL^t0Nc?kQ;4_s`yAd+K9!-|77k?<{&7#hmuP?5ACZ(!LUY zI$CuP%3F(ehLoqHyd$RIZ3#(;uWNqs=I%5!h(Gsg$38J=@R;d`Ba+@nLsrii(DXz! z%F{2{npJ2<`8Tfxy!6>bG`9JVdk#k?p-e;1ug^qxL0M&~?;W`35XxGTaw%&MLOG4! zEK0oo49c1}DqmX~g@zbkU21vb5{`RMW#x}uQ2yps4ND_S(7oONx<1;bLj%7o>~bD; zYNd3wa>QacR2p6BhIB=HfTEr8FFX`#SC8EXI)3EXu@-v>@2$L;dV`_Gc@KNP)!Iu! z7OG#F%kv3x7;eZvOm3;hq6@McNiJN1!~Kaf$q?HBY*QZbpz#AzO{nQtdv23t<0sh@J0}ufRQToqbLZKVr$j;s zjnevGdCT!kEx~Vg+;oB9*LD`G7{9VZ#eVDH1-DSh-q)@s*4{v2ult|xT0hdM-{Jb3 zYRj#$m92{s-hS`M*2)B7nQul|wv!*%_u7e`_sc4uZngOS)KkCk%OY#P*fy7AeBnV_ zBLC}+X_a1Is>k(xv7PX1psuVoe~q($ZO!+sCzkwIrSh%vud_|j{GqikwjGp~!*OaQ z<|{Zg=R<-t>x&I`d=W&06NzfG#cY6U?HG$mZ;Q=gtO-VQKD!=kD7G>?Sr)US2pXzX z{VZ8OJ~qqDSk_ky3`!D8LqkKI+@U;^-p(9S0?{{L@6g9O^tmR38>PU8Ey@f8#~RHJ zgUzfr#o7&~0-K=#6WajP12liM#H^Bx5H;Wk=tk`f%waRIe!TK5))JE*TK>2fgVlil znDgWk;_XzB;k6k5gX}3VL_sVfe+lB?C$_ygw>JNSv+WD|@@u(VkR+*IW{a&@Z<1ut zlNE);JB{R8CAl_%WzCakTWqF=Yq%_2;u+J%wgC^?}bnx5iE7Pt<4au@_Dkw&pZ|^vkL>r(5+Qd|sAJ>eDAqr-@6-oAU!8yW;?3*fvRS6eHx@&xm5>&VOvD?D zuo>S9#bIsMW4sS1FbegzA?{Xw3v0X4K@pq1I)TSOL4Bz ztS1~h>!{FXDPg_(n00o2vDIX-y9l{@M_!SWptc(f%-^8t27{F<=n5=0UFjI6WVGw7 zvm8YhGZ6eNB@SzeLuWV6X7xhtm}PZVu_BAjINK@hOFhz=^o6WbFNd+%Xf9+P8_M)~ z4km2Y6&Uo65}VXzLz&g2H!^!#v(902HCuqZPQ2Nyq}g?}+nGi?bIaeXV~KUjwKD5U z%*Gid1`n(fyCGlaF~==wEse!7q#H&4K>+V%URayOCjzVHJjL7#0EENNN@a0YfJYWNPddedNBxdRRx1f*}S& z3(&cTp%;b+7!HZPkQfvl#fh&-#<&t=QkySfcnL$Cm>+H^rVqe43FBZfw~AJfha9j; z3P=dp9gTTGVh$Aua&jAh#Gi*@Ifm01j$y!ci~9)TIS9)I@p~b@j)2^lP;YTPK;bLN zuL3Ed9S!Y{(2jsM!#xg@-x1Uu+MS@?lcPTr1-K>Xcj-fajpSH64EUXa&e|cM&*@6&)g%H&xdqGfpum&MUt)?X0# z#o}ZAFnuP^;$r;=fjqlU9c1EN)`O4P5?@k5 zel)~D;!Fd*Ebw)p#K-Y)Js#{5c^>3*ApX(dOE%aa4gC(1=uQINsnAaj^vir0E4goE zjU($CSu=b97|q86on31sG$P{#G)DK5@R%Kq1f;qe$+fpcU+Y2FTSAxmz;xt%t;{zm zNc)%iEbm7evnOAqAkCSS?#(sM2cvm$?y)mpd?bCb7}$Ly>u76E+>H`FvY%;>Arb?A zzMz}p0MH{3=xUHBZGYeq*;bM`0x^)ank=SmL67i*IM-G$5@ftVCIom2=u->rr@$XA z^vm{Gp`2^)MXuXHEL!NR1c-&oFCfnE^!7$Na72yzezw%P-q z$c01y#E&q5r@*EX;tB!#VUqY;NaR{V+(97g4?c#7JhB~8HgN7oB+Es*ifvOK<5Wc5 zz(ZHe+s2(lIKE1>KNN}@xmFR9L15*oYn-Vz#{&8;7j z^}7ErS*Pa|fx>qKKb$^((=q%np!u@cXy>nDCd=HmwmxODt#24?2Ays@@vv09nPzD#KO{ zvYL>}PgWPQLbZqfTLC6^InH&ODLq_Oa-I)YrKg{)jw)q3N|~NgrmOUzuawCvW%5dy zyh_Gb$@pr{z0NCSeMo6)4>Y;1%7dKBgPgoyxvx^1Tu!d5lF`&$2p z^!L9OH!%(tHz(F8azA|VGfo4mu+n!^|4PICeb&FX<>_tO|3%u9W`o^g82WR5Aa`H; z4tvA*D2%vf#@@}0o7k`Gji%cJgO(ld8}p@a7=Y?6dk50^t%xF<8L$`WttP`P-AseA zu!y}{kiSCG(6>Gh*=k(+9kv?(#`s)sjqMhj!;sIpze|>TaOrq_6 zXa>clD?WCU|A+orir3zFLA1N#bE-G!mm9R5f3%+YPuq+AeiQ91kD@pU83{h4KH5O_ zQcAB3$*2l$f4gH0kLk;9AL&E!>2afkwZXw{1FOmj4*faeG;K$Y-$msQujo(ZPIY{i z^6!RkrtO^vy3_VI6Vj->{~H~t{K8q2DgSt{Aj+=|xI_7h8qv;|Q})re*Sh{xeycW< z(!XB&6_x*fRcDHSnroqQG3O&G{|hvN$VUZ!5JLG6Zf8*X{y(;+cz4B7Nb`#;n6g`T;zU4MKf%MWeWSU#itqYo-*`{sMpe%tmwb1D5~ z%bRZY!xv4b*zZ~w%0Fm+O3d@!pQwJduhvbzMc8UeuX8*v-iM1HZC^S2f}4D> z|5Y)Mg&U~eg>x@bxh*roD8BJo;gF}rNj%8&AkTxm0P=!VKKp`!2Y-0*M*x3# z@JC?&NbTczd5Bklcm;@;XYoqxlY9!0Pag8gLp}wTPpLoL<)wmnzfSUSzXb7q>3Md) zh`e?B7#_xhAdZJn0mcIl389e6JH+^F7FK-vbp7^@JDe$sc&Jo*WRMp73HlsdKZB>lF|6 zN`QLBL%rfzy~6UowVTYmSP$YnQD;V_77y`v;+#2U7mOTJY4 zr@u!%=REGOsn1W%?cc-fJ*uCk@|)^+bIU(2|55!sF8@*V$Gs0t_5Vrp@~~fX<)OLS z%@z0K&e!J7!;{KCY25Dn7`GZ3#W~Miod?f^$6o5mk20fxPmU~`daUW`xUvQ4H1WvO zCAKq-!H5H9IwR!wYiFIg1 zdfDEbQWYA$;F3Q0ulrF}_5MLO-VZ<{7tFt3HRmcyKM}I!{YC50$YXCCtChJZHTnLY zVehF>TKW0^`0?^HXxKM<3#V&;MVZm-x`ZUQLxX!Mf4O*MHX506cgCoq9%xkB&6O`4 z?SfJp`pzGh{xiz>>w{i1*Iq+eL4SEUeVPGfb@jJZt7F}7zCkJX zht)=3zlBmYm95_y5{i;*KTq{*osBYcpBp|ZBL$`H8_1n~{Sr!wJ6Tm*k&BZ4aj4FI zM}yF|g6F1Je2oTWzVrGeuMP-(@ztOS&AzSsmiVKjvjK~y_KZg< z8@tqQ8!-=|@0LFM#qRAW`NO{*Xm_R#CBJfS<43ciQDVZL!hk;~ApYb}DLYOaNBpcs z%Ihs7(cnM5vHH_)p=ii_;~XE;9F#O;sQ%uD_9(T_m>oyUtY~n_=A7qEhf)8GX(^p+ z1(f*4`hco~6^-&R{7}ck=ZdGHUe^k9F7n@_l-GJq8^Hyj^b7M(+)d0yXzHIX?e{eI?zvFSWYFV-jJn8%_%pC3KjYrY!wTi5BCw@zI|2@7)`tmx#6 zQqJXH-O}|C>i0@;#IE7F4o8(9fb|ML?StFB1zh||T%+P!7%KL3MfK+Wp0^ZZ6b&MM2Whwz5VjTxlVH9Fp5 zZ?YctI*^5`$#=NEc@Dr0>6g%r)mU`CRz1mu!(elMQ%y3&7641`G((=l`Q@|t~=miEjv000Dk@@D`5 literal 4647 zcmV+?64>n@iwFP!000001LZpjSX0NkCm|4!T|q(0QbnvAiu;0|VO3C2!L2S$LkJKJ zNlXHw?W@{it+mx^_1@~MSFKu?z80&mdi%6JXra4cklaNK7an1f1CgRXFD_JIIbDTaUPsXq2N3`agp;JJu1CRUrcL386x(=5J2iE zt?#Ax?9bH_{BGL~X9<35Yq1C8SGHNc$1-s4O%$^0t;>nE*HHM|erGy98sX4ybM0M~ z`DSiqXi@L?KR#Gd*;`oLEF(PI!B6OQN2+$Z ztQ{Y#d0ISc%O8W1gi=>m_fYPT&ZxC9hm=5UmanyI{U+&!bJuUL ze`~;TVb_O`UXLr=%db6?{pN8r)u9i3zWUUxzrHtm5`Xkj)=pdD6k(HQa%s($?GF1) zANc%LE+VSW2MdL~@vZFZ7sRmknSF;o@cHWe1LtpCi;zt(k9ft6bd428v7hv?_a$Zt86phBNz2pYf4m zE96q%mp>S)*QdL$SeB$UN4UX?1ocY|<3ywe}LL)Mb5{#i%tfduo%$ zZgp1uL0%)yaJGTjG_=`i1{-s$MTrehA-73uPPf8%?3B)Gza1p~9 zJkGIq4yD;p;vYp7B!>|HF1%~;6*OOHegMgtO z1~N}~h(2=PVLhy)NWlTKKkl#Vn8S3qz-j$<26a%<9=y&Kr zfA!>8JskM$fzIk7pwH+%w~F*gnSV@<*<m!-#nHcaB3|%WTFbw0wbqddIZU{%$1a1_RClPbNCvvG6UIaa|&W!_kB8%50 zZaC1hL65YR40;5Q$1o7XAWmFgMuI*or-N^JJ>mvn7$NcPc?=Uke<;Wh+E`9pYsZ0K zq&@~>AbO+04k>HF$83o&sUSZRVjyv*fnFB)+F#=17$}bcyF{J``5cIUB>0jI_D4dy z10=fRL3a|glLPHCA4W;~jqGt`Un6^l4*;Y2xS_MMT0$c-UO;1XFA0y?@sxm6*HcpV zmguY9=z2@&QXiO(oUfMoCIxBxQlI7RNMm;Aixi|elhVDp`uSiqFU~b~=8KP{Efxdo zH?oh0Vu%Dia-xpL5QPChU(oxQ0MH|+1r^AXx*za}Yzs*off&eMO*Ydo&?EdH&UvX2 z1v1_s69PO1w5f)AYw$-6?XpvTE6#cPC*@}#7B#fx4>UiJ3*(#@9ZK*q5@e#lH>V_z@1!8f+>dt`M*vE{We?BG(+^4gy&}@G(T>k+YG~ zajKie(c8HtBHe?XnV#T6PF2Ubzju53qnyhzu4zt&E>F`WOBxJU#3y68kYzid>@|1VjmHzR?<)&8GN8MEOqfAsR;%O|JJ<)JQIo|-z* zv&#zp#K`gmnI}8)_o}(s>>5Fq362=WL%c**QEM4zdoq zrchgAvl+A|&Ur5Mbe<2J$X}(48B<9yKCbJYs``fvBsP5?)rUWzIkz3?Wz^>BjqHv? zP2XcUZbj2rs$S%Wn4YHe%m7nY`WQU4|_FDiZb~(;@MK8U^S90#J@l{;?tA3?SM=8@& z%5;@(^p!GsrA%HallPGEJ!E_p=eo`-WNk=kDmOH_u7?{r4>xl1cICcGX>vKau7`}K z;_8nbcXW61?(Dd;FCUlwfZdH*Hl8`oIew&|Y$SLz5>#$L>IWNBa%k4X;I0k!{wO9X zzI+x*2)|E!j(9BoG?@PWWpN|pU~zNe8b$iU2S4M~u@zSOTJ(QXaeYzx&#k$8k^6s< z_O#hxT?|8i=Fg<})gQ2T$&bT`Yhvu(#JG{|I^UhUJTR!)`vyb4^z8^xy=5c65< zWHSS{BCW-!pRSpvHxw4JcN_BeS)TM2R0Bti3xB{-JTQ0?`Jl9eDvqv9_53b50xXADBvO$Kb;N-OYOJtdQGi~x; zg^kOWotQN59>pKeeS_k1KQ+Z)X-89e^O#{E_bb)wapVZC|0!@I#l|IZ6n}KRl*;#9 zaTDy#2e}PYuS?u`TJM9VQe3+93m5s%wa-($`ufYF-KF19y#c>or}g|pkC^|ozQFf) z(aw?>ij$Cm;FGFDbyP2<^wOY=s^I8bZR2=MUwrFe4~kEW9wDp_4h{>fDkr$r-y%=Y zdeoS0RQ|xyzEtjb+vh3&Zp21f-@3Omt^Y7KjmrDI)0WE5n?8Z^k8}&7{Mvxql&`1} z?R+l>gvX2Bq(L zC6wYF%MVfd>GBV$p6ZL&n0;F3E-s{Um2V!Va`&VEOzUU6=F$42BgKbn0an`Cz}xVjc_EQN6RLU!`)JriN2|{p-R(N%6jki)xd2kmo_32YCVH z1*v@YSv?Q_@ZgUC{_x=$_5~Pkyg1(CcyYX$cyYW% z3*vYi%Ipg;o_QG0Jd9@n#xpOD=YCXv>)fsa%oiT!iy+RIcwU?@>AW~!VqN^f^HG5L z$isZ(VLtNC`55H;LQX$kobPqKIN#~~!1H|yFV6Ref^)tH`R;z;!NYpOi|fftyttn1 z6<|H##r5Q&i+#La@vvSAuwL=7Uh!)}z*+a$KLq#ZA=hjwZ| zqW44r)?3iK2kpJV!+OiZdi&+Ps-R;LJ$=afRhWNbKE?Cnwov?iY%;|+Z|xwssB@~f zo68__^p2725v$m4F8L zab!mcm%b{9Fs9y#mz^+!0EYk$0}LN1J3fDC12`6N9ANf2L`T4#0mlRG1~>t5cfdUW z!^fxF6vDfCm6h1UwM%Aiz9e7BJ+2ea((~J{%fwIlU9gp4xu@k2Ocp zNb~HS3;M4`X*YVGUu1kArL+$@g~-`B;V0%Fq1Uor}+*AwTRYoT9#mGGo_t2uX}Y1G_1IJ%8{e zG(6+()DcBp(1^4f%U(Xz0j1XUnln26F3R}JgKpDSUqx9#|NeUVWIf92=x423sY8R8 z`viykUO}1VpFLZ?ttZN=+Lv|B?{zeEPEFWl)BSpR$lSMZ=H3lS2qo`J+%;qZN~-;^ z;^Zf}C_U&z*R3Hxpp^SVYGbe6M5&&Yp&txtg_3K(N%alQMwxjp3>}e?g3@;P=T5zS z0VO3ItEyd|hmt z!hk>bLHw~_QnnmDiumdCmDid_qk(^VXXRI&!qA{OhM7LbnJ8)MVC}ti(I~Y??v_Jk z7BsMAW6q1l1E_DtxWr z^s{r0-c8IyX&sgg46GT661I)psJzn$rO)cMviYa?P{zVmGq!DbgfbFZm}@4#ih6(b z`?`}+FQPWHJv#qBVh?H;FicZEI2$GZ=Z(HQ4C_$p=F^+Y*Svz#jJswpK0OxoS1l1!KX?`oau8PV*>Gw0oj!NfIda*Vs$21!C_~y{5ZgV_Q zpEd2Cd++!K)O%jegQe|!QOfE3%bPmxM}6K1j@&kMHcITdHuQH*De8Xsz=@6>mY~%0 zem}lryMcOsA5~IzBo6hxkk$GoYAIWSRR8!!#iA+F+7mPhvU+z}y~qFJ9Z-{c?6|-2 zBzKi%*h6?j<-!coXzE?>us2x^y$)oddgj}mA7BUIiuAMW`f4n?W)>~Ug7rf$sNs^0YPhmeO&jR;o3YIIi5h+5eehm%`*5 dc*hH9_rt@JShBLXjRqSH?eD%`Rd;nWEtumt4X0J9IE@Zpa=OWr@=`J}Es`=M9DpI5 zw9(kiGb`Tjc9h^{&$j%L;6=q#LK)v3)3kZlYq~O|(_KD$--u?^ZNiwCmxPrb{oYG= zt-k(dfm_EnzECx|(w&iddh0VYHhTDdjZe(yi+i~5Nfeg6JJgOs7WA9`=&q9<`(cYu zRIE8y>+XWWyL<<@UVShMqB9^>hHY*uF#G&Ey` zd5V65?6wC}Szloo)Q$L0OH0d5r9&o*;9w4^ff!saIE7TFFxw*fP%7-$qQXE#s@duk z?N-5(>JTjzcCi8zy8_$-==f-fSv8p`e#DA0N{tCpwPihBpK5hORPdga&mDfr+gDkrNR-3(= zdc#ub&x%UsolbVGkzHHBvhMCvFL!~N*DAV|lHth>1bL}~{uDumRG90aanVU`b&3Os5W@cj)z>|29#~B(8u$a<37q=xTC*EANXi${LSZ+2s%{HsC zLA2X|9Bwt5Y}K>PR)KIFtfNZ1t(Nr~WHma3>Kcpa@DgSVPE(bKpmm5M^Vcv(6l#V7D;u_PyHUq75UX5oTsXFeRRI*M3 zoaSn?wUT)()(a*l6Sf*FM8R2Wm%A+1*H{EIv!}Njopx_C4CIZ{GG+Uf!$`Y*(ClDt zg<6d)u^zcdtFhKVfX~kU%W%9y5VblH^g1UkVHbmFcU)^hTRx0VVMyi+ZngN!cdQ|Loh_) z>l%!EV*DozA7W_6@ExX+zE)%03*!?Qr(^s%*dBjdmMxjxg-S+0eO~3rTM4A7kg{Y->@nGcg><3{#4vagXnBM5-eg8b0gwO&ReG66ti^Z*%; z+0n^BuB($>2g>yIeslw6bh!^qN6FVKe3OH`f4R@fe&jLx^F5d?A2s5 z?GAc`Z{WNK0dXJ`2r^N?Q$e44X!ihr^w4iO#L_^Mu50lAthPVwN z8wx%~Nj&n*qxL+lHFESMZIwjVuxFt=I6Tv~aQ@H8?*0+Y=kcs#p7?z3rb(8J7`~A1 zjN$NJV*xBdmc2s&p$fA znhtYE?PJDTTP@?obs-Rr z@)`wSqu^^f-+HD}^dYBd{m_)U8b5LxKXS@`mA=YpN;##jMnThZt>=zEx<7e;cKq2_ z&dV^s{^l&3&m8BSKXOpF6Ey7vtsjv4!RC|_f;$-e^+Eb3YcwG{bwMLZ2){?#FK>%q zi=e-sEpBHVEN+gS8sj>K_wp9c(P!&dbsbG>_3H0uOHjU({JFI|IA}H%V2M2P4VfkS z->~w-NxSjoa-~amDSm@bNy}4X|tj~r<@#3NNs|ZywGvKHaYAoVBzQ!M9vUrH-IlI}6d9Chs8Xeuk98C1W4h>3VtX+9R_TU#0lf zMNd+^AXHEBpM}X(-ZrHW{#d)e zh3e(jof$p8IU@d2Vlt2EPhZ-XPVte+C9Vw-5#2jAFCe(vcd zMSmZqf41Q`l|TP{ABz9pXrpq;pTtrA`>2q}CverWr$?H$VBe`6hOUwD<;?;ao2 zNa=?=U+}RXvvdx{Az$>P{5{qlQl7v6JJtUxSnner7X2cn-*o;`8ix~SBzn$Qw0-92 zd>{FU(6dq=D}PJ%K0Wprm3w7wG{xuMsT`f18ZzpsYuP-=^B~WIybI)Aa{1ycSA_i4GjJ`uG6_yXaw%N){_3%fRR1Xh<-YZf+t9tWNJ#tIkLU@q zJz_oE&1K(p{nOv=?sM++*WUZ5j`puDd$;SSz5Mq2-O=)Q%D-JdcgnvV{Z7ZBz5d^A zUfTL~R3192-BEGh>3Z$xJlw7P-Nx0-Ow(eIC#s@Ib(+fCmFk13Uz9I$-z`7u^du1Mo1w znSh4_9szhH;8B3H0FMUD17-n39@rPzDCg9cz4Z;f(fIrmAI&;86BT{=(xZ*{PCz*` zwSPH&;xfv8{)^QMqq?HJ%|XW0tyVNn73o%;sYUlrvkzFd;Vm@$!or5s&-G|x@RE;T ze|sIuFFCO3NNFg_*B_}*p57njE{lCZ|JiUf;m1`Q&hE=b1x*qC7N%QK@u0(|tZ$Q0 ze$<@6MdCsv}xnCdp?0d)2`0=yPhZcQ_vKAH2|NQ7WH0*ry{Jkr19&(*q zcEkmvQR}Kl_d1k>!Skn z2!-^`KYGQ6a?0W&uQqK$g%6Kj_WKkY8c{uD;zIj%gi`0N*s*>$$~m0(jJR?E8lLY? ze|!2IloeSvweE{QqpXoroASR5L)p9DDY?;5jz-l#axH83D`@0^JuL&GPoq&QH-wIR?$Xl-Lr}@tUulc)>5sC$`&D1tV;`W5vj-x!FMkb1pAGm%r(KN(pB8`kq`EK4 zeHpzQT9JlwkC{T=N=QO{L(7_*d(zQ}(;HIls{cXvKJZz_>5?;OXrKE|&iP#p8uRAK z5rsAt8rSz^&k*-RsIa7QqqycHl%BEWRNBU?XxQI2Ii9QHQ18l47vst|q1=k|rf&;N zP)1|d6R%_%QPxrYi}A02hTwZuRg@s@ zKR;2aF;)rAG-H~gJw(w?{}-MCb*RUl^BWyG1g^&(!ka7~rom`zb-csgc(wJ~kcFx% zcX~fG4#y4o=f|zpSaiWP0?CC_w0k~eCK+NIfNk~zqRHv`+*tZtne#qSXxQ>+)4z@3 z*W7v9+I*YoIa8|>EVZ5^w?Ov)eb{L``PSR}9@_8p&=E^^7PrOhprQQ(47;t?12zBv DA8^Jy literal 4338 zcmVknAA zYxT7^3S1h#`MH`A)volE(_5dKwb9KVqhTgp_%sxVn9+4VGIZ5^{yWVJYIprM)| z%$M~OV6)zr!ukrqplrr}+S}W2$Q?461v_&{3B+`x zn?Ja?tTkErr7Ja99XM~t{myUw%C=T%OlALTCEF~qG8d{hy)Z1;}OwxZtWT9W$K z_`70uwZ{z1p2F-iea1(M(jQ9x7WKb;%O~wCe!G4X>z~-}7*vf+#2<^W6(0_A-88`6WQHvg4XW1BMT8Relht$Fj`jQj_50I+uLADR zK_hf)$kl)5plaKFkEDP5FL~sMhl+ME8O!FJP*-QO3I-5cdw1Vsr>BzaF9_xLzKrw9tyoJ|3n!^LoK#FaSSN(och6*4GM+Qg(!gZFdMZ zhm;rQ;TfzASd(Qeh;61Rwe@Tu-6SUJ+1ZtF56E^fvSSsKtYSEY;S)R|@s6g5#Mk(? zhP#L%k%Wd}HiiZayD_w3nM{!FiQ8XcXvEh+7$Wd>9mf4I{xgOTF|=a%4%0|qt1<46 z@d=F6F#a5D55rJ|p$tmegV6t*7~a6LL&@U6@GOR{7?uIvM9LWkCx!tS$bx!Z^pX23 z*26lATntGVLO|yVh7lO9WB5Syg~Xsp5X*%k2V)n;_)dsBiQy3psbYS(Ntiwc<7|w> z#M~;vArDi*CfP6|z-}q#>BJl=5agr{fW&XWunNNw3ebhFQ9wYOQ$uWCOp7q;bW@iv!7AI@V<7Iha`i#%ojL-bN18{;&p5-A?md9vW z9K&S&>A)`*AM1zdGkF#l>t6@*Y@GVb>@zy+w>PwzKSKeJit@J4uv{))md}Bmw1>#X zf%(Pak&g!(PsSf1>yO3D{2wZlOO)XtkY{<6`!B~#&rg<5#%KAH&nK|YdFmrs>vv(m zw;HroPR3BkiFFFEZ7!dqHG!K3*K>$D;1jtC7=8_Uq|VI%c_NGJ5;q0t#h^#}$^kus zXJN>~FrE|ZODX8H>pbuc*CTE$h7yTyGcnu^`UN0EXce4TYiEF8q+Jd%5WVSOhg=Kb zW3j}S2_RnzF_1VXf?g5$nkn(I9Ing3E|KR!ek#OY3ceJB{Zi<6tVDMf=+1$Drb55W zhiQ^=BYPa#*T|j`0KjMgKIrUPE1?k?KcF$XpM=NkXe1!j)kv=WCHh()y8aTn)CZ;` z=WAuYNkQ7b)Mt4=(wKeuA_ZyAq;!9-V?G$okMoY5`4S-Mi^agkjqIbnFvNf!c@&Q0 z#M20Te?bpHLP3w*)~i9DwAtAekqwu`(E|h7tI1~C2lNPE$9bOMV?o9rWFmm4fIhX* z?hF2Cq2Ex5Ba-txwv+3A5Q`T23ISR$$o1horwU5&F$QGV$qUO_IOyrX#~6u^I>Ux;_ca0<$HK-nFXM2A#gQk{z=G&b`7 z5*l00y*kPIjsKRcdzoZWY8$=MDCN7i5u&Qm!_H6wN-#C1gHJE_*BnzHIhswSy$q>7SC90&b}115Gk&U5Z7 zJsVbXzR!l$T*vccrA$XD(^JZHl|J;9GI^y;UMZ7T$@nT6U(I>fGli@VDNXHzCf8N@ zkW=}PllLq4RZ5e~$#qpSnwsl4cYM)($@{Y7%f5VGh5+_8XW4w_IM4i%g0hRC>LRFp zfYc8*r{oaW&ETsK(l=S7@!2U0n@K|WJ>q_OQ~XL8{rzHb7vo@Yb7GAm;}L-O@^<%G zX2*AK-A(K8itZOnkiT5~rM0^`Xf_pKi9GlXnI+oau@{*)!-(rl` zToe5L+VQ5=u$+mNXGl3*I`N*J&KK9NJu+v>6^dV8{20XxgS8aDB}}LC*78D-yG-@c z4j!cKr+U0dv3XSz#aqrbQ29~MUIcr~KyEYDOHP_a+oRFF6gRBi?IpiUm`U-5a|=Yf ztKX%1V=teh?aKW>G5=|MMbI_T&Z>BdvyqA5kJbCzsa|fwnemfb!{XW!l6XvivTa`) z#Yd)>I5&ia_36>Nkl@JgVvf*uZ25L7zjt*8mHRMZCgp!0{UU8|dv6$RpRSll<%1tj zpz=%R-%a@kN9ZX3YUtOLuec=I`RnW!+V=au3@X1xdl#jDw&6IHKmY7NivQkhrE*E1 z#8UqIsF29V_jo0O@~^i|ru4TT=tc4C>-JOnv4t;CJ@xKKn0?yjPOYSJuB8X4+>dc< zX#3OQb7}jhgKJrSX#0}&9m?N-eI0FIc$wPo6Bp1->4$q>@UkDhY#zlyUks-FJ(j*= zp1=P))&D9`>m?r&^*p8DaQs>vhZAQ+dd^q0edg!_FZrYWKlIZ0RUXM;#k36hL9@Zo8S&zD)Urimui|f6e7uP#oA9%gb zU$d9j|n=Y)E~i}mD&mwjBXc&JxSs8>AHE1uOWEFXAv zvxOJy;g3$S9v%X{m&ATn4dBIk=%Dta(`P%O-h$p0=MalT_RmXNb%&!z1(5nx zU3p{~#mkcZNb&K+9EvZty-sk=unGP?zQ-Vs=<$+0Vm;fz^M{@-q1I{S539=faDU2)&)dhPB!+^+oX z#_jza<5eT$IrsUj`+%D8*h?{Du#b85@p#-=1RIse2*bB@hHMPI(~Q1hKrP|j@iUyh%+gmRz#V)dekNR+oZK%cVJ zf+i`#U5YdH=*}6oq02YCiN;)5)RgkM7EKLY`thr8uS5AI2R0ok4MzFeBaKNjhoIc$ zG0$l~8-u3&xN5`Mec7m>C2a7bGz%&oe%O%pZ6eB#nCHLPxCl-1duC+r@++ud=d70e z+=YqntqQ&C4hhjdQ&^>go56 zqsf!!o)0ei5@jteT=4nPb!hbY)&+Z4;ymO!w(N)vMB~=gj_-dc8D$MQSN-bOOA$X% z-*dr;uiUYIH_ADj_muJRg=kE^EA8!>^H5fJSw+JaZ=tNQ6)pK+hM??S z@046`szl=&AH15i`z17X=$`hWQK!+k$2W$y?pfC%50ezy-^Ts{q0#^U{QBher_lsU zP~GY?cML&U-~DEg z_2Cat`q=|v+gH4TqR#q#qfxI$BTgHC_@s6a%6$>N8(fu&a*r8;-i%K~d{g_H8++1F z=IIS7HpTy-JMZ}{{dCD0G-}{oC+Gd44o!IDWM-jNfhG+)*)Pa-KPoI~-e_F&5lTzn zaw>J>6*T&9o9xfjaA-hvkBhODn^11mdBeAbB`CeQ_lcJ>^eF47_W8J1KScff*Is+% zcPf-u)X?bcKMkd9+LLj?R)jK67WKV|ddo_X`k$Yu)ah#kN2)$m)*dNqr~M1hfV$OV z_xX*690E6D58+Lg7gML#cR1c*Z@fBtZOB5^R60Cg4u|4~^n2otYAm|II)UWEVYIow zOePs(8-R80Jw}7W{r#}`{W0fxpir^p&!>!>_vav~~J6(|xAaAeigjM{fS?Kkl&8 gcJlGI=RLH~>7gN(Y%FfG$xcK22eFgf70fjN0H7AufdBvi diff --git a/tests/testthat/_snaps/output/output_lm_numeric_copula.rds b/tests/testthat/_snaps/output/output_lm_numeric_copula.rds index f9c981182c86112f951d3adb28297b958c6b2bab..41dedb8cf725b9a57c96173a95d81ed4edd1425e 100644 GIT binary patch literal 4289 zcmV;y5I*l8iwFP!000001MNErR8+^ZcQ$r)aD@<+2x6j$qC5pL-Ubl@3M#H~8wVI* zbeI`t21H{b|A)9ovzP^6;?umipTsROc^Y$xKK)|Uh%sMHqS3%J(I{>qaS8Cd`&Q4~ zxeQT{o5_m0K9cC+eM_!xJx+G;rMOa{rK7}v!YmEtuQD{@qdktjrDSevQ2tBb4UqHzZ|_oALYA7v)&YCH<)s5hFr|-2+#n~^3f8rN-{&#fP*L!lBC3w6@|n*jpSJ+c{YJ%&BLeg_nh}g zBjiSFxcmMniF`1B<$8FOvc8kBRabrERAdSN`POddb2n`hJ_|bF)eCJAHus3m-rm^8 z*?#44ue`Xa2I1_*tLvA>pAbG<*Dyb#=tS2pY)={3#Qp9@oHS6s90;|bjcQLZ`j_iCVLv1%0n7`VY27{F< z=yEMKUGW&EWVGw7vmN;sGcf!uMGk9`LuWV6VP!?_m~C~In0$-PIL9gNM?KP+^m(jP zFNd+fXwG9E8%p%q4km2YFYI&yJ7qt#{Dt=2iT6pkd9#tCl;4^(En!`@GhBh=Ig84D`~$*Fh2=$HVh@uuJ55kk5qp zM}sdJV1G398!yqF1iDk9pG@eN`7l;8Ze))m`x@CZd;u8G*8`tDdrNpk#tV3i?S`pTejFbH3%XD=+e_ayJhjwk!_dD#lEr#Z{!Gsn5+j}(;m399=9wFi*;!RC}4 z{8|`1^+Eb3Ycw<=s;rbGgs&98N8A%{3#6ZaTYR5!u(&y~Mv?LG#ouunWp8)>pZa&C z*jT|Fo_CE5qxU=Pb<%$tmhJrB?4I73BfZZDu8-`EL(_K46}8!492{C z_R>QB!bU^iu{3jLIQIvf8UBUwx!$+hEjEWChjV`mEBDBCnyBEfHa1Rrx2i$F^(Sxk z&M_3P)~u!Ynra}$M^>j3oF7nEKE${`FmYH;HK|vNht2p{*jQeEa_XX66u-A%A;o0@ z-W2cCkE8OI@gqR)7pm9)*fC1K-ex1krWFwsZ@ySe{=TZ!DId_wMY6>d~)0F(r5Z)QM%z+Im-{FZ&(h{_M^Y8r1VekQTst%eM>3-c-x=c z?1wCwNwNQhCun=6`4KVCbvLR06+dq``BuSyq5OKsba5QMs}}i*S14V5daj#%U_gzS z$Go*v@66Z#P31Nf22*_TK;DpqDF4AP-%j8`o(FjzmpoygZ9nVxQzwfPC_hPag6quzX7W;m*G-h~ssfhw&1`@zV2byokJY z<`^F4gCNd_P6Esa9_9lt&WAE)Ux4|>i}Njl7w4Oq7w217L7Z>HnSBA~GY|8bhxshP zeCEaZ97pAMEa)S^df{Qc2;zE);>Gon%!}(K+|3`n9tBvBJgi3^)+6s)k6Qm}nQ^?h z-Wz#wz0>u9*ZWLfT<`UQYrSjz_x`5hp`P$!J$Z%~>&Za@>IpB_lX^G%xL)y4uLP)9 zJk%?m)hjITcYA}G7wh32L9B;WptnivXGM2jtcMP2KV-lZ0qQO2-GcrW@=$MisJEXk z+OItx65~tiS6oI zGLbz@U=QqPXx?LVaPDx%u7tZ;HN+Ci@`fOL$Oo_%aC^W(fFA`M3b-5KaKI6O*{>FQ z0*(Y61-LKZXu$md_XivU_)mZb03HZ97H}NkL4e}{4+i`s;30r{z${?M1N-eQN*E#p zq;B7hMi`cMYMt;b8kITV^KW*2kCJN|wd1_@pro(oAJ1ABj-E2U!Sz{t2c=h5j*KfY zqM-$Ie?^OjArw;8FHUm{jXD>fd+1vY8qxFa{ON-gDDAHQINkR*QAWoP>e~Hq35`s9 zX6d5qZ=vLu=6;!VDF$V1dF$stpPYkI`}U~cQ1B^AKE3(s=I5%=@ahG9(sxy%5oY~6 zwtfzj*uW2%RBu5eQ&y#K4-7`5hP>6QqT>!UJfrc=vIILCu{C<)PQx~ou2lsEm%oV8 z!)hm$2HZj^8-mLFWllzEFM5@%j@XIPKe=#V!p3+s{Dm7qHRd}_@{sc6!r__E??VY^ zN?ihEd$xOMKgHn$c=IcMq zLCNuzU;DJSAapUZBDky&C0yPzx8%S^Y^UR)bDMop{Mb(pf4E~VLi zR9ANFpNIx;Jy`a)y-F0T%Rf|6ei{va>D|`*D_1tjLu!u?HAfx!D7?>FpNL*>prpii zPOPp=LBqCw`TD#bAE04-KltGQhjyH=e>$qNsrR+J7z zgU*zGxhN|LMgQ-TUrv{7Mg7*C4@()f4kdMXG5Ywg(J1-jK?@Jhtww1%3ntGo7Nh=q zLtl;yoP=WIkJPM-+=#lzp1m}n+=vn{1g|dKP>Tk>*Dzq=Q+v?h0n=Vp&Hp><_x|n) z*Q(-C(kZj0t$G`ZseG*9l~<3T*mLQRTt*#bB}o1I_a#YfMOgRoqmKMdxSLlUz6q zHs|k?Nru=4V9AEF!os~$XU&Av=@-k25ZO-0TNH6QjD j8bAk-pKv?h6MLQ>8e+-D;x-xWG_?N%E7hG+wKD(!=ZJ$% literal 4270 zcmV;f5K-?RiwFP!000001MNErSX4*SZ!T_i@B%_aB8Z71in4xY^Je~djkQ;XJoEF0YRxdDE#8(fC87fg+PR|B@$G}0`kkiR zSDiWcY^CQ1ippHJ>=!qpwYCU79+rGNP{T=`~Lk^7S80e{zZc7S=A* zEViE5@Kv(VsK_37JTyS4JM_YimAz}7{VOh=%ia6NMWJC+cJz&Y$NB3sMvh*sTf}i{ zC2m)6YR;DgY1S7R?D#=TgA||KXjzS<* z$@*Ecetd0~nK7)dRv46J_`k-+#(KF!xhB1xIiv)pU!LBfk8$X8Oa?bjz71QH83>Fq znjHq4S#OH58%+5&Lq2A91ZV(g`Dlq*C7B^=z(LRr^UEvOVl6i5VSE&1zAVN6ARP(} z;ozLuz6^2jp)`MuYmW8=HXM=#Chb* z0i`wEeSefhK7_w~Ju*gFA0%wi)!aB4UCMvHrOUbeja!A!g7xZtXy>g+{4`%ruA|D;mLM5c6Dbwc0HDTqfSeYBS^+a~(#DSvT8Y zvjDrbS(j@m$}yVtq{YrUDzI6KS+Blkon2pKH5u$KMvmT*Tj*q{?FIw$S3BKcuu=tG zzQv|18O@Z8cAa&WqtIdohQFoQVJ&v(?8e!wY^WWxtj-crXt5b*JEi@oM>>tP+m5DZZmT7k|j481Y@hT(J37ZQUaLR@Z&B#bLD#+w0m7Q^!xV#WM$shA&+aU#Zn zVr~`fAP-q!lPufzV0RR5(~3D%AjruT01|&LhUFMeVE6(9t`^)!5Kk2pRO0tS{M-q0 zV?urM=?8^Ykk1OF1UeGv2%tLw&2Y~{683`i$RiyU6b(^N-0fdrY47+eK#QalkB2M$6-6d13mjozbkF`TH2)2$?*~L!>N^ zp|UulW<vFBTu`hv_qU78mPZ3-WB7y2$J^KI^w5(9EA6fcu5G+h zvTbBU$U| z7^ZMytxUr(oD=I5UfbML9IXl575AsA7*ClQQ@H0V=^pym9 z1W&;5B!RET7~f0M#_VV$Al21Ko_!?x-X3&)Bz&n4 zOh?}CE%QwZ(*C7B%lnbW?8z4?NOLCT`*2P3!FXPrd+f{?UrApq1~zVFAMJpl6X=ms zMQ03Q81VNCdJb$2dgN=d8srHb0BuCJog|Jn7|32tHq&6xBkfwwbr=c*86S{o4{ZwQ z(;MhVz#nhumz`{aIM)e?JUUwfMA^eR<&EEXU%bfURX!^#-=ByL07e_`WcOB%k zcXodCudxW`wzo6;uF)ZUpGMAgWN*1FHaTyrn8{MN1Ep`N?7$fUhe0P_SD-Jp+l_iN z=Ql6*##~%vuo-h7iu_$B5?j6vP2qRw&f@@jne;gZ6Fba%)B98BRY0qJ zeXhe|)0qqTA3831~81#zw&r7g@_Qq?;^9U!|H z*=5+SL3R^T`N{4=cBszKe>=d$F2}j97NysZO3w53qnc}aMX8kOC}ny|nXb}rp_Dj84BHJv-2_@3lF z+3{pwJ}+AV_B3bNeC9aU{E>q4K0$S#p!NV#KiHg-gI^1Sr#?vEWQ~R=#*~+lgz#13 z_lSGqt%3COAB*oZ4i+~j)+jO_zW6&%qwICe|5N{o6dNm;!*j2ZVf227z0CS=!?K;< zo88kJ^Q8Cr!1a;6LTLI@L6OM}*bDVmlVO%_romWH$lgN8-@s_-OOs~K3}=6bGsC|z zKGzFUyT#@(f(rxc zDh3<(1tty6t0DDj(a>oh3mYmbPE1~Si{kg@FQB+Qz?uokrY+4>g@umwURKDNam%!d)kXujndPYs4^Z+!2;*!^PyUG7W|1`y`FU%3`zVp=0Y6-Oxl>+-c!PrdtjW}njBxn)$Ya?ux5?oQ`7D1EwD z4y7B8R@OIc z7~?b{9w1EeIc<@I6e|YdmVE#z$<9K<9SAcj0h?i&aO6-$- z3Xo48^2tL!1(r{#Kis*O1#!HN@i1P3I9__5jTe!(P9M#~d=SL>5G25S;9)-S;(RD) z_63-4yg1*YcyYd&d2zmV7R32BjM*1pKJzf2d6>@v%x7Ml&+$}#`}|%4tQQ{Eiy*F- z7+zd2DZIE|BHjGK>rsI9$isT%VLkG$^{Dlqk`>R3>%EZ|*E?Mwc)d^O#r0kiv6$k;QQIi~ zCNhcQOILOgTo|3~s(+^_!+o0sN3EtQ9sqFXBN2VJi%ori~&f7rO)&oOQ_GMsZ> zpwi1!cIVfb`?uanx}CS!w|_+}*Zj?{^Osn5t0C8U5*g1P#<2(XyE5<5IyiSYV^_l6 ztQukoXL&=AJ>&ye3%EVtV8D+84hP%?a3tU;!0cBG-2q1fjse^oa4g_HfcpaO2lx+w z`vV>TI1X?;;DLY>01pEEB;dh-dB7}S$OHSaEJ_?K1f*@-g@zlJ1hr0l7LCm6|M@pN zzeg#xjoPtZyHWDj^N!`LjYLlw-{5+!xq~vQsz$_@8qtuVIlrPsLlFwC?h~)Mg+`uD z$Upe41`Y3iciz-N3Y31=f2{8Nn<%s62X*a!xQIriKeJ@v^|w&UOLM-=x!4b7Zhq_M zKc1M4(t3BRUtjboN;$RZ>Za$a(Xg8Ny)t%Iqv2-#JGMR!l+?iYpHOc>BT`ppYzquQ zBL~0Lqq5_6G%U06&GJM$8oniV{0_rbl%Z7xhg7_XG9s=_C=0lSQr8Dp^vRlt(qHr{ zT@|$hWqfje|F{haXxIxkf@{rpn&ct%$pyo*p5KcSPnUi+Ewe33eDm?)+jc&SQtB_? zo)Q^~h8)#J=ns!TL+Jg(#)Z#Ag<6$v{cAxQIn}{(+MB_OxAp z|27&Ds4@Ld)k?&pDX$dux{Hz?zw_$guxC-)XtQ6(oKa|C#<97tR}Vrc!10G#ZVF0# zY0`VYmfuA2hiBRRKH$;dWmzX?>f52j7rGyubb1|1?p9OPv2PL@wB6r#vpYkZ=5yn&LF-Z{RiE)@;k^5yGuyM2I$?)l)4 z^TM7(vH6qF7ft^WrA)qITf93KrH7^NEGs;P(zvNp=I>vL`fr-CBrfhW3g4AI*S_=& z>biIRtdoyDfs)F`SkvD}DEafcsXJGmLMaOlq*ay;Km$*geYr3v7{&g5@h_)Jx1c_& z&qbt;T#J%Bycm1z*I1PD@xTR#=G36{y!jJn8%t2%J>f6M2Tnk735RRfMsGk}I(IaSY51)?jxi7{tIt-TGV6L-wqhfd4^K#A-qU(Yt-s= zO)hWP3#aDZ+ObeIc@EbPf?H!k`ZM9CYAiZGtDfY-VX!%Wa7;49HULY`G()b#`Lkg0 zXT_ZBxS(RopH2T}hF|sIX>0anqVvYAL~kl~Ua0x7KdAsZfcz%g`JUMG^w1DXHWs(Z QXs4n5A7(WE;AS%b0Im_G?*IS* diff --git a/tests/testthat/_snaps/output/output_lm_numeric_ctree.rds b/tests/testthat/_snaps/output/output_lm_numeric_ctree.rds index 53c1a570e6138d68e62defbad88cd2f4d4645679..3c0e09a6e31b3d7f4472927b714b42264ed9757d 100644 GIT binary patch literal 4017 zcmV;i4^HqOiwFP!000001MM0KR1{aT=YZiB6ct322x1ZugQ5Z&`U8R}hbZyZi~}?< zI?Rm20AhTJuI4c28FkgHXFPJLN!-M24x=_}ViIFwJXeh-YEU;uJl5MpW&i(Of2OAy zqC82m?`7vvR9F3~`c?J+ukQc5NBVFar{T0J6{qpQmz>A2$1=JlU|uWQAYo4o0fa{B z3AM|gShJPj`P#Cj1kd{+u?=gl>BO5i_`jWiT95mDL2g|d3R`lsxb5469r}^l*Moe0 zx7LIdT6~W!dbFljaLD1Cz4klW<02P_Eq(3BnuyBXE0gEVsc9*y4<9RzVC~}dSua0+ z&@{TnbDEfWJP`4pblCKgzD=Q{f8V8-JUTB+uHjaFq3&M1gugVruT9Y3;yA4ux2rfU z=S_k%8_I-od=W^4lbBkw#Vo+JF5hA@*kXsWrV&PS5xag&D6=vdA0Uxt79UUT5QHC4rw3ik=|q|VV!!~jb%o23G-N(Y$&ud zVY9wiFxV?>a+ih4R+GWV?CH#UyUj`ZgS=i^;S$piyG*;SGL|#9{LFfmSchCIv%bP? zoKzvWX{sm}iu7)C+>$P*SR6y4&4|~#(GhEaqov$xGP0mrIJgBBg%btF_LJDs2yxC; ztcH5erahVFxg>B5Comkva|SO1Ra<Jwb9?K+wY)ed^!!Q|N z`(g;j*H(81i9WKL!2&6T@aK+m*~; z49hWWz%U!|>li{Yh!{F!Aanj>$w%%0*26lgGz`%g{6XgihDR{q`v$jD@`c2piX@|h zaVo|&7~`tP9mg;OL!6W!ZUE*dVw{3;kd#|hE6Br8ut_R?FxVY}+XAH=su1MlJOGKG z+}jplIEdjJPO7jUKs-C3bP&I1;p=e7jS2OTY61#dOnys{8t5pXBY_SFn&EC=k>A%S z2I$T}cjxF2MF4II`VaM_zXo!Q4u$qEz-M$Y=rex&Mu{J;@Q=wcdrY47+eu;PLBK3d zMl0iGd13mjozbkF`TGFiNQFGhLzE(qVTw3n6#WH)Uo1Y>57TGzEH2i6Ajq?E>ZGvG z_^jVHKr?^30*()Lwa>6pE<%ydE{)I+E5?EO#o|$p2OCe;{)nPK7BBO^t3obHfqg-q ztK%N%dt2=(Fn#@D0}^t}li>nQx;o zi~;>DkRiMgoK$N^f?tFl4lxkDVPJ<`8^Fh0nJ@i8eh9=s;!Fp<9Pl+s=Hqa<9u9Vi zJP-0iA^suYOD@5c~7anR3D=$HBMm~7n0J&xSh$UVawfbqQD@Y%Ia#v?MG zz+-$*SsSzCAp^OthwR!*rmu6O>m}pMePBAucAdgEImr8$`>gCo995O>U+kphwyRIp<@42axdsnP6yBL7zIH+krni=r;i3Xv;aDzsYrbh(!l|`2)`n zUz#~`@2BmYuNsy2|HeGJ?DO7d;eQ8mn~5NvI?;&b7tv3=y1EE!8l3TF&+E!R|1mvXZ-mALx-a*n)FbPEyT?-C$`Q(fLlQ zHL0eoI+ChMDjcbzq!M?8{#yYib~(;@SR_ACQgiMPl(byKLnpODN3GCPD|FRv^wkP^ zwL)I4kk=^MHHvmE=UUHHiaz8#ts9)|uhLgJPbsI=)hKvcuHoEq$9E_1 z&W=0#%6aJz*xj6E^O@tE^G6Qqdj!org4PYl{a|xS2|mpX?)o5olQkNV5<7DmNeI6~ zx?kQEzY|1%|FifW<6v=fQjH?x;f?R*^{(gZ|0n(+f{g~u(x)zxfzqvJXZC+Kthl%9 z*x|IXNPe0PTrb6Wd&3iWRW377UTUzKglc`2U@R$R$Jol(6&~~rLnBYW$A5#T-#;)u z=S!_}i_I<+ajvhrlpaZsd1Q{(@E7XqN58V?j)*HvN%i~r6tDDnmEwzh;{c zo6?I~tfknrAe!R!XDX?D{PH@mHyh;MpnBb+M^m~FnnZEs!YwZH9~nkbyz0zU$?n3> zsb1e}XDD5?>kjju(sO)&k?bsppg08?2|lFVRZsQODr=JmZV&2sJ~Eoe{Q2j5X5+Q2K`v=~UitZX}hT zRXv8b?|vkZw%-i6K-*Q9Bs&MjZlkp4nglApUN?yHzh8BP%Kx;y3&oeGS*Tp}(GIlz zOO#FIBU-!@OxtgrA4vJ1KG~Y$kC*JC{BLKzM)kB?W-$Ad=1#mw4}F>PZ`;R9<8Z82;-{XYbnW4(F7iQsC#5`=yh`=H`}QwXZr!9%iqCvj zlAIFj+i%{@6dvSxkmo^O1bI;|pZlG_gFig@BZ5CX_#-lZvg z)=Mlet(Od5S}##9{^0c}!g}OkJ@T*~dFOfz^nHA2A}_7?dR|)Zbba9UK9QH!`)$#= z-UEHN-O}(-Pk5=GJi$x#n%2`|-?+b;HTz2c!>iBPY2s8>9zS6JTX<{M^Ss)s*| zQa#)Qdh4Wq7IfyNdT6Ki!+MVuq27Yt4e0MV9_lR*^>*v5?SXs4;=M`zDk(ZRo8sBg z?^1juDwX28^B)sj8q?oPasSX18Ou2529Io*BV@OWmF&hY`wZb%e|LXGXxgvok0AGF zPbt@!{@v_1wg2BszNzhZ>!+#hcjGs89PZWs`^`&ZzvjwAbJ5KecT?AEbLZiH`h~^$|`>>B%WO;Oof!p$CvITQ64LRdHP7$GDC!n98j}p<`1rl3k2o7wmg1 zUA`W+APqhl(n2f|EN=+1hr9p>0uBZo0vJ9|bG&-*1UL$CG+_2B{$ao|fMWqa0yqwE z55PSE!)I}*7vSE2`v6V=oCr7xa9_av06z*i888o+1q^v$-#ViB+gSl8GrFSONnLiH zy0ixku}t4QC+QWGezy0qd8TD3taPkqtW0oEAkJm+Jy#bGIpkyX;79&(%jnX!6@sxbx&lsF(|hx^5Ol3#VBpoF5CK7 zI-|ksBRvz6hNHZ=+IBPQA4FO2y*x87<^_~ zR}b|2^35nTX#V!-Td%H1Ire|Nl;8dc%6j@z$Vv0h4e~JP#-sv${|6Dj&lW0FY(lBQ zo5uNEn};&Seztqm+B2ws>!}asO-e**D|FvZQHP_{Ll=71d1au?quc7%^x1+2uKRF( zPGTKGZ!O&sHRd`(`vNj%rKceNM(M+$nq?^I)`lw^M;H-$ckS!5-^xMhPqa$@a_0*u zrSj1ZbJk5qsgWt>k2EPLP5qEMEmK6v)pdt_b!$+{#Ssr&&YXiXyKLAw!MhjgH+K`) ze#|k%8&nsDP5%ic|11Ao`?PT=A>;I^)B6KZa#=uWyNz!nlsuq&-o99b{&Qu()h9cn zeqqr+wcMjai5ot6b3nx}*v=~f+jlH!kcX@pJD1-)v#~s?Ly=cIP z8@68PdKRTWXYX0eZ$e4^dJI`~Vj@a^qxEfZz7Y*NojfV%{cR|F*Q*m&A1Fb+p2!zG zfBqEp%FCQ8&ZtE_0=hi3wRSl|f1kc;`khGBKWE>uXDce@ zN?dz5R5-OC_01a5q2P5jO1*q!(FdK1QAY2-Wj&eL4`uT!D{l?@9>q^Zd|29hsE@yA zkatZj>OHq=S?1l=d`OsZ4@O)`|C$1R(+|#9;c5}&^;7%&)@N|r&&FAejsf$7YUQG zhw#?Or7=*iZ*Y#o-YzxvijIZqQDk?1NE?6&`RBC_)mU^sRs+d}U9dSm)Fl~WHvmh) z1fkIG_?%Yy9G7!$7c^}7v+3W+@N1f$wnpC^Iu6e&4WjRRa@ zbeI{30VG|fPy3iH)1KM$o8L;Ud}XhXsh3w-nQ3bFw5-%nUnYK@TB)hLbI#po=FVkE zSyH{Vdb8Neij?-{jm5S4N;7iV9)X2;S6EUwfZIG}hh5$mN zjKsQCGuH1S_!({a3W67Zm(-TE*LLR3Tm4^6L~SO0v?Q-S9fdEyUefN>VGjK$?Tf*_ zzPoBei!8p!mkzA$6B7F6^*)Ck?eS5|!dJZTeQjjbfi)?M7uL2C)n6VjiDd2K&-0&u z=!j{2t>qHRZ-|x8nIeptANB_PnE_-xYnNrKG{aD?jWI2C%bbp(mzsYf0HEvgN zTF#pUX*QG#75E~E1}8DKW{X*XYh8iGWU$4JU`=C;=3;g|QYg1FJGmCKy$lG=AVZC! zA8(tbI*#?_k3l^f|7&PyxTSQc$YiKs4yl3ZQ*5vs;_QY(lirH_NNgC zKT7kLxTa_y&{tk7<>bzInk}|+gGrVVcUDv~?>uDJ8rii8EPLF01{*n#965ksE|k!p zqdmd39d&4w6qPhPR1M%}7vLlJW!&}tKkjYW2&#jJl=uvvf|VAdB|$_tHV z18J#X&X?LOl`Il(v%bPmZZ!!NPDY`@UR35_Xe$JPO2Y;tPtHCD$&Ewk8+4?CoNs7HE}p_Fy%X*ZS|&85s^VY;En z&Vo-rdv%0BeSP7>+Lot=@0UHX$4D6KkPE?w%S<1+-hA}Ar$M~Cao2n z|8dxFZgHJ7att;203`01Ew;-N9 zu-1v+^YL{A=0NsAnXFC)L@NDXu}&{04~0L}1&pOW7`6bp10pnGuihav&D0{w2i z>93I-qr;%REASZ|0{V=fuubAeDEwn`%pQ|x{dQK^xgRi#lhMj}SzeevYiBfTXa3#? zI7%VU@(``aW4I!YSVez9;1`RJ^~3a;Jd2C<9|ZDjoH{G)Gd}CLEzr!L?tl}*Tmym~LoqzWNwsnah8#|+Q+RE2Ssbki+(@{dM9e`uksE|zGU$;yHx}fHEUru3 zFyQBb9_cF$^avi0VIYPSPO2}%L7!b`f^WDUas4sm%X}M$VFKu9gACz~;iOtS7W^Xg zXo!L6jRHI5+5kT0$$S|E^1~qp5@!bJ<$|xtG9O37^=Pn5)J8TA z>ITkrzq&-?YuJXO8Cz6s1LuAxdhdHDmpx7kY{hOXo~B8b^cc=aPsVUW!R~;HCn%W? zslKE-=gN3&m;qjoW4t}MrU zwxW9?e~W~%;2lFNgWr05G;FVJG876Xw$atm6D-Fz*}nwuyzy4wBvcU@=h|X-hDc7T zmTDM1E$4doV0Rc&S;<|(5A?_y4CI`ZlTxQS))wq$tDE&ByFN(YWQ|6q#?6~e62kA1?w5DOuLaZJ|17@CI9S}A zRHMjvc;kC{gX@9#|A{|{V50%E^pQ(spmgil8-qU^R@~cl>~PvxEI-W#u9xBfz44K{ zDvuecC^J}1LXEy!FqW3FV{GO72M_wnpoyp76TiXJ?;jYS^DR_`#by_ZIoEenN{^(+ zJTgaX`HKw=<2M|`oW?cMRhwUVCJLR1Wo`OjR~*PG%aqw>YI!NH+{yXO(y?rOvl zN_QOnCYAs6*+eRLIBFbi|1o?MrMGExMtU|LxjiRQ`umT`9gY+d}1HzV1ldKS4P}J~HsN5ZZq8!Vt>; zU{)K7-(9|+^1qt*0@c&*oXhM}nmhS4m8*U7Gb(qZ({q&mrbi*AZy#93@>YR)H@C8#T_C3>$w(l{wm-77M6{>&UN9Q8%AND-u-?C4Z z#^HFK#7{d<>AEjxy2uCnos#lcx{>OA^VMId+~#Rv6rcUDG$l38cfjK7sXWN@AkTxm z2=by_KJOcW2Y-0*M+AR(@JD3+$nE2Jd5BkpctwbpXYtDHlYEMhPag8gLq0{8Pq{zb z$;F~HUWa%XFHssV1JA~b$Xllt@Gu`lX+E?QVLtFMA9!g#%wzUNm~Xr^-(q-azL|Mx zzI76%`IgP>i!h&gn9n@SXA$NzFU{v9D!=XV9wMw49@dK}t(Q1nS}&Qrv|gfJ{K4x{ zg!Rb7dgNg}^3L@bH5IyeJU@l_gkWKy$AWecT>YdJ>jK#GJ}`u z$;Tqp6JDw(w_NPwdc{M%5}{u4P_KAauduw&^_R@NR1a^6QawBfdYh$wmUQ8zdT6Ki z!~0GYq27YtHR$gN9_lR*^>)|%-9d-K6TC_NDlI;;fZ_!)uTy+1I*sD`3-1zK7CXpG zasSX18_PN829Io*BW1UXHSESN`v~G!e|LUFXx^{+k0AGEPbt@w{+;YMxBuTuzPasp z>ZiHwcj7m99PZZtd(BHzzn02FOVKSAcXQWkOXuNU`h~^$|`>>B%WO z;OoTwp$CvITQ64LRq0S*Bi3K+gObG&-*3^*Ea3}E&u{sF+Tfa3u71RM{z7vSE2;X60f2XJ4&{QxHd zP6C_^xIf?lfCmCj0n7tt0Ye_x$B8K6R(8Ot%}TGzd&FCRq1Epv7(Ox}Pp&hVl(d_oJbj z%)J@q8kFskyr}Ny5S0D1^KXz{kAO|x}afOqC69mN2C1sy7qG$ z?nl{gJU=f#_9>Km{_4c<4}XDjZq@HtSAPlR+G5YWad|$O-C&{O6cjq)(`+O$Ibp!*U3xh+hn+>X*hwomf;X)(&2_~C(Zo6e#^ zZD!t|KP?HRuhxC_usQ;z9lhAQ-YXMjef?hj`hGjnkj-yz$xW(9=#>?Fq9^=}(B}b} z^D|Nrf356+FwIJod~@s7ZDWiGy}s$i1+V0yj2W#{KH2*eO062$apC4UC@m`0{Ej9S zrK`KC)3ZdBQd57_SGOLeUK(@Xm8^v*tLxUiQ@s120gJYC9VQ${yg_ww)SMqs%D)QE zcSxUv5;M=7K65w#rIZJhwcqwCLMelL4yWuzSz)MtR7dyLZ*~qf1fz3Ej5BB_H5;zu%*+K7-{c?&na(6ZYOE{C1Q) zpx5xFC#Rx}m)hJCpE07LXHupGzxf`@*}rkhx-UvmpBV*$=Zz0gpZu(u;@mpaE1+w) zU3IGv`um)MTnCdRxvYi$6-3RlRRi^%|6TBDZ}# zYO5$g+Fw69vFghV_IQ1~g6^fDd;gAyJuT|7^NVJqxmcKvJ%qPLE{#EYeWP<6_I9bM zS9B~?k7B#?%h&)+$iJ6utj41Au^LD&?1Ihl<)_qCjJyP#pq zpH2TJhF{bCv^DwW&~bQHWiVAb&epux7wka$k&ly|?|j`(4-aC=#^N>^D`;r{1?@~ diff --git a/tests/testthat/_snaps/output/output_lm_numeric_ctree_parallelized.rds b/tests/testthat/_snaps/output/output_lm_numeric_ctree_parallelized.rds index 53c1a570e6138d68e62defbad88cd2f4d4645679..3c0e09a6e31b3d7f4472927b714b42264ed9757d 100644 GIT binary patch literal 4017 zcmV;i4^HqOiwFP!000001MM0KR1{aT=YZiB6ct322x1ZugQ5Z&`U8R}hbZyZi~}?< zI?Rm20AhTJuI4c28FkgHXFPJLN!-M24x=_}ViIFwJXeh-YEU;uJl5MpW&i(Of2OAy zqC82m?`7vvR9F3~`c?J+ukQc5NBVFar{T0J6{qpQmz>A2$1=JlU|uWQAYo4o0fa{B z3AM|gShJPj`P#Cj1kd{+u?=gl>BO5i_`jWiT95mDL2g|d3R`lsxb5469r}^l*Moe0 zx7LIdT6~W!dbFljaLD1Cz4klW<02P_Eq(3BnuyBXE0gEVsc9*y4<9RzVC~}dSua0+ z&@{TnbDEfWJP`4pblCKgzD=Q{f8V8-JUTB+uHjaFq3&M1gugVruT9Y3;yA4ux2rfU z=S_k%8_I-od=W^4lbBkw#Vo+JF5hA@*kXsWrV&PS5xag&D6=vdA0Uxt79UUT5QHC4rw3ik=|q|VV!!~jb%o23G-N(Y$&ud zVY9wiFxV?>a+ih4R+GWV?CH#UyUj`ZgS=i^;S$piyG*;SGL|#9{LFfmSchCIv%bP? zoKzvWX{sm}iu7)C+>$P*SR6y4&4|~#(GhEaqov$xGP0mrIJgBBg%btF_LJDs2yxC; ztcH5erahVFxg>B5Comkva|SO1Ra<Jwb9?K+wY)ed^!!Q|N z`(g;j*H(81i9WKL!2&6T@aK+m*~; z49hWWz%U!|>li{Yh!{F!Aanj>$w%%0*26lgGz`%g{6XgihDR{q`v$jD@`c2piX@|h zaVo|&7~`tP9mg;OL!6W!ZUE*dVw{3;kd#|hE6Br8ut_R?FxVY}+XAH=su1MlJOGKG z+}jplIEdjJPO7jUKs-C3bP&I1;p=e7jS2OTY61#dOnys{8t5pXBY_SFn&EC=k>A%S z2I$T}cjxF2MF4II`VaM_zXo!Q4u$qEz-M$Y=rex&Mu{J;@Q=wcdrY47+eu;PLBK3d zMl0iGd13mjozbkF`TGFiNQFGhLzE(qVTw3n6#WH)Uo1Y>57TGzEH2i6Ajq?E>ZGvG z_^jVHKr?^30*()Lwa>6pE<%ydE{)I+E5?EO#o|$p2OCe;{)nPK7BBO^t3obHfqg-q ztK%N%dt2=(Fn#@D0}^t}li>nQx;o zi~;>DkRiMgoK$N^f?tFl4lxkDVPJ<`8^Fh0nJ@i8eh9=s;!Fp<9Pl+s=Hqa<9u9Vi zJP-0iA^suYOD@5c~7anR3D=$HBMm~7n0J&xSh$UVawfbqQD@Y%Ia#v?MG zz+-$*SsSzCAp^OthwR!*rmu6O>m}pMePBAucAdgEImr8$`>gCo995O>U+kphwyRIp<@42axdsnP6yBL7zIH+krni=r;i3Xv;aDzsYrbh(!l|`2)`n zUz#~`@2BmYuNsy2|HeGJ?DO7d;eQ8mn~5NvI?;&b7tv3=y1EE!8l3TF&+E!R|1mvXZ-mALx-a*n)FbPEyT?-C$`Q(fLlQ zHL0eoI+ChMDjcbzq!M?8{#yYib~(;@SR_ACQgiMPl(byKLnpODN3GCPD|FRv^wkP^ zwL)I4kk=^MHHvmE=UUHHiaz8#ts9)|uhLgJPbsI=)hKvcuHoEq$9E_1 z&W=0#%6aJz*xj6E^O@tE^G6Qqdj!org4PYl{a|xS2|mpX?)o5olQkNV5<7DmNeI6~ zx?kQEzY|1%|FifW<6v=fQjH?x;f?R*^{(gZ|0n(+f{g~u(x)zxfzqvJXZC+Kthl%9 z*x|IXNPe0PTrb6Wd&3iWRW377UTUzKglc`2U@R$R$Jol(6&~~rLnBYW$A5#T-#;)u z=S!_}i_I<+ajvhrlpaZsd1Q{(@E7XqN58V?j)*HvN%i~r6tDDnmEwzh;{c zo6?I~tfknrAe!R!XDX?D{PH@mHyh;MpnBb+M^m~FnnZEs!YwZH9~nkbyz0zU$?n3> zsb1e}XDD5?>kjju(sO)&k?bsppg08?2|lFVRZsQODr=JmZV&2sJ~Eoe{Q2j5X5+Q2K`v=~UitZX}hT zRXv8b?|vkZw%-i6K-*Q9Bs&MjZlkp4nglApUN?yHzh8BP%Kx;y3&oeGS*Tp}(GIlz zOO#FIBU-!@OxtgrA4vJ1KG~Y$kC*JC{BLKzM)kB?W-$Ad=1#mw4}F>PZ`;R9<8Z82;-{XYbnW4(F7iQsC#5`=yh`=H`}QwXZr!9%iqCvj zlAIFj+i%{@6dvSxkmo^O1bI;|pZlG_gFig@BZ5CX_#-lZvg z)=Mlet(Od5S}##9{^0c}!g}OkJ@T*~dFOfz^nHA2A}_7?dR|)Zbba9UK9QH!`)$#= z-UEHN-O}(-Pk5=GJi$x#n%2`|-?+b;HTz2c!>iBPY2s8>9zS6JTX<{M^Ss)s*| zQa#)Qdh4Wq7IfyNdT6Ki!+MVuq27Yt4e0MV9_lR*^>*v5?SXs4;=M`zDk(ZRo8sBg z?^1juDwX28^B)sj8q?oPasSX18Ou2529Io*BV@OWmF&hY`wZb%e|LXGXxgvok0AGF zPbt@!{@v_1wg2BszNzhZ>!+#hcjGs89PZWs`^`&ZzvjwAbJ5KecT?AEbLZiH`h~^$|`>>B%WO;Oof!p$CvITQ64LRdHP7$GDC!n98j}p<`1rl3k2o7wmg1 zUA`W+APqhl(n2f|EN=+1hr9p>0uBZo0vJ9|bG&-*1UL$CG+_2B{$ao|fMWqa0yqwE z55PSE!)I}*7vSE2`v6V=oCr7xa9_av06z*i888o+1q^v$-#ViB+gSl8GrFSONnLiH zy0ixku}t4QC+QWGezy0qd8TD3taPkqtW0oEAkJm+Jy#bGIpkyX;79&(%jnX!6@sxbx&lsF(|hx^5Ol3#VBpoF5CK7 zI-|ksBRvz6hNHZ=+IBPQA4FO2y*x87<^_~ zR}b|2^35nTX#V!-Td%H1Ire|Nl;8dc%6j@z$Vv0h4e~JP#-sv${|6Dj&lW0FY(lBQ zo5uNEn};&Seztqm+B2ws>!}asO-e**D|FvZQHP_{Ll=71d1au?quc7%^x1+2uKRF( zPGTKGZ!O&sHRd`(`vNj%rKceNM(M+$nq?^I)`lw^M;H-$ckS!5-^xMhPqa$@a_0*u zrSj1ZbJk5qsgWt>k2EPLP5qEMEmK6v)pdt_b!$+{#Ssr&&YXiXyKLAw!MhjgH+K`) ze#|k%8&nsDP5%ic|11Ao`?PT=A>;I^)B6KZa#=uWyNz!nlsuq&-o99b{&Qu()h9cn zeqqr+wcMjai5ot6b3nx}*v=~f+jlH!kcX@pJD1-)v#~s?Ly=cIP z8@68PdKRTWXYX0eZ$e4^dJI`~Vj@a^qxEfZz7Y*NojfV%{cR|F*Q*m&A1Fb+p2!zG zfBqEp%FCQ8&ZtE_0=hi3wRSl|f1kc;`khGBKWE>uXDce@ zN?dz5R5-OC_01a5q2P5jO1*q!(FdK1QAY2-Wj&eL4`uT!D{l?@9>q^Zd|29hsE@yA zkatZj>OHq=S?1l=d`OsZ4@O)`|C$1R(+|#9;c5}&^;7%&)@N|r&&FAejsf$7YUQG zhw#?Or7=*iZ*Y#o-YzxvijIZqQDk?1NE?6&`RBC_)mU^sRs+d}U9dSm)Fl~WHvmh) z1fkIG_?%Yy9G7!$7c^}7v+3W+@N1f$wnpC^Iu6e&4WjRRa@ zbeI{30VG|fPy3iH)1KM$o8L;Ud}XhXsh3w-nQ3bFw5-%nUnYK@TB)hLbI#po=FVkE zSyH{Vdb8Neij?-{jm5S4N;7iV9)X2;S6EUwfZIG}hh5$mN zjKsQCGuH1S_!({a3W67Zm(-TE*LLR3Tm4^6L~SO0v?Q-S9fdEyUefN>VGjK$?Tf*_ zzPoBei!8p!mkzA$6B7F6^*)Ck?eS5|!dJZTeQjjbfi)?M7uL2C)n6VjiDd2K&-0&u z=!j{2t>qHRZ-|x8nIeptANB_PnE_-xYnNrKG{aD?jWI2C%bbp(mzsYf0HEvgN zTF#pUX*QG#75E~E1}8DKW{X*XYh8iGWU$4JU`=C;=3;g|QYg1FJGmCKy$lG=AVZC! zA8(tbI*#?_k3l^f|7&PyxTSQc$YiKs4yl3ZQ*5vs;_QY(lirH_NNgC zKT7kLxTa_y&{tk7<>bzInk}|+gGrVVcUDv~?>uDJ8rii8EPLF01{*n#965ksE|k!p zqdmd39d&4w6qPhPR1M%}7vLlJW!&}tKkjYW2&#jJl=uvvf|VAdB|$_tHV z18J#X&X?LOl`Il(v%bPmZZ!!NPDY`@UR35_Xe$JPO2Y;tPtHCD$&Ewk8+4?CoNs7HE}p_Fy%X*ZS|&85s^VY;En z&Vo-rdv%0BeSP7>+Lot=@0UHX$4D6KkPE?w%S<1+-hA}Ar$M~Cao2n z|8dxFZgHJ7att;203`01Ew;-N9 zu-1v+^YL{A=0NsAnXFC)L@NDXu}&{04~0L}1&pOW7`6bp10pnGuihav&D0{w2i z>93I-qr;%REASZ|0{V=fuubAeDEwn`%pQ|x{dQK^xgRi#lhMj}SzeevYiBfTXa3#? zI7%VU@(``aW4I!YSVez9;1`RJ^~3a;Jd2C<9|ZDjoH{G)Gd}CLEzr!L?tl}*Tmym~LoqzWNwsnah8#|+Q+RE2Ssbki+(@{dM9e`uksE|zGU$;yHx}fHEUru3 zFyQBb9_cF$^avi0VIYPSPO2}%L7!b`f^WDUas4sm%X}M$VFKu9gACz~;iOtS7W^Xg zXo!L6jRHI5+5kT0$$S|E^1~qp5@!bJ<$|xtG9O37^=Pn5)J8TA z>ITkrzq&-?YuJXO8Cz6s1LuAxdhdHDmpx7kY{hOXo~B8b^cc=aPsVUW!R~;HCn%W? zslKE-=gN3&m;qjoW4t}MrU zwxW9?e~W~%;2lFNgWr05G;FVJG876Xw$atm6D-Fz*}nwuyzy4wBvcU@=h|X-hDc7T zmTDM1E$4doV0Rc&S;<|(5A?_y4CI`ZlTxQS))wq$tDE&ByFN(YWQ|6q#?6~e62kA1?w5DOuLaZJ|17@CI9S}A zRHMjvc;kC{gX@9#|A{|{V50%E^pQ(spmgil8-qU^R@~cl>~PvxEI-W#u9xBfz44K{ zDvuecC^J}1LXEy!FqW3FV{GO72M_wnpoyp76TiXJ?;jYS^DR_`#by_ZIoEenN{^(+ zJTgaX`HKw=<2M|`oW?cMRhwUVCJLR1Wo`OjR~*PG%aqw>YI!NH+{yXO(y?rOvl zN_QOnCYAs6*+eRLIBFbi|1o?MrMGExMtU|LxjiRQ`umT`9gY+d}1HzV1ldKS4P}J~HsN5ZZq8!Vt>; zU{)K7-(9|+^1qt*0@c&*oXhM}nmhS4m8*U7Gb(qZ({q&mrbi*AZy#93@>YR)H@C8#T_C3>$w(l{wm-77M6{>&UN9Q8%AND-u-?C4Z z#^HFK#7{d<>AEjxy2uCnos#lcx{>OA^VMId+~#Rv6rcUDG$l38cfjK7sXWN@AkTxm z2=by_KJOcW2Y-0*M+AR(@JD3+$nE2Jd5BkpctwbpXYtDHlYEMhPag8gLq0{8Pq{zb z$;F~HUWa%XFHssV1JA~b$Xllt@Gu`lX+E?QVLtFMA9!g#%wzUNm~Xr^-(q-azL|Mx zzI76%`IgP>i!h&gn9n@SXA$NzFU{v9D!=XV9wMw49@dK}t(Q1nS}&Qrv|gfJ{K4x{ zg!Rb7dgNg}^3L@bH5IyeJU@l_gkWKy$AWecT>YdJ>jK#GJ}`u z$;Tqp6JDw(w_NPwdc{M%5}{u4P_KAauduw&^_R@NR1a^6QawBfdYh$wmUQ8zdT6Ki z!~0GYq27YtHR$gN9_lR*^>)|%-9d-K6TC_NDlI;;fZ_!)uTy+1I*sD`3-1zK7CXpG zasSX18_PN829Io*BW1UXHSESN`v~G!e|LUFXx^{+k0AGEPbt@w{+;YMxBuTuzPasp z>ZiHwcj7m99PZZtd(BHzzn02FOVKSAcXQWkOXuNU`h~^$|`>>B%WO z;OoTwp$CvITQ64LRq0S*Bi3K+gObG&-*3^*Ea3}E&u{sF+Tfa3u71RM{z7vSE2;X60f2XJ4&{QxHd zP6C_^xIf?lfCmCj0n7tt0Ye_x$B8K6R(8Ot%}TGzd&FCRq1Epv7(Ox}Pp&hVl(d_oJbj z%)J@q8kFskyr}Ny5S0D1^KXz{kAO|x}afOqC69mN2C1sy7qG$ z?nl{gJU=f#_9>Km{_4c<4}XDjZq@HtSAPlR+G5YWad|$O-C&{O6cjq)(`+O$Ibp!*U3xh+hn+>X*hwomf;X)(&2_~C(Zo6e#^ zZD!t|KP?HRuhxC_usQ;z9lhAQ-YXMjef?hj`hGjnkj-yz$xW(9=#>?Fq9^=}(B}b} z^D|Nrf356+FwIJod~@s7ZDWiGy}s$i1+V0yj2W#{KH2*eO062$apC4UC@m`0{Ej9S zrK`KC)3ZdBQd57_SGOLeUK(@Xm8^v*tLxUiQ@s120gJYC9VQ${yg_ww)SMqs%D)QE zcSxUv5;M=7K65w#rIZJhwcqwCLMelL4yWuzSz)MtR7dyLZ*~qf1fz3Ej5BB_H5;zu%*+K7-{c?&na(6ZYOE{C1Q) zpx5xFC#Rx}m)hJCpE07LXHupGzxf`@*}rkhx-UvmpBV*$=Zz0gpZu(u;@mpaE1+w) zU3IGv`um)MTnCdRxvYi$6-3RlRRi^%|6TBDZ}# zYO5$g+Fw69vFghV_IQ1~g6^fDd;gAyJuT|7^NVJqxmcKvJ%qPLE{#EYeWP<6_I9bM zS9B~?k7B#?%h&)+$iJ6utj41Au^LD&?1Ihl<)_qCjJyP#pq zpH2TJhF{bCv^DwW&~bQHWiVAb&epux7wka$k&ly|?|j`(4-aC=#^N>^D`;r{1?@~ diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical.rds index 55bcd34f51b23299eaa2437fe6fd48a86b012dd7..4a87e9f61e45d9373c84bec623e7ea7a11baf986 100644 GIT binary patch literal 4221 zcmV-@5Q6U?iwFP!000001MNEtSX9-zdmb>n8H5Bx9!C%p1Vu)(Ix!>2F&)I8(({B_6-!1efn5tV6#hq zXvBrMYA(nT@XXmq99y1qj7Ug45*Yk<7k}_ykGAV>9d^WDO&oAwe*+3Wd1=fi2TEP` zBm0(Is@t^4(f^6CZGT8@wC{YOGvLHqjV}Fwa7EPhGgtT<9jkT)Z=d6cTppj>_F4+Z zDdm_iiD3w-hQDPu0 z-C(lmttPE8y;g6mwCXD{u`j?afZmUmn3aGK zWEc{_KY_m*aqy#U{u0++I{@^h*HSsLL%t@nwT61bvf|B(Oyr%9=vpDVHiBiJJI~_J zIq$WNkc8h^Nq>@H11k*;`U*|0p{hpf65X|d{93xpH_DQjcFD_0I~qCkA0NLwpLa~C zyu7b{*i|%NHh6dAgf>S~`1r3f*EBjN8y79xezn=fA6!!2nkN6!krAW}n78xy_HTX5 zw^pj+`O9%93z~MOxb%UKX2!4Bv-8YW)VF2W-yyHje4sY$RQ?;&RjFsVA2v!E$gVtYOZ6w z`kOSh+8T>dU+X5!)!KB`E`qXFuV?l-Xat%2E7nKU-5yBQ4f8ey;nVi0zjcKe8-mbn#V(y+w3yGo9P-Tjn<&k0Y6gIPrcTtsnIrw*%5AbtxapS ziFsjep3Yp4HEo=`{LA4+fz?V<8%s!LF?^2U6rPm0cFH30HQxKUix`rKzZf3CP>*2` zhE6Oq3S|4>_SYC1@O2=D2z+h9xIf1K!0-WvRt#4#jr6q+;{h0dig6~!Ux4i)7>Y5J zLq&TO`rnITHhc3_OROYSoaPhiLp^26PW=_4`D$2d&Ltt=e!FcoZ)(h~u8 z%P>zZkzuFBTu`hv_qU z78mPZ4f1T921x8PI_tMDw3$DtfU}}K?K3QuOOWJqP&e%q$v7~-SUl44VB^X7!zBH& zc$xpH61gM^4g`6YN2&i(%=COE`DA>SKk0k|`<%NzlC?e&1HKcXwXz7qWKO74cx`hN zI9e09X>k1@F$a7iHx9!b&?9wj7RVD>T$i{hKraD3($`qfBX~B3JPczvp}v%XKD#ai z-*7$Raxs*Oe7g_B{h&VyWC(30C)C-Uj{LdILCut zG59)4J1Uw=eE{Y=*1KF#|W*P;0gs;>@dKF%;K`s*6}0<-KPu=q1mcL~+y_K* z-5+96L0`c@3j(<)&V7EBgO9Nw!;a@HXW^iy1|MTZKB^%Hp_(U!S`X_!w1M~x% za)>Je>_>~@4;IPwfwEygW5xMhom&ci_ zcaCu$che+G8VnbNJ7aj%#dbi+9h69iR9{k^i$ydx@_r&3Tg`WMll7awm8^T1WKpUb zJWhxH4X)Fp`~2erSkY_l$UV%M>T2}(>~%-YUn5~Gc-PR1;MX1>1v~p2wR81Gc9K@n zC#kM8cW|XvXER$hMtwbzajz}5GbC_AwUoo?DLK#GgY7V+vXWgQ2=vGr4CUOFlTh-bm*d<|7{yN^<(&7YkV>xWlS;WnM=sHm zOLXO4^yLzHxkO$rkyl9g3JG7ydDb(Tqz^Go>4hfMRd|t8c#)I#EA>@OlgdeT6%v|~ z>pFM5(Y?ugv*XRabY2Dn_BLnPeC9a!{1Jov7lPs!g3=3!{a|xS3IV+g-ufVYlQo)< zpT1-e&jU*5lE$Ca&W!JFk2Z}NGO z;!BEbijQn6Cb&B2`we3Ztzl!wSDYi2aQXO$-?G25VME)4%dS%V`qHN;UJ|6Dc)xZ! zl{e3r401nEz0BjsY5Py1uTX4Un@sVm?e$bX>)DH7Zw1J`O!d-|XVZ2znon{4x;-B9 zyR`RFyt#d$V0YcSR4@03cG|8udW-o_+s%PL33k>dP@Inp1b?VJ>ZE!F_2iK2-beZ0$Gk$@+Yb(* z?Xxq-Q~98$6RG^N1@}|_@nLGpzZUWh<;yM$cK-RmKHBzuA&1Jps+vgYXEuLA<-dA% z5XIjuHdDFeQ*o64-)J(CPYB%>LHRd2izxlTqPr-5yX7dQf4tVF-e@{kXXevZ;_+U5x3@aZ{$KK5(cKKIc=5Bad5^Fki0UZi@b zKYpCbZJ8fUar-+}WAf7jNB{9!J`eId$nzj?2YI_#zT~u?2Y-0*#}5AR;E$d8Besv@ z#A}Cmc^0q8KFOyY^2tL!dB~@oD{?q#fo15A%T+=ED+Z-wyMQ7v@_sFU&U+FU+@iyD;A-G5dCy&pga$9_F(h<})wM z=aE!?`_iFyST8)R7rU@t(s^OM6!OA)N%HUquSYwqM;_KA59^V4uSa#@LsLic!g_b| z!g{Cc1F!days+MH+TH729k}m?f`@v-3-#ppyiiXL+M%BCLOr?ZVIS8k9_p1H>J<<5 zif8o-%LiP0*~AO=@VZ^7hwp>l7NMWD19_ny+Nk}Q5f9j*-h$p$=MalT_8-ey z)hA-I{7L<)s%Tq5@rvX(DE=gAEX5Z)-zK8$8eJJy@ zzuVsz^z7I3`;I%aCzb0?|919!+W)^wzNh@#_0v=S?dUxnhhOUdo#v&xUvK51x7xiG zcTd-AZ|C7oq> zhX76oJPdFK;NgHX0mIjq=pMi$0A~Zv0X!1$D8RXZM+43SJO(fim<0@ZU|-{+;n$YG z5WCijCcn4&+GlejP?=)E%He*a5PIlL=Z@+pQPJ)fTX)y~Cn|i|Uz5JogzlAvJ7nkT z&^@!PsVg_{MI$?!8q>c}p{W7OKiqMk1x+YD_EK9}5SpNBYe>E?1r@A}-KaV<5>2_j zcJuio`DoI3Wwu6eXR`a{g@u%HI_q zd~8V>LUTIi9Zy^1%EP?}>KAoHhN6O!{*@JPJ&wi(aC?71A!xK?N7ge3KS4!BbH55I z{u1RaoxJdik6KXnSFH;Vuf};Ou)Vr7E&z>gsTnii{WO%9(q6UWo8^cfr0KKpQ`}El zY--xWv(Tu46Q>8X?L_0V+M4h0Fd)>t{tu5WO+usRd>eP{jh7L!Z~Cq>XD`Z$D>&Kr zo@A8!<2GeV^dQ6^Xl@!?bvMfM&#T;AgK>EI%=!!aQC{xMeG|S6#__yUdZV!djc$1K zTHc;5C^z+xGd21w8vXQNLRt^Cbj`!wgZbZm9gng%cIsNTR^j}OS>NZiNHlTVqW0XS z8_}q^mGdWFyoyE@Wo%cxJ{lGLS9|B0P1?^00Sl~s3}AAb*xIDahc&E{<= z`n>NYALTkU?5zIBQ`o-VC;>n`j+U-Sk-6P(G5`ffz( zJ;(f`2L1^Ze7S3N6F<Slsv1Ejb#L_mS$k_#Gdh{(c*Ndg6HnDlD#Vun(Aq(qB51 z(_t+}IiD5xyNLQqN|5sBpO;uP)mmGICPUI5E@@}}3!m`xs>klXPcWD&^bOcUctz#G zRBJR{9^SB5S>3%4WTE<0*xa85hv0_zW8to9EV=-TmgK^wx4J$%CK+NIfO+o2dY#Sn zaj@`lG3P!mDA@96)4!YHSM)q>-M*%DJu$1-8tYsS)cn|=Z9qGSe3|Wj!R&Q<_z+80 T7Prw*OGEo#1SPf9$}<1})+b{m literal 4204 zcmV-y5R>m8iwFP!000001MNEtSX9;4XC5%T9fSl#9#;?(1VuUbB+S7k2&in*2A@y4}j^_cMPpZ+d5ZPqwd%gBrYwx}G+2f-8(({B&J7fub>?_RV3SLK zSonq5DlW(o@XWbK99y4rjEqk>8W{Y)F8+`|A8Xg$I^u}CnlSL-fqE2t>eARx4wks= zNAxScRJ(bxW55%k+kcnRVBhsZXTZs~8eIATVT#D>XRq)#I#%xv-Z9q^u_7*~^|fS< zQ_3-4#wj^}5~N96t*^lsY8sqCRGQ2tJzT5G%toy>Z5m_EGMLKQ^>lr;h1n@Gn`~9k zP>k0ul=S0oH9wNZ`U=J%UxNR0I-NJA4(W{A8s?B3hymqVn>Nj+ooCd0P%5n0qQpRG zn!#k#TTNPHT8-XVVbxb)Vn2Xe0KFeAF)JrCLu)@$7FN3zl%Oa2k{ zM}GflXVZUeeu?$Z>@$7FM`fzVqMJG&k}MEKxuF^cPY#3XBN6e#B5bjSfm|;Qa4(s; zC3q}zg2@5QbFIZP@CN1IAu#PIN=33UP zze!W0t+p8THEzN@txZ?uA}DM0dgiZszFu#k3YrSDRZ~~SlngZ*%R*a~*~BKQxz=W> zwc(lCz>1F2w$S1#Kvia|p}{2`Kt0kJwUw+>Uz?%YV5(#u>+7{T8xuBZD)d@gtyS!@ zzTRTg8kjwmNn^9Ro53Kj5e8cz24R3d~41)0KIR)}Ye?KSI<`oz|$S*4B&J;cj+~O>4D@d7*Be&RmBzZJfJa%VB3{ z#f=oRVv;HhpJOjdmgK4$LnWk90iPcryNQNq;O}=6{MrE>VI5L7wGN>c12- zJzq&a8K31(I-kHk=dO=rtxv*$Z!Ku8EW|K{6Y3OR+uTHs)&y=kTt7(60iVc?$1oT4 zNS&Jv@45^`w_?N%@;9oqEyv;9QXX|UB^N9`Ns#aqSxG! zdzdlRR_pQE>yDbgM8a6`uAvpdFFigAc9=J6=jn~?B(0*4K3(VV;0k=SH(NDEeI1c; zuPwGS#B)Nml*8yLInUjL?J%UWl3gMQ^vD|Q!?`Obsb<7(xUi1sd?(eKR8v+RN!273 zj#N=niQ}OEFu=qv$GIN~iXR)wIq#1Rm0Z_Hi*kvMT%sqJ=*qq5%O&!1iM(7QuaNK+ z626l2tYZ_P0m6Pf!Bs3-0b?$hhdz1HO$D4iWybK2H zZO*d!%yI7dBL?};1jWw;r56zU!RC|{0(u#|^+Eb3YcxJDZRrw{5dN^RU)~mP52e5V zv-oGm!Q$qG8b!v#AMfSPu5VKQpYSUpuvq}BJTm zK=qTn8R+`1Kvv8Q)KqCLM*Tv~BYHz+6??fLeX-(0--UE@*ZtWqaM%4GjL-ebw8m_; z>B~9KcaKt!gxgCpM;-h(PUoCIy?@J&D_iBlH_IsA?DHbUmlRnPAKhF;a8=Ov8^;=2 zLdQ)gKTj&*iU|+DWq)Pk#?}XyU#0l%D>TBNa+U`-$n7;&BrMHO^Jx3l ziH$5jw0+t94&@)a(M;PNuT%SxasEpv{bb(`5Bt$8=TjVbVF=|PHuV?s{QY-S|LXvi zhkS6CMc9;)5%m-eW4@;SS zJIps;m~TnEFyBnPFyG?r!hD;|?Au{J^Dv)zn9p{Y&%7|7M^X75%ZAxuz3{MJ?816U z)pu<>z%F-yx!;Y!g{}HcdvJK z;Qkv59_k4%)RW)xLOnTThkC*b_2j09eO#}2s8@EVS3J}!p4BTXA8_qu6ED=m>vo|Y zz7Kj^g?`oz;)Qx>qxPdmK46D>3wl?fzo&Spw>;F_zb;tO6kqIoo8YRU}o7pPuq>NAKx4{9OO} zWIX43G)o`TvZsl0+<)|Gr^k7V-Tlkbx$d7CyFRe0vFLTKlgMm#F^gTW&&5<_8aQ`! z`94VrvBa~yA;=!`1FQxd4mc9<0KoBp2Let6oCKJ?_fG~q6mS~g;egWtj{uwj7(S;& z_W&LVI16w#;8B1_1I__F25>Imv4DBNEMUk3`+OFSxVGYjm~~b(<-IM}KARhkN)-!N zjqn?d&_icCcUC=#3irI&vZv<1QNhdpnzU^ubgwMTAv<4-?wM^(S+!*!8r9L*koJWN zO$%7@;m(82Xky9nms(4M&_q>hebRl&D1TMVCe_(dXzKNKTiTB1p~?G0hcsrG(A1$< zBc4Cih{pf4GJR3UT2%1vk+$5kkqA9~?u%QiH=uE;&4(0eI+RuYVL`+i3o4EtICs0V z1(l?%xta6$9yE1|?~`1#4HeArP3Tkf44ORi$vpMv*{EpNH1mGvd#Er`S5Oi%9pz71 z8#r^ugQzI$R6$n7{b+LI<;XVE^)7iROgxk6{GX91Z+Beq@uj5*&Fz?fB6Y1R5BDCd zTig-R2jv$Js3?EyaWpP~+xG(sL1P>{GoLy12`Vg{_f=5Qmne7Hlto{B)QqyeYFTt- z4bDTp?bThe0ccEf_1J;$r=r~C_R5{#tU&x=P2WYI;(k(NQc@qDjYbceG$WvO7n+dS z+H`-10imW1zk6(1A{sOI+t}l8yo`{2^LG{5`%rdl{;7WVB%z!iw=0vQ1|$ApQ{%YG zyHT!xZpD^rjKj)i)m=D%a&uox92R|ght1%S}^J2RW!OVeTU-p zF)05p?VW2+1fr6*)ym@EB%|CbtM4{H{vI0Hc0BaWrtK)I&G(Xzay=S;PXFU+>|g#X z=-r@-bd>+GE^uFbBH|mI8*U!X!1Fxe%E@m(K=*9=gJ7=ug zTZ#&jUQ8d_it}kXa_02)d(n{f7Y?))zJbt0XVT(+n~-|%asS9ce?a+P?q1W#k3=Jv z^!s#cwg%;XqHJUCDZ`iA>?%oHoP<_g6 z?(cj&gS~sSNK|(a~~HJZ27b4-_7tV zdY-m!UsJlCnAK^GwXO$he(diopdCa$wRXQ?_BuU$h$SnF+i0kvq5Tu(lwL!7GXMbP CV`H)a diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_each.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_each.rds index 42c4c71233dac4b6e86cc65a7dbbc2931bba7236..7966f5ee81bac452ee3a5ed6edeffc74699d1332 100644 GIT binary patch literal 2931 zcmV-(3ykz1iwFP!000001LYcja1_;f?{b$*VlFvI2!s%bkbwLOgkw}db4y4NghWCR z5Y%;Z*&{2LyYp@nLh7LCFb-0Yp;8Iz)KS~C9UVlh$PmbZqNUhTEB-829jt;V2yMq$ zi|O}vzi;nllYmH^{?VI!^WOLKec$)?eQ)2}EKL&xAxUu9Y(kO~x`Ok@MYAVf4YVws zVYJBr84MRIu0FPPl>8xUH>;C6SbOjO_nsqueA2=P!%w{J5{v47t36hCSe!WT_>I5M zywcRqyT1K_PyaBl<4n@7Kdu|HJ?=d_?W$w*uQ&N6_bgwru`)Yebn~(!BkybWo%+|A z%L@zcCcf|W`&K`H;OJNJahXqUPCN8QJYQP>!FM0;Gxgmq%NpBL5Bm&C-@2Uw01rm@@rb{0ujSJyeKL;j!~BZurrOskVMxmc5HgGx6_APN>O z1_l(XAx(*fI4P}Mbqw&c;=@Vb9ajnhUcc-XtICF2n=i0KfB?#wDRM&qQ1Bucj_mlcv4L+TxkN-wO&m{KS8 znt6934n>oZI4D63sLh}nQ&%()b4Y?|PLw38en0XDa~7NApwu8Y^X%*dJEqA|jpq$W z@ciK>(A0!P`M2YX0u@A70IOII0X_jZ3J)a|NZVlO!`>%+2~f!V1-KcY31Bb4DUg|t zvI7DC3ZNPKmjPr$KLYJAXxWB;1mGaRKY_-^+5+uJXg`A13+><0_5^@RfEui5cj5T^ z0op-!ykP7=j{$54*nn*tt9Ae#07U?7QSC8&6y63s(6P+|7!BY?olbzs0RI6vZ1}=r zu#GZGhOG?RIJB@`3LgX93s7R@N4O5?)1aLR?EoXUwk*uULbSrp-se` zoI+sn`vD#Tco*PxfINU*7|$WxRG8oEp`VYr35rvU-9pSWs=jDPyb$qGi030t?ZnsE z@6X}{#ETH0BXdKcfd5Vk1_nyyX9Qi(H|ly$t0k zk5>P!E$Jm&@=1KkpY?e{`$D2VvbD|*KJX@@*UGs7^97?$!P*w)2zpHr7GeJuW)AsG zt{mVt)MIsSDatchs7t~PNUuUYHdYzxv3422wE(4pQD3T2pZc@WH>gL#41fikZ#Mxf zNBwyy!)Qwcqt-4(zZkw4V_Fr3;zQ9N7mk~OaSRp`r$E*phOxMCEH~29QEmvz(orT8 zV;&|Xj^~uKEY$O$kNKRB9?U@|+8Tj;CYOifGe2?>hN4Y7#+8lsbGi84oZLW++k>*{ z=wr6QV+R>~m(cy*81I+nK9>j&a@IrdgIGfX|FKW4!93 z9nkUy#p$r>%c^rFN28ff;b^p)2lbKlbN??{?`D#sbTxN72c|Zg=fuSM$BAuHzqw=Y zW+v3wpupMdlF*+bVHCVMwH*A^^OHnp|Dar}1nJD|(r;4D)3rMQXZ~39Q&x_ulgg~Pi)i33)uUXKpC+PO`V%t6{ zUFVOlbmnvEqFX4nj=$8Qt2oQGQ_qViTNN3I)yt8fvRYcDs4ME}=E{1P=hUy?E>La% zhdw24-ecjYrql`DZ`rLL8D)jd@nqlWuC4=5?Rd-g5AT!{@2$PA<526i@u$m`j$?q| z|8uS5L~H9+$7|04?j2KB<|q!V_KaiTuW!G5ODWhN z^vl}}t=i_ogKRuyz_U+xfc+ie_RpAn&Xc}MUH*|5UuAyX zl6+d#<*!?{-UoQ)k=M5B^7)_MS-Q%8ZFSzcdhqYDjF#-jfxdN*cSa7xy|sPZj5mS) z@b!0Y(e$|1ecQHgjbUHU=c6lM_Cfx%d(IW;`SjjRKKXm*H*|}7|ddV@JacFy`%Ip%(yGwPeLA1JTB|_hO zv3a8%izt3`r7xw<66(;cy{ksTb=~9Mm-(aDWr|D0=tSI~68Bcv4#9R9wgqNtbUXBw zP@Fq5FSuz|u2^+)!EJ#Lw}^B0A9(WNKedU~g`dAzCw7W+lWc|4U)vzgKbcncoBUdF z-nz3xJ`Mf5hn?9aokcGl4vM93%qaRM{Q>csn|6ORvu&H`d;jj~XUFaqOJB8Z3Re#l zOJBHu@`9XJ@tRFfWgI-Tt%n_P@EY%nzxqm?)i`a|7bpKJ7T>V=Ip^=@h*u8qE&J}- za--}m;_q*pF2pu zdYt&~4X=MnGkEAuEC!S5k)$4*1HFRv^`1$gI_tE==cWum_>WLM)hN2Oh|F@KDN*xt z7RwMVfN<^YieEE7IvF3WghV+^qQ{ROpFXBP>EhGY=j*SzBR9#xMsveXp??RUk5cT5 dU*h1>>*L{MmZB7QP>t!K{TD}Gm>MD?000$z?8yKC literal 2911 zcmV-l3!wBLiwFP!000001LYZQa8%Xx?PfQdglw{q5C|a>Ap!YH2+OE|W*;Gu&qP8H z5Y*?(<}F#-?5?{nA*2p|4dWmc9SVh@P93#P+tES9iVT4)QM42~YDGbd6$h#y3PRg4 z)?#|@d*{5pc}YYiPJeV~&)j>@_c{07bKkvhX^J2S34+aH5fbds73{Yxx@qF|fXmPb zdYcH4#>Qg#^(VKEl0RhaMt@N|YaiTy>_wu-iWWW^diq_5SWx?0^~u^p;>3BUZ~1-t zwT67o+_pzf{b64Fg@j#yTsw4o%zbg{btmV~HR#0;EMKvqA~RNS+p;4gA8PWP``3l5 z^YiW_y64S@R=?D7{EOJQ^k+7v9DFO5E3NzBn-lvCd1v#ohPLEGo`dqvzZB$;jSbn9 zlw*IcRS;}epj!l+kj#P%%JoVVIxa0Z9cc@Of(rH>)uDhKDO^aTCH`P7^%p7iVbW6( z3aWKDNGOw6o9rY4xz|K%+^) zz(RjeRU$z-P#9GLzKG%jWER4=2>l-|Q)^{Uhz;A}XvW9@i2EacuN=TBvam;H1N<=~ z7Jwx5Pp3aB3i#8;o-c*I#wjRo?wk2|hZ2LKNWJC_WrdgIIS0&`Gt(<6vbRoJX<{SC z?OZ>B>jzMk{mK*EBQ7z|l#g>h?PrX4x3J%~zVazfG07YJRyNKSW6B3_UA)^9o9(;U zab{Adc(-M2Tl4IrvHXnk&)gfEWAg)R*6r-vV9>`_Rv(yXJsm4fwWX}w^|SU1iPhVE zjuD=VSG_lL?XGc#JkrG_Bi8TT^|$R})|rmc!|IY^xx2e^$IQ5y^piZ%MN8FJ3qH+$ z!qaiQYr`*|Y9;%mpX7-yRy*#`*>LU-(*jAT_1EJJS#jpUt%!sg$ZB#> zipurjfD(-(YGl=0XCQ1*MInD(D-|WI2}r(BL~5)iA%9c~uU6|qL0U_p1~uHEN>P6^ z6&;(pI&2i6x=_U5Y;dP&9!UXt1sP3L{q_Ff3W~!hDutX9yV4|kRZg6V$oEaxaRXL*aw1IJ&H`EA{st~W&R@~XCg0YHK z$&v!_F~D(n%AlfIhCm-SE8%m1eC98}Z2*k`djZY?&oty61miCNnxH=bAQSpwXxW~? zcIYDj2LS#FIA&`zv?HPY2wFF^e@ERD04e~gu|(aA_V)v{0q=N0-!h&A*bcBB+g4V- z0NMcx0N5(oqx&el3vwW1nF%l&z=<-Q0Fwaz18_+9g~ebQrPlyUDYP+YVSf`&06Yj# ztmj9V1^B7Z&VY8Ho?A->=3yb~WVIv{^;QARrRUHhVouH>u=u?In*fdiya|v4unXfk zh`RvudmZ$1F*gBmvR?kh9KDQ-RvhQ!codFvaZK&R!|eBGaRQDDa9kv4KiX!*K`1}g zt^IoN(Ks9FV-Qc{Oq3`5l$|<0*W@4Zkv`%lyCY3{uECb#q_H_($_vR8oyJ5bf3L=N zl!>46kZ;Okjwy}_CVMXQi{c|YBv1Sl7uk0qKh4uflYYXJ-7FlFKjX2TlHFZDwPwCN zQ$EM^F&<}{2l9*JG0z9hC($RF>`}br|9BH$zNsC6{FFzt|K^tD5>5FeI_1y&JfVIe zULV<7XD1bSwa{wi9Dw+o$bjDW(a3{*KI=2-0886f&;bz2F zq8zhTigK)725=)liJ;e)DwL=GP3RlcBVjtg0?xNv0hXiuJmg`xC4ydSm!e;6yclC( za<`x!)|b)8O3s%uYzEqleCKwD14r6S)@tO4eQ|L)%Ro67`k2f4=)xSN zqplH1XM8zmpZSrEFbs8CF|JJ1pUuVZx;jyBUye-I|x6f9l<8V@Azz-9N~FioJjA@NAh3b=)7$+ANicZft}N@^QD)HsKe3& zbeaqGB|~lK>UlH!lOV{NUj35p{gMUkc$%(de`woBrR)6hmCkrB9dxbaujMaw=x)t) zkJR&K$x=xQqIGgOpsbcwDgG68bQNX3oU?29X_u+C|3jbRSLM-AL{(~q?$_dGkMy#_ z=6I6ld{(tZ-g5C2?kKhx53-RYW3Fm{hAEp?Qv zdA>F4{v8tVZK?PyCVCkE5?4|C`z_lhRJuL}{Ns7WO|>52AAM}$Bm3@nzBOn0ltb;G z_Ifw8yq)luw9d*{RDQ`??;{i}?xN9VP(XQ*=dn!V>6 zUo3p>gYvx>UP=|ylAPMJb;s*(-*~|`=+}4Mx48uL5B}ww$3gGpGtROzOkerwSgPm! zmKJqm{sCrB8Ti6;?Vx{0sO=NRpY@EVLgRn@l{c7Qwh8x8h`Go zdrDSWZ>-9>R0sY&nbw^76yUe+aZk^JxVN^AoBlT7x6Hj~v#Q0l_UqPtYjpiuKA%|m zng{ZyK5!{d%cuLnvsymA?-en7J9ed<)aTD(tPvsp-c56Kjqp8xeXqms$A3AznSMFD z-`D=-^jxW5z2unAIJCV|Wp)VPxl47cLA1Io#X{eEv2jHm4J%$_r7xw<66(-3yrWve zb=~9Mm-(aBWr|D0=tSI~;`dhA4#jpjws}TsG(GfLPnzeMG$B*4-b?Xx%1y-oJ0!#j(4^k~b`mg{lULB`-fbX+c(tc*A4QrX4uAt%n|Q z$Qt)6zxqO)*)VnHXJ`K^7T&!0Mf>k&i`NeHEc@n#GO_&Svb@qG--_3T_8hGmT_j$A zqGH(RVwPzNY~Njv!&05B7E8sZ@nqB3-T%8-pF2pudK~{y4X=Mn6L{#1F9w6?lB6D+ z1HFRv^`1$g+H2ML_oFlz@L!dBicxeaVVUJZRU*dsDV8Bx0HK<@6t8N0Mbf`Q3Gs56 zK#w0iK7CAo!VgbdpRd2hj@&2*8jKA)iN4>{mnZfKFMe?8_3^MXO%aMa;E!sd{TEqt J7`D?P002wL&eH$@ diff --git a/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_full.rds b/tests/testthat/_snaps/output/output_lm_numeric_empirical_AICc_full.rds index 824fc181274b330db492215ed3d8e83bb417c9de..3ed404d25299cec67f382eff2a968546da9ca7a6 100644 GIT binary patch delta 2810 zcmVQEpg$H^f(A~PFgO)k^q`jC=> z3C2L9MM3{EHLNMIupBCjE1_Ua2?8Q5nI7K%0 z$gGDy%m_@4kdFQt^q;ZW)_?lge_H5moQd+*zLk%6C@ma`HR;|^R(Q!2*JsX~9gu>} zp^$}tiQIN^eFxVMp(59%r}sip^*9!bE%cK?{b!E%w6ovl-m)!Dw#b|Ob~erz6UyN~ zpS{hWm>WFXd1B%@@iyBPd)wx|ohZqv{MfglEpc6F%{{x$tvBgcRM#FDZ~rJ!p5@HE zb@!@{GikLug6?7dvqRsSeb?@>raaQcx?%T!?c4qS4l(aU=ct0l^hD8~uA`Re+A=0EE1e6MT$gIl+gebP_zL>Ft_YYW$(TxMB5js~>}XV8u_>$0$<0}CzX z9OUbxS?(h>-xwa-x=`g%@?4HaV-Yz(?ERuKr9lm7Y9uVRDX|Emv%^v#(p0a8Wk!jA zlcD9YNHbZ@2upFfDH>AZNkqM@1sY9+Gp;D)ulH6(iRuDUFcOnmYDq|qOVO2DVo{Gj)%oki49XrfF)E8eUFum?fu-Q{qxu<$y*i z!ctI?wdNQfh|(Gj$tqcKhb1kR9D0y{Uosv61DOSZ=+3NA<76i*EK#~mzMQbs99C~@ zR(c>c$CU=D$IN?@aVVOM$bm^@P;CX#xVpTFh=Y?vbD|_!4Fr%rh|}02homOCl_%#W z$#G4NX*{iek`{=xfTSiQi@zOT6R04v0$9y*2=F1md+<;~fwT>RKJ0wLrvN2?%wK>X z0ki<@12_phS0V2J7=H%P3jNCfa-koEb_lfl0p0{S0PqFin5~V_4u|#wXnoNB19g`I zQ~}gtMY|pCzX-4wc*hCG{__~X4uJcx-Oj2VKnK7`0Jf-JFnkpL3UVN0n+-4uz=Ja9 z044(b8{ieg7Z!tUgi$hVv!G3XKnt6ta0K8^fN~>0!Zm=u655&2_BV2C%fUP>M4hbk zUpWZ#SYG*81V`Uy{V^KeZ5jKg+veyV#2qfWuv z7Ul|iO%N7g|7NBR>5PvZseX)dtj;Y(e#Q%RNmzjRYLsKPW}zHwZv>bQFhelvOAX3X ze-8Qv^+=coa6RYS4FETx{CwnLxH`e8wM)@2HeP};FuBF3hxKJQ^s$=rr2_eDFa{Q9 zCCXKyuUBzCF2Vj1)XVt&$iEQduR&j`QGX5EoyN)Dh_W}MorP$Zd|1Sj7zSB?0|AOq zj-9NA3C4jH-Y@iXayH7bS9>S&vvC&E7;g?2M?V0zSF_D@Fv>ByS4bWRhayip^5i1T zhBn zn1g<(YZ%fQUm@COe&iz*piVn~#+8fu^SSsv9Nz$p+l#ze=wq%yV+R>~mymjE@{oad z&;jQ=T$DJwgr4t1F8$ndCfwYlz}f4QZU+w&XaA5~ zuY~B#?AGs5&C|6f2xtD2kOv?T^&iRdW7y%1UX4qAqWwn=9*Go=d-eyGXVDANrKMcaKM6n$jSo-mzOfGRg{@?{!#BNynp|)r?(g0H2IZ| zZ9~ZcW>4w=%x^kC|IWzXA6(DddM-IacFy`%Ip>{xJ#wfAX;6va-sLVf7rayjz^V%xzd+Xr;a*wYwxa= za9wx1_htU*b(!K4F**_Vr{ujAwu7-9f^D&x8eI>4BNXQiFAO~}J727RXrbu|YaAc+JNW76;=Bb#6}CTiidEUqemwgJpNRACIy?AS_+Q=h%qc%N@}*Zo zqTjKvf3R@RQSqv>!%GJE+ePt6+25QuoEE3QcJ)R_^CWS`N~L)I(5QIz1CM7PIJCK& z9&ykb-}ArxOq{)X)w<(n#)zd^cdsv)FjM?tRdL&>V?P%wA6fV4qHQ(el&I&atWnpA zQ;$>?d@ANyroegOdK{G+WvyH)w~QxQ#=gGaf5m#;LHg9=t1i>LVZ8pK-g0A3NF#pB0&M@)LTn%UvmoJf=``CVbgpvnGI z=k`yYGF~Kqy8kbYGnQ}rswFX@@sLzGw=;2B;NbAif%lp6S@*VAK3g!-zq@qhu~*)I zE;0DwFIR?3ZGzym1KlP#g$x#CSZ-3{(DCZQ8AxY15>~M9u8oA`SlK)x)v4hI>d#l2 zqNJxP64n}V;HZ$7TI^)RB1_81mIuJjJnic0I&XDT zR>L1N0#hTTqkjhdXKc3hpFZ|~F7!6eM0so9%EvpD7LLT4bZ;mtykv^&Gv>?+NWtb% z$ihT_Zo9a?gX@P-k?Yda+bt@w*piKtLH%crx3#n1`rfiBPO`|G{B}0Z7Zb{%KcBhF zpO_sy(|KaTS@AC072Dfpzndt@sr=aYXj|fj(6Uu8on39xuc)rwHO~G~qCCr)dFR%< zJ5Hz7ZVtMK`_BwJFzbP>SDNxj7wd*Uv}5ak`a{>c^hiMD|HP$rD|ybuTYmee!n8@^Cb$O*lh#oH>_;B^_93spcSG zAI)MPsrkn6*w%$Ahmz-VG#ZP@0b=hTjVTRkKvN@OsZEJR5S<;C0+FVAH7qkqoD400 zjzyZuYDQR!%T3Xc5>F!PWi8NXBAjtWA%DGhDoRurkb;qz)KW`AYFvsg)fyvVMD&X^ zYtd#+imPo@a-7=Is9Am*BQdqj~3|G$gBJ#T}NkSaRq=e#v-$1Po*r1fn~$M2(Z3oaVUFAoZ9^Ptq|(lMy*6 zi43Z(AR1Q}HxY42l4xdLlGQ)}>4Q0qEpkX|l3RIlZjv0=;m`_aLm>kXh%T%0kl47|AD$o0jdCMu|(aA_Fo6s4!mOpW5ak7 zU^Bo&*luFw3!nqwasakUUNd|Y{t9v+W19sq3c!OhX8|Sv{2O48;R}nwHqxj8wwcf- zpoQH{I0A4#K)I10;X1%y4ebnnXa^X%wdG(Q=AlkjOL9?f4bZ$s4s9allyT9H;}RT?#BmXhsU7z=`~68Q#qs4h z9xv!W+GfOoD1U`d|8?V|aX!*VBc8^&C{OrFFB$kEi+{vN`iP(Gjlg zloygGI*o}={$7UdNDDvZp~RBMLQ5Q_7JFXwi{c|YBv1Sl7uokBKh4t!i+;kB-8>wV zKVz|-l%J}fS}R|%C7+{v8DD9c2l9*JvCaq0C($QZ>`}br|5yuOiKXp_{FFzl|JIh| z(k%HTI_1y$JfVIeSs&SGTE89uUM=)mIS1ed!KhQPwuRY(UK51**uRabLptMQXP_UW z9IJDSke~5FT@r3Yd^O53TQgCPwYLCF1DGxt^`!>osedi{2K7jo0&o-O+sy#CqWoOs zVYoWMsI`mGFE(C?F)+CWlkf!%(I0^A)oe2z zf^v-R6_O{oVaSt?Jh@1-p-nfA3(y}o+Rer|1`Ek!8|x3nSlnpKgSaf@8-l!aHtCNs z4@F zEpJeq46DAZI#+Qxn)!4NN2_^IFIhkT|C03-l@z7BHRWKJ(P|$2l9O=-guAb))w$?{{`LHIH42u>k+$LHka2+#ZCL3&R)VMP1xTS5el>Ie(XapLT(2`#XTfRjCzO_{!CqzHvuk()Yc&~kZX|?x5z;7rnZ*A}c z|EPoW9^QHT3!4gWoqx2a<9IOm(8$--j(2>%%0)K`j9yvq_xWKQIQzy(cBTE&gOyir zf9kETbIy$_?qJVQ^{vZxoND=P*_($dcbtAXOUzF9=+D;eZ|$3Q+BxvqJMLRE9rO=+ zV(($lJMo04;sn!I`B5Uv|6Y5$_Grm2W=|RL;%_=Y|CY%1+?6%ye0Ke`v-;_Lvd)@Xcr|bj# z+UxIGqv>%yaBkDiWrlt|pBwLd(+~O6R-7-^^Xa?)6Fr}S1LK*!En72>8uRBi*NBjO z@1{8#BYekS?|3+z?sv6+Aw8GsR}VR+GY)O9RGHnvx9(CYHHcQ1tz77R zFE+2J<54AGuJlFJsiO{E!@FxGT-V+1eVIRcU8cB1j84S;DS2;&?GS8-Vq0vcM%P0h z^~5~$``BOc)D@HqUXigKbbRZ-*YR(8pj9y-+%h_3vtekMHRL`c8XQmFMmAi z2cL*@A2>7QSomMv^juqh_VPFOghan%M`7W%qvADXhZYX>w~OMDvcEZR{#=~4cj_8P z^F(p_Ql)tAu&6lok!P}Z?Oxwak2rXl@6}&^CeFI&?iI&Rj}c3=R<14>KSTUsRdL&> zV?P%w*MF|qIREJyadOo2eAcKN#H)@}6?`h@S*F1G?e#b+HOgAKRBjnhw2Xayzl-&{ zgY>D#$b5!1D_C#unG~w4K}&u=%7y{|RjIoeMVA?sSuQjs zW`3Vy8KMOcslP)BXy#WW<13VqEQbzy{OIxNWi$F67oWCXUw_RVxkU~&n;UjIeZ8kI gPwW$3^5D|r$3MxL&=BcQlh_AfrG{6BS zhnaC^K%~CpPs<0T*~R)PO}+N=cFodzQ?KcehQ_^VeVxCv(Fv8=HPp+8vNMCrYd{;>bUh!-`&Pv_j}+qpPPu|)Jn`(aB9w*1ZmWj z308a&M1vEFYNN?0z_ljdWYAd>W-!(qy|IX0&lJkc%ubHUXe)(=Dnqwa){nQvv?PJ` z<&QyGjsLW_x8IaIRA|synL|n-`V{GGx&)i9z#zC#iY?fp%s_C0-e?mnMx7zSDj13_ zLNO-x1h@sz{m~M$N-{&#fcru>jtpRRy+vQBGr$lj$dp-&|3O9+7-GObk-rXc@S|=1 z8rNCd2lVCFayh9(o<@_UjC#YeBGr^i`r#}HW&!^(777wMg~W3Y$+b#yZ2(&ycb?&& z3e0UAAsN59nEo8?eRbsbOlJv4$ufP1yppsdP`z-vsbw)=KdHFo(8a`7v{*6l&8kVK z>f=H)ze#$ss(z~Bq1C%v*E;wEbMqU9D8H^B=BM^qwC4f)zdZAI7HgvUmcA#`AK5d= zp$~jCC%Wdqo=5Oxv8trDEj2qT zRH@0LuX0HHP>-|*T?y;d)21)e8%tOmj;fO&G2$Uq>I!Ylgi%{8=xpT{X&^$S*`U+2 zUNlCn&EjnOgS=Lp0<1__wbYpsU?RQp9Axeu`()={Kmh{xa$I;|KIF|=X$yXXsv zLD5ev8HzNF>oLarCHEhanQf9*CzAHWlLcYJ439xiO&O;%%AEwXbSzN6DAdqL{ z6f3jO=&awK&}RPJ12{Rt)jq>=xfoeK2XxXNBpV0j7mG(e9&9`rKT*~ni{WPi|Z0M4d}U`NBT+wJ%Z<97>{8BC)Srd&}Y|K;2W+-+*l0L zCBEH@;dh`v1!M?q4ky;yx!@OR&xRO?-Yl>~u65vJuEduNkk5k{NSv9Vmjk|zk@z?p zu4jW?BF}^T42VAue8~m-dC>1ziS9hmT>$;efPR?|GbQ6j_BgVykv+p3fYH3&(Al*{ zLL)MsKx1@I36I(FkbqRzLvrmU(bu@q^^(w~J}@0QUnBEP3ex_iKFj-&#_Y})DM)iB zrF(H5^TBAIoNMgN7jH>lECx1iWFPH;Aqw=!$ts!?&#d_Vf*zFvK#$zot3jT${eVYg zLnUzpVjz1p*-XPhkMM&y=Yg;<$asNF81NL(rv}=+!5$l-)r|bV&6j)j3B(VdTP#f_h35=sjOs|@B=-v1_L=~NU9Lj*PpV0A3JMka{n59}?{Zw<@t zDKzX2g1$)lKpv=GvR4KjUm_@SnE`95&TJ5tYL^K5l2Z28LH-`bgT6ZH+4pzN8;@znWOdm)%Nyz&%b}mjw@Tq(l_!c-s15B#n)7$C_c6& zhu~7b>va?K4Z&%dMHfgVT$6eKUiE~Qw^F=gzj zsi}#!p9Ul93I%Pg5X~Njygr#eP_Qx<=@?qLghZ_cQ55%kK9h%yWbg1+n>$Jr1E}G z^rP~tm;R3On-YU4|A&C9l&@$J?R+@@5N&&IOQG_wXeLwoCtE+J^51M4K=HTLCMp+y zrZ46H4NWETF@dj#QGQ!ZuPbXZC5EJHL*~)vtMv%H4>5 znzqjlEuigNO?50kwB2GlLixwro}ukaJE;BeXzyxDKM``t#eQVXB8q*#97y?%#@=F{ zuYXJRulQ(O{j~;Z95BB?9%wx$5RPXHRhpF5j7e`Qh z@kq&p)CAvg>wie)L7oSB9^~yHZEzu*~RhF@oc<^ym?VR5A(q;&WB!hm=8S6 z2VR^HE0}#d%r{<~Z}Gf1-;BIC-=gi}e4E1T+hIQQFrRst&vuy4yf~jnQ~BL1huUGi z@UUL&;(AHo#r2ZKi|ZxM#UH#L?XVtsSdTocN8Y&}gM1gx7|o08y`2}=J6#`my)WX$ z^?uXtT<<}?huTy;)DvE;ClByqJ$c6t^@JDe$xRpgxL)y4uk28-c&JxAt5;aw=ZBY# zyjTx!*u{GIKIr{X?5DOrFV;gFwI4Zhz8&f<=(R$Bt9YolJk;BRs~dt&L?(Na`c+bN zs)pj4_+1o#9G6D%<>vhamk!SG688^{V}Int(|L?!kJ!R?bII2*Kl!`;eL>fLUBB#po@^44)>Nxyd|L-&}o&CBi58c)7uDH9pUb{OFcPf9U zal4*lTxw(t=Xf+rAJej@iP7AD^=YTed5hisD~55MKQnfGd1W;Vg^rWRTy`;sU9hjq zH2GRMcXaqZNe!{Yu)HD29`XVl1UL+EIN&~jV*tkjjsqMIn7#KO1b8su1i*=ahXEcA zI0-O(eThZ@9tn69;1s~40gnMZ7VtR0;{i_q%mZctLmt@YxG3%XD|=U-c>-lmI(N3^ z)te~i>ldp-s+&;SeD$kuk9Z8FZ~AgqTF7-Y(W}1U{nwk&l$Td7?t6qsDDsQFSIrS9 zb-~f)VLNW2Jk8kyQ|~dNtmP36wMAAm@$DZsycm;-ro?_)e(7X8np$)yW$Qy#2>mmr zrpLf`H0`~OiwX-8QAXO0zxHo=5M{17^Uz^oD4O)yTcw4?(P(nqw)n5tPeAdk1B-k65v7$99zcT-(q;=&MnV_etFxbur4FvN!h8FT7Ej zz31Y@cQ&Aj3(rO`dO88+90?wj{`f&O<&l=~&y6=ajhfty(s#_cj~|eS(yO=4Sd`46%-nJ|TP2Iue!|z2Y zSB|b*^4B0Vt}*KK-HA(3rr+kI`@^QAtQ(W(a*t-BtTJ8tv$c~@($V85*X`_wMs4dK zA9uzBja)sWHGEeNN{ zyrObp25Ge&9^SB5S)IKPWTAQ#*_@vR2jGVEW8sc!EIJ>vj^x57SR9`nlMJy9z*KO* zP-t^}94vlZ%sGz>Dz^OD^zUT&Rb5Y8r>`j;Ps}QGhH}RPH81x6HlXcCzRY&MV0Jq_ XJcuO=i`$^L($M|`SbI)j%QFA~AdrOZ literal 4210 zcmV-&5RLC2iwFP!000001MNEtbQDFlJ)dOq{{smjB!&zbfasAtLHR^M+@LQC0*gP^MHKc4EW(Unz`PZVJcSiOMEoHTcyZB)f!V6+ zTQfbK$zl$1_nqUL!_Dowzqw|~C(=tva2nj+8ycYj)I-R$q4rvVUxV_t1-Y3$;gyhhyOuFWEc{_KY_mwL7NiVVwD%$V|N0j1DpSStt$j~rKel&} zOCR`XPJG?Ly`SwuJue+j?p@*Mh}-Xs8<07T*=PEUk7PwZPX8um6My)ubKUQ^zQX!v z_L)B8qhi&6#I9>uC|MzjQhg!O_e2jqlR#-tfO*^sfzXLZ&X_~m1cv^>L!$E zY}yJJL21?Ln7?6*bUHItP?wo3>gr;qq_?Wg%WM@UBM<^jRW@^#O>NcJu&Sf9Ei=0+ zP=(2&uW?BSP><9GO*!k-*QT%38_QW7uBwtEGUB6Ks?pk*38T79r?FL8#DVCRnhhE~ z>qTW$+br&8FvzQgDZq+=RZX2)qPMbsBCD*rQnlAq2D=^8*)%}x;U<>pmts|`zPyq# zquoqb=G7X#Rtx-IB8$};gSt|)RLqWYv#mCb#U|#3yLnnuHP*Co?t(3ct({dcQn3n2 zQZQV=a2C%pT+w8`@HO78xGNZvh`$)-W2nY(5JL-=83VErxP2AFQhXhVAqrocF(#YB zAq*d3XvFY$Oe1}5#5fV-^BAXL{1w<9jG+KSF_fs~(EmFa-o~=`kr|I+GlpFl>Hxn& z$`=MZhW;4HDmftd$bF3Uu#PMnLo$Y7&}qYvilH6DUj<)C46=Sg4UlDF?7$draNOq@ zR$v$=7y~u#5i2Ytt=AqFavCoS`r0zi!d)t$e|2DPFes+{8|k47*1pO07EQ> zy%0|m>;lB^HTXIXa$`Wlh4PPLg))xh&`yGOKWN86o8ckvlizVP7~1`zJ(QzAlmIva z^arNVUk5qXjsgAvptE)q=rely9)TVw@sG(ddrY47n<%k!FJKlYYfIy0d13mD&)SU7 z{JjToKZ!icLy{zqv646jOZp1~zgT>%AEwXbSzN6DFpy{Clqj*!=&awK&}RPJ2RJ>( z(>}vexdcf*2XxXNBpC`P0D7d(%>{WP zi|Z0M4d{iSNBYVFJ%Z<97>{8BC)AfB&}Y|q;2W+-+*l0LMZVpS;dh`v1!M?q4ky&w zx!@OR&xRO?-Yl>~t~KCep~#mUkS~H5NSwK#R{*|_5&1Y9u4jW?BF}^T42Zu7d?^I` zMbPh9k?uUuT>$;efPR?|GezS@_BgVykv+p7fYJQD(Al+0L?bf3Kx1@Y5s%sN5rJ6O zM|ABc(pP!W^%K#>J}@0AUnTKP4C4O9K1=%%$L!4)F^F>}ru%Un^TBAooM-IJ7k^P- zECx1iWFPH;ArAD&Q79fmUkv#Ef}U+dK#$z3D?y&LgMde5BSmq9Vjz1p*-WEBkMP4d z_X(~q$oPRw6!2uwrwZD=!5yciy)f`GPUK@45%G6s&j#e#zx*xL}RPDM<-do^;^lhhe;NtYN^M;&VQ-v;O9R7_yAUPn>%t3Gsdb) z9X@;ARrA+K7z^Gtv?BPm$49{q^9D_c&cM#hD*Eixb>a>#!-sg2MQzYk6B+l~Vmm_u zCsa#0jGmJ7+&$P1LnLvg$~xCaG|wijqnk z5B*01CU!Z_{oGIdY*5a5e>SM(IzB&?OLXKCJ-I|z?nPfNk(W#4`UimFko+Umd$65 zbI%_!$bTUyejzBmfY=WZ zgllsj+-Kj>&~SRenl_4eu3Am;${-cRM>MmjylM7Sko$q^r8PIx_A{Y7C^pn5Q~cVc zYAT<;`3l&p1G!hJ-jL*Zv^@$frnq|JK@a);n)@lGo~m;nAUuD+%uP z_qfxv-FNm|RQ~;q8C340e)m)Ujo2Nuz308bwEe}LTq+;*R6i=eX4&s3zd1FG@_!1s zM)|TnJ?zKUEuuK^>w%QtWb7^E`NsED|7w8BLq0fW3#H$( zJs^z3`HKQQ>nd$u{N!N|`S74Gg*=wOMD@;{d6dfiad8aAmyVWC$V>?wx8bKu9^`qD z=Rw{M@^-O&;W-@-{_xu9*ZU$~Sns#&?)4rPc(`4`Lp|Yz zdh!r2)RXt@P)~TFp4{@VkLwi=^~w(Qiidi|vwDT)1Acnd$P4xGrd_CqAA;T=g?{S$ z^FlqeQTwqY=i8y)f?gZ+x0;7~%R{|Aw5BoaWNf-WsbA%#r|T%LOWsZKr%729Uuii& zaK+#pKVkn+x%Nj+IGrbm_K2-)Hy3@U^G|Qf0cY! z`FHB4tNc6ByE+cP)c?E9OJ~3C%0qXxyDRRluGj9)!`;f?ZQP#c7>^p6z_}jH(#N#y zX<|J0Z++V7ao%Eg|FU6R=g*8?pHf-PI<4y@GM8Po*_{VdA5@Y=prXP-j(lg^)Oef<_H`1a-6h}ve9HDCGq zyCa@J*_*%KofUBdP4sg#e)wiHn)2$Z#eI+R2*rN2@0vLVWiB|jB5LPtRHQn0aO!Us=xqG=y&TBI#WMLAhF z|I)wpVU)Y_>?22XL(!x!-l@=*#iPkd+mpZDFddCgmACB9UxudT-!S={I)SF=UT)|$ z>^+p@9I^lS<$ zI2t}E`^iIS%44n3Um9u_&EGxrK)gyrg^^p$kdldR^Ov(4WnH9u2*X zvL3BlTe~w2@sE9V=ubcPK$#mtX06uFK$)fUCTxkGhO&GP?`TWei!wh6Ss&wDjtd;PCVzeD3jzO5UuaSY;5exLRGk*g5Dtj_1@ zBU{nFZybhO#dtru3eE9_5}mp84^;A!w{A zCj4^$Kcl>YiPulQ)r4{#3qO0|S_7K+dVq3&$PP3zKcVP>1375K(84~BM{CgNfESlU zZn}c9hm_RJFDXO0vB8@sM_EwLx}>#9KPb=`Rl}hb!|z8KSC6e<@|Q3)t|{)zJ*i7j zZqSyr2cxE=yqlBfa*yYtyh=^>^YxQZ+OZR-*6-?vMs4q(oOIR)ja)OMEqZqW%05&2 z<*v{sH0tq5Io2Wj&{)k2&meO>j{E(^$EPHs-2L00uaN7|htDC6^j-d9jh zNeNQ^^XDaIb%n+@Og&7}9xiF8{R^M)bgRei|4~4`USEnmgjZA^%rLdO!^0c)Dyy^i zfh<&?Qk(lb-w@mofBoB0jYSt=){tD-bQafl#3Vy(12C05sMFe9U;7GQ3v=${f`To7 zHvKypenr>Q*6C|X*Aug9jiJi*K+TW+M+;~Nkx#ANFPObf4%MEgl`FqT;Fj2+9c!=w(HlluvMsCZ=Xg%xY9HH@M}E|@Q%M3g%l zq*hU=GU9@tEjT+-q}6FvP?lusGzvr1Xu`@-Yja6COI4^Rc2ad(Qvp>*-WXhF;(u1F^%>tGrAA>S4!Ho)BUfQkM41#5HL50*JOj4KGte$dtu?6(T7@Rc zsM6#aRC$;f0Prh7+egcqbz$ES5#Ug0#*qQ6t~RKZ3Jr9T!1fB^KgfsxgB1L;^A{ot z9$THhOSM+_0DXR$FUNJrRjV@;+PooIY0V1pPRuC_Ib{u47XSV%{yXPetfPTE{_Q;5 z!wc3kPin%=$=|YnB0CB9F;c)0um&nU#5xF7*A-lL>RG z`Z)A~k8-*!sHr+ri2|ir6RmgpULnkJ7IOt)lmzww5jVcq3__ z*eCjgk1{2*g3E5d#T!7vTy-IIt_yU!m?z?fMaW?G2e~$S0ousSuXc|GRxlY#JXh%T z2Ax7l#C`P!RjyiTQtPzx5|u#*WFM_usVkhQ)+$(zku;QV&=rwZ-L-O~qEN3<8J&cQ z3X`(HK@b^LD&nu-WR*&9Q;_HB4D#YkqNFy;_0voRIxTrobwwt9kqN)4C1g?(nWpI- z6I6lDpe}Jpd)PdZYZUpUQCE|?P_4};9;?g>rHKe@<#{TFsmQ=}S!LF16l!8mqLrHr z&Z;-a%k7BXEBb(_%hh;iy;+5Cd_E1(EdIQd$DW; zJ3uh3#!!i20pN}7Y=?ot&;tWIsP@=>q)uQxtRqOk&=Z3<=sd>IAHy#gzOehk#vtf! zpE3k^BSKj)#>*vj4#R8=1MK;sk}>@ijN>tGXV0y`AM!97Y_e026zpbTo}WF30t7j^ z4Zy~)#PB|bQy7k72*ywa@if4C!}|RWE{8yFH0WjfLV|+rvp#ZxdN|a(Lp=oQ1V=Wq z&k@uY>OG*|kFq@|3~+nU?;UM>n#qxR5b%2eoz$hEPv`@;+vy=Z|A-v1N90Mn-FS9h z0!-p0b$+}gFGQd4NuBVCzg+=$=gE^ig!A$k%!{KhuRTBTi^NCTA^Jp~#6{Zo19{R< z-FWs1owOSOb>dG1;DJF+?GwzG3*+UpS1a{CynY~lk$Cw1LHd*M`}5i(@e={HJ9ksa%=V!%5Q+gv#U!$`_LPvNmmrBJpxfy#pN zo2)tDvvR{ROaMK0o*N7DtSp|Fs8K*q13k8_VW7w2@fhMT$SC{#k^%apoCLn%`G|_e zkk0XK9ER6H|22?dX*raAt{n@0vGr_-fz=xWcG$84d`#o`G92VHAO<$hM9@nGUx#pf z%!YC{*k$EukRJ{4XMithU_S%ejpgW$2i-TJozc)P@ga-TZ|oY!u50X?;SNA(?k&(s zS;C>QGOj=)bXN|K*b#Gpt1IS|-8lM^7IfV>bgmCXhtHSreB%PQeXh^^cDOOO(L zIpfmZsOI?~G*_x=?8Fy$PFo}f(r@fK+5tld=&^^cE|mSqiuV_`ld=!!v0Hl)$g_1X z;IXp)oH*Ev2X?Jy7t@ZQ$MXFs=UFinWZXbT3OoU{DS>(?@J9me`am3kl=FbdmODc% z5@^dCXkH-K5oF0x#usAlOgWF|BxnAh=LbH9aD4QG9QcB*F2HByf}wrZk05|fVABQS zl7jspPW;{+x%LpZAIN%vk5W62J;=CNsiyZP@7w7@a=>|ks}hlwYWYUw_n*6(oVnWO z7}sPs&1OlC;fj4{3|C!b1?26ZI6Ca?%g)ZJ92)6)Hx7-A<_@i7{n`JOtT!=9qLi4M zoDSX1j?<&_{38Y|Y%_OUnwZfR6{_&r>vvWE8wn%9JGzzw|Ly(}lC!@?F;S%FPmN7&ekrxx{xF5LN&dGB=X#Of*S*&apNO2ZoGV&m`7{L z9+xKKw9y)!+ZLhoedWt@>HPlj2HaBLk$$CsFW|^=LD&k2S^%zH(tiXzo)g3^fWTqb zcNpUJv496H(FnaM&u+^P{B_53xV8C({QnbvgFrH8AMMi8yX*@kSw}A8|F_{*R_|N? z`ReVMYbE4LQk~1az9iSnybIRmSFVCIV!&9S&}&rFDrk=8bj5Mzkatf* z0Yx*Xr}Td1eBwps3-|aVhDCd1>Pcac8p&{pGHA`&X}8z^tEiXW;bY zMCLQe!%Wlg_RNOPp%V{ZIV6+6mD)GQxQAI(S3UO+_hOi(okREiyeEoTchl|0`Tg0< z`hI6O?>j4`YZ50(Hti0S=@$=K(dXcwnVlC64+65sGdsnPmn}gOX3Mrk)#4%k^hxvm zuf2~X$H^ z8ZSTGEB#8AAv{p{$xs2awQjf1rYAqr)w;KB@jHiyj|kyCY#*&6gi53eOwy6V@7 z?=9BX$VOK@IQ?FS@0qVNPTfol5Hp86tQAx9E9k>pD$>ti-9y)#cCK1J`YB!0>w?^z zV3mz;zw2o1gLmnT(@Kwjr`kq;y4d~G<%{OgpL;R=Q04(<`$)XciL zd(qd1mi-XQST@d>w|%OG-uA)q=)s>~p?CGTbSBOkL2p%BDhezm%-_D5K6Ak~lPsab z>T#bWdNH-8PNrKwSJFGO8a(KVzth{|V?UWTcPq22;?VH<%LdS!+wGk)bD*SF-2UY3 z{LOj>=O^No)d@7t&*XR9Js6yy;ike*>GJBaMs2B*-qd(S5V$&DHs<(@fL}H>(z}Iy z-`aG3GE=?s*rs)tGMPQQn5Q3o`!!wOW6Q}o=i=$j(*kd*$~Cg=N#{JehAp7$+!lFc zNqf?tf1Ec}+&zK$$Lh|O@GfQ=zZW@)7cSF#C;Vl4<2tEqT(rNNZi<|)*s$UlQbyC2 z6_GtcTs15|f9|1WbZzpN<>OU|Iq|@E)*16S*~p!KpP9D3hvk>wJyAcFsonMN>u&Rt z==Uexkp*gQjzgU0Xe)LD;ylx2K2zFPCrHF|Zw#E%Ms6fEEL{f~|GvV=lv zNdUU&KIjoP=Z?xP!K$Ixe9EA=Z~^qBtJs1<8Gucp%tPaBRKR=mNK-RSRm z@-MFR(ShFCmp8iG$G^le$5Qs4qLeenbEy}6I6v+_7oE@l?RDY#>Mu%v(RQC#|9PJm zwcFPDd|rQAll!gu@6B&(_Mf-i*5qH*pO*J2O~w#Ae&85sJ5rKeG5MLjjZS7w_B3R* z77Uz;Jd!9RYU+ z90s@>;Bde_0h8Yx`T*_=I0|rozykok3^*Ea(=R`yBld2n-)mfn z&|7D2?<|;$QqqrZJeA>vMm>3d?WH5}C|Tfd5nL=nDUws>p5ywUq%p4DeN$JUQGFi= zt~)sgr3H7Ju+>_R(jyi=i~ZAHG-{;lTq@Xv1{eM#DR7}4jR;pJrTb)|*Rtov`<;(L z2_qMKW{-IjrRI#*?YDk`QU{+*8l3k!dTq}Aj+eAgn)w-D-NpOp+ZibNK=F*5fxZqu z2j8gwW8*?E6xZi^{?0q|(J&8c-$UesQW8v?szN%D>Oxp1DG56WD)9K>{m(7 c%heWN4>4=WK;qV@jkeJK1=+4T7{)3906s1<*Z=?k literal 4004 zcmV;V4_ojbiwFP!000001MNBqSW{QlFN6?wP!L2GQBkW1YH^f`)^kCA!uz}?^`yqYTt}QH3L))3E0zI{pqSKo4p(7rqm?jv< z#h{xSNyqZQ;4l;avsf(8gbpb+3L|yM0f??S3X>wzq?n*lHKF7hutkA^c9CkWNoCL~ zG?7M?CfA_K#Y8`VUjf=aT4L6LTp^BtgJ2k22C%x?pjIk0Fh!!qO9=l#Mno8V!9Od1 zA!6Xy*k|uDt@T|&U)UDP@f~u~>I?;q-q5VHW`%ku;kCuQwgxOqet#C5IgbVig1(*G z_!9)?fqHZyILcOd-$WLEwC*!{_@IXUh%cSqMrmD9O5tN`2CQQDpSF}P`FJB8 zpW3JTl#eo`vjR(Rza_Xq#5w8$m^=rVREa>u8H>=H)d%F-XoB0w%&%6DMHVm_L_JsN z^#+|nNyWYN233w)X;SO7@?w=i2V_sJT&XLVpw=n~$4CdtGw7z!QC+lhqoP2sQ5o%o z2?~=k-$rmWs#Mfp?@20^zEMG*t24+8GpLf8F_Rm0C=Tj-zRs z-d2F}bp~~@P1?25Be_PAM+bE>sSDKFJnFHkNTD=QVXZt@r7%q~@Lg6F=`{*9wI|ie zO$K|{1LWn_$+i;RvCECaPE{MJTRu~a`0i>kX&$z^7O65RXnyTPUT_`kRQ~O1Wp=bP zZJC!V)Ji4r{dwaQDm3x}MG>FvYiAox3WJHyYiH*vb%j{d#MtY#1FY<{xRGL(N>YX4 zJciTwD#OK2h#>oF#4LJfv* zFw|jqfN5l`r5Ja`_$Y77+^769Hz$`=L> zLw5}1F4<%CkvW0&u#PAmLk|odpz|0*KMcQM_`>Q7i9yuOS_4G*$$>FrjMq2j9ERB# z`djnEBw_k17{_7U&YD}159DDK*d(>Y7wo2Ep0_oJA_O_P4M5^oVt60JDGWz31Y)R! zc*{KBW)XZlwnc{G)Qz9+ju#b`{up2{4V5_J#4%yik40r+vz& z{&oS}O(0M65GKfDpdgMug7Lh;FB%^mhw4*#8W$bk8|3LcbrsmBbULmd^r=7LfCmIL zwNJ57E>w`uo~`tI3+93PMdK092c1vK?M1SS*OZxVCBCvw9uj0ZhZ=f;3M zk;Qe1842`M&?93F1wDetVTi>bW32Th9rS5C5q!h-h>5|F#`A3~hSx#=HIN~+Y{pt^ z$ADj?p9L`xz0qKYv=!iED$kc;AfFB~kT?@SF9m!Z%=0k|+F4+i$g?0n3gS-(UsAz- zI*c2`(;Wx8Z^AgEU|i}$CU4%z8b{VOvSzpdP?}2%blR5kXhg;dXq4{6<54>j9`JP~ zytXq>U)qAMGmp;qf$9kPQh{%L;E&JuSvU?q=9YZn13zbcx--)}AC%_AG>x75;=&t? z#z5zdtfL(;1cM&gC3VISf&o8YG;VD@L61DEJAypvy91BN`taf)Ck14!CW~oD&?9_r z#=f}=0U2kI@dcg;#*{+86Zj*AaXldpf5yI}BkdrFMG9ki0L>lbI)W_Sn|MLYLEwuw zFK0fW=M6pv^L+G%9C(4P&cG*ffiOPtBLJWi*mQune8GMIFMbc6TziPy8)V(VM_((C z>`WXiOw)so_pNj>-LbsD*@mNqY554__iv<{Y@*s`U)JPlnq*0i;fnRi7|y2X3MhDj z;^~m;OR94Uk49(SnMb2{bB9*4{_H;`>rG73D5XVBwtFr`w(X#O|04k`ZZmfrnwZf} zDNy0P*YE27I}%2Nw@ob%{@wEqzr+zL3h0DQZ2{wTOUCrDZVkFJ)s{E->w;^z zrTGc^e+j=qpqaDY?Y<><$ps}{M_&c}f5WY;-nahs)!SBUrSwQrox?xAr02zg6Vv8r zsG?MAz?iSlYgE(ZQ&sA`e0u0AJaCpYo)Q1X6U6_aPxjY8MxDW=%3+$mM-h5tT`I{n zRK(t~Se7hX>BAllue;+m`3`p~V22m$)N_MSEoG ziJ`MIr&V&hH!Kh6x9S4><*s-8RjpdUt)F;j!1Sa9?lbAb4AZdo+=if#35Ty7lF8pn z>62~T!!4?*CDfp z+p%UQ%y4zW!+Rj#;y~iu9$osxRiV+mBwZ_*VI*EN9?H2M@%_*eb6D z%ia6W?q1Y8(6M zVwX>sFPg`G?#}f^83(xSXUdK}l_qi9BZ>`EGiqb+MO_uyfB9zm%mv#_viJ_G$9|IF&efPYnQr}D!S2YccV)}} z%5IB``DEJMt=z8iL&N4T>(6d(w|DZ)0n!>t`;)WtHtRW@pYT^!$Fn#;liqQ0<#2w6 znF>B-%c{m0wIxb+Q^OUJ|LQ#1=;Jf|e%aK(?iTlXYt#8jT-C~Bo7P>*;P&j|o__T0 z*KAq$Ehp!ki(@xW^S`Mo)5x+Wo^$OIx`3^9UgVnT+k^f5jTRtK5GIv26{ zy2wtraGBjZ{?F4J*7?fDM)^4FCd=9K4J(czWfWUc9??D6NkjN~a}Od3t zi3eV@&J>N6jo9h^nQ7a5Sbq846Ln*_nqBX{?mRz{eShK|nP0a&c9ry}zCM*ZSbW`1 zo%QHPS^8(=sx&WMV^{Z0_$WU>LHMTce{5iv#TPImW?bc}AAX?dJ%1>Ruj_)9o5$9m z_>R}J3Vpf#XMZ|Wohl;Z6eS+)!71Q_TZL~9M@=QZlYf*ou_5G^t<*re$Qreyz#?VGK zZO~WM(hNB~Cp3FE>IlC1(mWu@266`M4H)(=s3YJYz@dP<0uBS*12BE(&>L_cz>$Fa z0qzg@Wx!E@n|{jSOFykaBfePs^SSZ9X!za@b$g8~5qj&)?Vb5^QF7YRji=Jx(a0z7 zuf2364kd|v%%Y1^P_pz?QID~`QQ~N)ZeA%X(8xZI{nwqGgHi*#j^ApjLuug)pT+!f zFB&<*X)Y6JLW2tamgv7wkA{aS6Vp61(Q8?AGoT`Kq-Sx zCJxGd9lbW^e#cANC(ZnftLp4=^zC$%bf9p?O@A+&pM!4H{ZGR}cNE+Edfv`E^U+XO zX5T~PiIU?@n<_(GQLIaB?%INv5Q+#6kC-?HMTf+n^!q~(6!U1SWAA{Th&@m`XJ{Vg zb07bh8@&&Yb1?0f;v5v~laXC`r4|h-D)~9Kx*WyEWbaSD=7D0u>n-5{7toOR)_c~~ zf7r~=L2GU+Kdi_@gG1h({OYa8=+&(=uE)$-(Gyo z4fVUAdUP857k{m4;T(1#8pL#a@b$fKP_Ly|YA+4nhETGl#|*zU$h-QeOULfZP_n+^ z`_oU7P>}NnPiLn#eOUOsPoQmP~^t?=$nQV6n!qG(=FsD zxCI>l`SZ12p06W-jIJ+^;Lr`G1Eim-=poYREqEtfZY*r&%n zt(}F@P$fAg`!_D0xWoVQrMVi7&Q-4&Z}&Ceo7Xmg;0io zy)gumI+~DmezoR6JHg9?XZaDlwE5SQjNg*GBP&)s9(T;IQfJBcC15x>qtw?)%duB2O3bosY_!&KUnOv zAJ(tvQr+f7Ed!nk-u|cLM*FUpy3{A%8ST_phbY3YpS{B0=v=)!V8@)6uoW@cZEqxT zoKlYYGET|)l1`d+)rMMJ(9q5aM5WncHb7ZbYBA}osnZy1rqNu^%F_+iHOx+-#cZpB ziekKOfutQ@tL3p&)>Z%p`C|OX;c(oPI;1!0YMDcFAgarCHeISsH`iovqf}V2MTvpn zRHNBuu$pzI)LMh7!fL3%#C`y`0D8Z-#H^gm5GCMfXvP@9DOQp>8>QFKJd}Zn3a2Xo!y4|b?i^uPGO7M-4n2h~^&tRtLS)=;I@ zQpZ~LHEU~i)iowVt&1>MXVX_X3Cdc7f%&VMXE4-I1#N}Js;w_&O2%4k%>rAM#mpwE zrOsAUXTvkKktHRiZ9$DQK~-6-#zv>KntG%)=_*;H-Zo>k(Ok(qHZ!ONRx4;Z{F`WaY)fx4A;D?FYsn?mb)w%{TJJiLl zwdt%jF)!G~(_8AXrj2u@e>prTuv|%UV-blghOaQ3#*-4~PFWZ(AuLl>4A4YGZ3{W}Z|xa@}^6qjo-9)R)RF?@uf6~h%wBWn6wQ5x^e=bXE@qeMZmNA<&~F z{xLabkIA!k<0N+O1I+r#>eBwQxG;UjXLZJB{{8`QyhNVGAwd$yNJ&42NZQkYU#x$u z9j4FZS-)8O8jxq>6eqFI=&ap-P-p%m1I~zWx6iOtE>;rHK|R!yB;&yRV*Qbh2OCeu zA0}y!^_TgdERjo)U_X#&ag_Qm#Z1pz5>Liw@srLcu+O>jBU$T{FyJQKFQ%hk%kuT#xz6AO} z`Z)pg3c=UWA|Gc!c?Q@e@;t~-gZ`I*FGXO#1lr9O>COh-hoPNm&@S^~x@g?U9!K^y zvS;`LFq*FiIxDM0G$P{-G)DIp@t7Si5r}oYL}ee5zRH8HkBBbzf$2#3Dv57m5VtS( zS=x@c&z^h{gE(elx)0Yq9*pMAx%Zv<;wx&4^?{8W*+=_ghyp!w=!)TlBP)KspeN-( z&?ArbN{}aYf8Y_>5K%vZFp#~PY^LF$NBA1fbykc986S`d1)dDrR6)Hz_@jb$1EC*b zoa=x{$^)P;DrhSJX#OA<&biL7a_}(D$VUytAP8*50H4T3Li@yz z2!Q@zQx5$K1^W@A{s)NU`ar)mAnOl4h6+4#kdZq$_j{9d0$srlICpVXqI7VcZ$$3> z+~s!W>YZbp+tW0Ok`}`S;mH`Ty4VgVd4dw@knBscbD@aFM&3t6W2?Du4^hAQ&k}Vv zldPAj2Dj6pZ-evn=sN#+0ao;yJ90NO=DKPFK6~9$_4f!E>%4PlMeuu%kAj{3O}e=T z6FW((=uN8g%pFjn)7vaot;tYNWL#^D?F_M;kS*mfdP>fH_h35=$*g3T@CQAz27@?P z<|NsS*bNod5uNWOTa#?cvLnfwB*T#`N-}W_v>yVP*yT9a4WsxLQqFn4g;a9gZz|;y z9l1nLF42{H(3eZ(yG*wdV4^O@sZ^G6KwI|RiYg3<$s{a|xS3hG`4Pi>I4 z$r_E#O1cW~Z30Ba;T9B`;aet?7yb@pP5*>l#J9cEYBZm7GQQ!h?} znctFrxL&BaJyWRI)w{7=d`%BjAIXb^?ynYPMa)2Lm9EBQSfG8(V63cS?;@n{VZ7+8 zlOCSBzx*AZy8jpZ=XwKMYq8o4<(&JgN~uS}<0YA+E&TTm$Lzm;c*~A6TjhecODW#$ z^)khm6qyts-CRg;mH$s0#~NFM$4w|dPcq?(36H*Ge{JK&wuhHrrTEQd&rrO?Uq$f& zT^W_P%$NdlKU2N*6DMf>UxQww*t9N@;@3OsseH!s7s1|2kb9Ntr6kU#^-MIM;`;S_ z-Q;)c9-w$j$3nsG`uC|`_Rk%(UViKr^Pkq6{C*Yetc#^M7a0luM0w0X_44Y^k1c2o zj_Ha|-(erP|fd%u)L)zM10r6a^qaOh!Z>_!UZ9Wrj@HkAy3kEN*uPzfW97?K z@62aUQn{`3BPi~8uX1c|s^6GDU(4k|o(Fjzbu|M2bf3^$bb&`kivJ2y-p9 zJj@5XFdxF~FdulB54kGyL=YWyCVHi{S4 zyMq_jJ6#`mz0c!?^?uXtTJIXa{Wlami6BQ*WQl9y~^KfzunIX`KmW0-ybKN|W8y$8l+D}9y zCoXck8788!8_~WZ8o3!IH=^Mp8o4ngC$$I>jkHg4wuW=RZ6m%$bMCio?8cPQNZu#6 zr!kUqo0^?Z(pX_QE2OhR1}ltUg^{d~$qHGlFbWFtv|(J&x7p4w#cFE|dgmEw7AwqT z1@_&Ws#FUnqHbSKv8cp4PqHws-A>w)lW(_^y7c6m2$+45kOX)L;8eiF0H*;S4mce! zd>4vF03HcA6L1#bQGiDS&IUXNa1P+HfO){I!w?7doiG}HZN*Db>#S(X2V1UvIVTjA zC>E?5?lT&pN6vQbta=(1?0LC$Pwl^<{8xRosoTuxepyJ1?0g*>G0U2~YRf(}s&i>$ z>enhXO}*liod=uI#Ny+xw3YayiK@1S#0Qd4-m0igs(kyllKP?UYc%3 zQ-@p)d-2p#H2&9>X$w2oqWt%dwC9`+N9fseU*B520gX#(KBP$1qs;10^265DprXjQ zIolnrs5p7e&Fm-lps7>5pXMTMD8I}*KB(|HG+oP(gw|zc_F@ z%A2y*Z${a}s4(+XerCmkX!6p_;qB(@-QrM?a3;g??;}y}?wEk%OG*%$(>d=%%35a} z?mt++s52}G-jzga9^`*1KK|CL2-!FPSdq04Wku(m>Ng@0W&g5WnG`Vy@dulh zj;p*6<@n}QY^laLq;zKeg##!jd*=R$-vr?PyjOgqu^f$Qc>G$<-mNG*`LH87;v5?D z>|X<04>xy@!@fhgKYka3GBJAr=Z!ElY5Ss%>}8wK=;&4RCtbXXMi->* zP`o(?<^5+z*V+?)sJMN#vgi*fJU|-4}QC8JBn!czT~A`kA|Hy{Bj!m zm-iZa-@hUa<$b32+ZUUF_(sQun}^f!JdeL}@`sPmh)sXlF?Z!cH1vH{bZ3(cjelup z*{Z!IC_nM#v>|Oco;63#oW6cP8od6(f%by85Sr*nT-0w9((FC%8$NIY%KK*bnx*_m zG;(pjFScfBQO>8T7h-mPj0X5@{Pn396)3;3zQG<>hEiWSoYiS9L|I=J_P>bwNm7vV zw{LQ4v{gD=nl?>RA1U8rH>O6b?RKriUb6M{rjm8l ztK8=LU^x(1#Gf&DS7W_X*XT$rYzC|IgJ=>VwgFh?K5Ee0oS!WVpFMM~gN%YLe>VMl z7=FdwhpopKsLs2*dY!4xdDZ8`{zD1W{mD1uu2s@>v8e9qs_Lrh?&{lpud~%0$0<0aOvWiZaFO#UospNEiD^N! zLBO6E{7D^6%sjtZbD)FZ<$<$(2ySZm^(1R=O?)Cay(wIcJT=BQo|$t4MP!^gp61i+ zkRKL&A*zb=ZB;*a?y=UbFSL$|i971!_aBb-A%8p8S$6A4YxLE)*nZ%Pd+GwN!YL2@9f%XL;=id8qysCS`MSg=Nk zg1{7m$*Q-QbjFlgy|KcgufW6*fLj24?=4X)Co@C|cp!A+hyWHhSPW%4BMgy@Oqpi< z4LBbTy1u=4=F5ZOO}7rn(C`m&)@ZX z+Yg>4+bUGi{N<=qxlOwg9rDnQW<{^uyX)*W6w8(3M#kvq@W_ z*IDZXv#miM_40AR*BCpjM%F3WURMbzs&Zw={HHe#ooz1mYoy96{3v{-Xnd`Bn zm2>86Iqd8#xsha6NJ53-D-5UcEW^o87K+Pwv*IpdAc;5(!$TPAG3>?Ajd{iZZ$DiB z4nqSj`(Oyh zZxWgD7@o(l4Z}*nuaNYG!G>WF2C_=t6>Q`_#&TFjmWv?)gCEFT#V{Ph4GbR$wh$j= zaY7D|jmNkZW4ym{Ut)L)L#hxT?tV-kjd2dffkJF$K@f-Opp)d1V9;BP+cZK9We8%@ z4M6-a!>|rRJBH&JA~5U%e-6V2LF`_R%aITpBN`#>3@AcK<46wmc&NugJre2+Cm$id zqi8792SI%pM}H^=a6gbAl16_$_*gw0+6M!j)q_Ev(bIPb^hk+)jF0JK{H)(tiJtoa zGe22f>Mx56lV|O$&f1y1zXKd6;b(D(m&7qb;>S=)e;Tlh`N#TU@{FJP#roF(KO3i5 ziGD_B{f0oD*^>k~J=|44!&1H&NjwMlQcskO1G9_yBOMPmo~(Viq(9~_vp-3~7cap+ zz|Z0+wO@*voTnt7tewSAI-fv4=gf~}txv{)A1!FE%*Qa56Y>;Z+uS6M<^*mAlpiMQ zpq=ndz%Uo&NS>Pw{Dc?hC2ktf3qg+bH6G*$o`WG9!#GaJFU26w%6VWL&PQAph9Z$| z4`6r@ko3|SzQVIr0xrCgf~d! zM*s%0SCh>&4CF|=hI1b7qJYN>c!Hr#27RiaJ^<`dLBIasM=0k!(UI~%@I?iE`2o!r z_`*2nfm04PMgmV1*v4WO1aca%F;Zls24WBZx}u?-@I^rX#Ex))0iaV3eg%X6aFPFh zBEEj$w+489!Ny>rjhsy6cFy&pW1T=(uoKH&+-)fBock+`dp}6I9HRQ>T;}pLO`@d5 za6x!7hPx@Y14^EtL^34%lI&a{qOp_4p{*Vcw{lr#G^bw2EGRI?myK75Hdx zwrGv|dcxyeTWn{D;e>1{htX4VuDb`@VMt~ryM!;uku?~=IWs58W<+nWu#V__C)t{0 zQv^>(m&nK^a&n2R+>N|k!Y`Nb z%O(5@NxMSQuH;3N%?=mzYu}V0$3f7Um_Dk^`hhcA{OvKz>E&B z%@9l}i+UKcdQITcaKtwgvU!VM_c*t?e;l;{qU9zXST|PZnVTw^A|ziO5l5y$|Wbvq4f;3fa3b~dtLZ<>mHzZOXng%@A~(t zT-MK>v|fJf7PFt$n|*#2^sI}aI0qRB{zQ4qPUUjz&yUM*3ykiLOW-kmZTHbMirY(z zY+C{Y!vflt5*&IZvYpnWX1-1NkF3w6d>_R-{=i`U=)4JzNnUw!^)nrOPyXAAr|LyaGDgJSZneru^j-u`V zg{Bhzn1JoUwEaeRKBXUA+@IoiTaHosXG{M^<&=A$V)|*F`)Up4Yh7`i@?DSKK#QL$nJosw^e{J9|&-@kX zC-JmFJb8#G5An3Ic#7@ezWSq07_XB&jF(LqFCEXui}2UXFX3T6*o65IYJ>T}!+hX{ z`LLAfx50elh544i3-isy3-c}7Cd{`fOur50GY|8bhxu%S`OFLRc{JtUv22(P)(a2o z#U`wm6kb>_dAzV*;$7^)>(K`5k%#rj!+PYM>rvzL$n?>?u-@&wu-@tV!0UZJFRb^Q zHs^ZR`0T%-;31#zLO%IDFXWR$HpnNukWX&9=*RhrhkRv&e8oe);#t1J{OW73ns^}} zUbhMP@I#Q>D)h5%5HI9IE7cz{>LDBCTadd7{XN4&zU3j`{(X6y=43>=H_2a> zPUU;kce{S>wEa%)?rZ+LZNFVVciVnD`rVGho!Wn|ap~>XS8?d8dSCf{x9hd9<8ZJ1 z_v*LnImRVN#&C|SS$a*Y=A5@m z7{^H##~4+We8csSrxz#{;s0frAf(MZ6f0A~Qs1Uwq> z7{FP8#{$jKQL$p-su5me5PIZn_s*)P zQU0En+xFD{8Rfm|txefxLifvpT4m?!(8$@Aq*Yt?q0wDUjVWKN&~){RPj((`L6eG( zztUdpizcbs8xkH!M7gUXH>u8!M$@jZ+tP6~2Tj=@IHW1fgr*I>8v5d?CN$yKm8pxm z)}p-kk91_84MXVJb6?+Dy#b9+ZaJh#DMK06pX7zEsX>Jiv2(ZE+fY%`nwwcq?m^S0 zdOpoXSW#Z7XIwzRb7;!Ur*kx4Wuk&v)6M(sAE5mBvb-Yy87Oz^TA!Jv52J#NQ+XK` z527hem%}KSW*7Y zlW4q}+xIi_M`K%erayP+bCjPy?_1x3Z&3EKsf)h;v;}2++qUS)8XSjQ>+8Fs)M#u= z^|;s%lTmhJXXVcCS0H|{w%?*Ja6ieBNy(4SMq>s|E>*YhLKD;5n;+~lAk@6!4^J$M zM`P#y5Ow^mR}r#p{;?u+AIgl%Jry!C0cHKNU6~j@81V<2o5ok(hqAr1E4EZ)98@x^ z{=xy2oi%I!q;LGNKkpUYXe>u#8y>%wy>~0hN;+&$3O|R&KKobyw!3=zm?aO@)z3*F*igG_I^Vt^@ zkN8IWhMR}e@H~&Za`K0d(8x`H*)ebBA~fuMRa95A3{7}xXX&cF#V9Y~<^+NQ{ zkI_J{jlVwiq5|a=)Hm2-OHs-zhcmk@1t{~&f&mv%h$ICm|M5*ujkZc>P1UAK>LVoe zw148=Q=eMwxHs}Jn9B7H*g|-D=F+IqYI|HOv6pPUy{TlbdX!t8Um*MAiuk+ao?^^9 zb&Zb1!m778zHlZHVjF;Y-lO_5tK&Ol;X7u|d5}@C<^%;0@ZPsSFbbH pIj;J=*#7{5x-a<%-1+L;?ey>w3qoJ0%_CKcN8(N(ud#OP%}pc!yz_dK^=3fAiHH4_e5-72+h+L; zj#J8UyNpwE?!-x>wnA5h3u@||P^mPUj5;W*icAKrIku2BP1PGqSb37JqLS&!F&Qo8 zKqykQ^CkVbn@#g#Szq25DrS%zDm_ZH7HzCWJIkPRs3|pLjS>aE zv3jFLXEtgLu~j-lsaaQwD|-Xn0qA~jiCQ_CAxgl3&<(T8txQ{8Ri)P&VT5F4#w^2s z5D*!LFfdPOUyeBVQJTNXbw+!DytFLk6WilzG?^>322oI)X_1Mna}kvlqOt)ryWD#a zf6jQPG(rxv3o297prQdsNOZqMMW*ts(>;Gg{oWaP+5M4ZG+e!wl<*)C{y@~IJAJfm zF5j3@+P3e)@at%2f8O@CmeyQKYty<8SZFsb9$Mt2l_93}NO)>JnHIDF7dd%7R zi1l07qV1)sP`)kX|0g`TbEr)o+R@a|rF(XMx*heturIQ2xm#oKAKHTljn8BHnLKMp zvVtG;&j&uw?>p1JZ1slMSpQ5vlV|OyNVO!wlcCN*~ii)HPgGLTuWt*kVgw8f0QN2OU;qA#}SO-9WEo!JD{K1NNksbZGis3k2` ztfMlsshaibZq!t1D=H1TDtpB&t);l!R-vrY>6pFhIXYb>70{HL%$k}aCZw;@RL-}Q zn~YH5X{xqVR$DYx`UNbpC@u3VZAqrwWY#aRaeGjUGzM)M>(tevuh1LIn8mtUZLx(h z8#Sdmt)<#5Hd$9&Y0&DKK9x~pG22OR;MWL)EmV48lWDi}^i|9(FQbM9*2d>&)KnYw zbE|bunyRaGB^swO_GGCpwxXKF&Q?`ys?k(vEu1}L%3*J1`Gw?@T;d3Za~RIxIe_zx ztPd{Z?Si|6Ap%1H2E3nfH5m3_XvI9Efww27FJq|1Wls$LxLk>GKaBTcIDw%F!}qw3 z^i_{>IL4o09Eb5&pgS5v4u&E~Fpok1A7I#xd85dD#P9-!?HHBa!w4ZhTsp2# z!gxH!zCvteeh`O3&`DOhKjxJ1ujz|2oZOZ{bWVe+h<(X5@>+aK@%2|tTN zgd~nZ5$f-1%$_K~@qv!|8J6;eN#Z%E z6MCp*9GG3qAL)3o@nr48CH*mfnf*}`z6c5S1b!Arsr^#S;Z+gt`ma{@OB$}@>NXeWFr7#;>WlINxYKjFoBiOYlfT#zGu zC4(Hn(=ptSVH_vqmjaMy)RD7K4%m_j^c3)c$V~=4 zq^t!Sb49kK0Dl4aK>SPvxg4-{w8+LOP@V#M2|o|~h2Vby*pdtS3!vXIBH8I6I}`dT zgnpR~lSJc2_BgVykv+p5fYrG>sb^)CsE+WsLLIAj6}2%vE+P=ix`@hdB6*b)SvOI= z*ajveZC6Qb6N9*avCYzc#6CN-MGWGYiR<0Cj`3i1uAHOq%ocZ1U(5$KZe$+gQx}Ku!%d28(P| zLkxO=u25(vd_mAZu_F+mFX)tmU;dy!P~^Y2h_5I3tp;8%u+d*=Bj*NrJLh=Sutum? zu=7M0ZWom8obyYBdq3tl9C5nm)a39qO`@d1@U`${47W>c2b4TPiDXFjCD}PgRL4f% zO;pELbFWUKe)~Tq>JBQIm#SKa!XCYmbkD9kmVGSvmtdxT@&oqwR?6U5XFh_@r;p)es*0+G0CH7$;;)IgFl?bKE`H z4ns04*(JO{j;z5RoIP`rY)16@3+sr^cap71Hf7n7WKELcNERiTI28K#15EUCoc&f# zd~+w~oZs9jxsJDca*2#wA}5!~%ALr|CH!&;zg)tvkhCi#?MluupUEVBi0hP2>ZGy? zCwvMgeA0fUwuvRtO1s$5%X z(9PG()9K5~+2y|U#fA%g7tzUc_2<9BbM-&bKl^*hDwElwE8!g9R!S`r9w5maZRD@C zw@-id*c~g*U1jqdiYVUTvWeoWicu6F-jG9Zx!1LIHHYrg({$isJp+$&}wTB^&sDpmK3Xk5c;C9$P6ktcj%f^$RtWKmLVFpl>Pg zZJ}~8k<%$X3eBasrhbnD{~xpuQ2g?Rg@WGtKT)|cKU|=6$&owEeo8O%{7KNWCXC|o zNKf#`$|LPmZbD7VxXdQs(AEKwJg#5WdN_{a=E?cimwkN$dNeH|xX<^&&6EzA(m?q? zs!ybRCk8w~+ph&}rSy)2(UksTYAWUTS}}m~*Uf*BwjUj?rtLR;uF!T_o1o|9jD3`L z-Iz%EUsp|}^`E}{3FZIhg+Ua5_qd7jMV<+v?SDqugg>mu+y1ouR%<4$|Kp>*DBiXH z2(3T8WHXgh?pe(AQ<^)sobok3^B2l@GjuJb&kmbK={rZ)vG`EB&2)gaAGx)j(ih*L z`U67UAE))ldtP+VAGCB1#hzaeq3wr^eT6t*`;N+A_E0(Sdk4Nm>u*~g7RKST7NI`* zGNoHiEp*`b_4-nXW7#GuclPuXlyBSIK#DIMC>u9E)^qI28{>K4=YgLGek<@>#r(Nv zbv)R^gFRNThX;GC%pS3R>@N@gTESl{_{%eYMfyoRtq@Nh;>klitt_5md$@Bet-^R6 z=V838!gy(UHeQ6ka!wHs^T8_2hdx%A4?N5VUYHL{n0_nFH(r=;k-RY9jJz=4LaoAl z%VPSiFrRst&pga$E6itJn9oU+f5%h9tgv2qST9y#y~OgudP(Dj^%CJ=4_=Q}SdToc zM;_KAZ(omU&xZ<=cwxP_^TK+k>jSU%IlQpmZ(Hr_UG2H=mV$?T!VCH25njkA2d$7# zcp;zMcF>RW6%YB!3i*nMe8sbTh50>hY%%geKD=oa^5HR%+a~n0W*{%*Lkra(G;)R& z@-4_+hyI@CA>Zk-cKUB8; zkrU3}VWK@^1KZ6-pO5_P@9xh9UHf(Yx#QmSN%=aHznlK9_WzIK?`r$q`sr%>-RiqK z4!_j?dyPwHzwU}dchTMDcURYIcgNvg`R~X{j{xKe< z&k3))6I_jQhGo`z-I{@t<36r9t~!bCpPI7O({(Y*Kj;0s-&gcOIqJZC&uM2+*82li zy}a=R%B_-}{$}lUl$Uk|-HJYmG72+mzge~tVFPrtF>b;}w*7?8W16g{Gj9Xhn!I?`;&ZC2HxShdx3B-CfG6alDe>b3J+O=}%Bf z+l=k=8ro6%#MsH-E>oh>UkypSeCQ%d7_~3()u3Z2{&i)#y6$O|vfS?~dSx$4?jy0!sWmr|%`yTatp5KYw3RsVUc5 zMrcMz==&se+&}P!r&}$yf3&YRmgs7+h42!}p;4{Tbhx}>FRMCx{Oi*gAa? wX}dA2(Hg347iwPx# literal 4181 zcmV-b5UTGViwFP!000001MNErcvMBwZ;oVg!h{4!2ssEL9611!Kmy2XLQZlgTp~CQ z$s`$=%!J7#1msr{T#eb~jtJ|4A_%yOE*e}pCc=h=Raju*k07WRl|>+66a@sb-TkU( z-n>l2e8k=T{{81mef6rks=BJWyZZHeFVj6Zj#F?-nT%7o;7iVB%H-7O1kCfL4FYz> z(1Xw@C86adL)H$0pG!0zAo!WdF|03d3~~}ldwctBsY68uZ6$L^4or_?twkGS(atvL95^LrY*Avs zCq{3y=*&i~A*NDiC^73wFtZQ99f0nSmY9{38KMN-7rJ47xs__GDl7F`BaD!Y%$Q~P z4-z875DM-I?aL7dKT7jgxz1=0(3f6I<;4ED8cpVMtwEF&XI5k)?_5OJ3emLzEW6x$ z5<57LY&oE`3o2F9q@jUFNcO%&g{HF1)4hH~{ofgM+5M3uG(x?WT;V|=@&Tw(clv1C zJial#q;21Y5!cZ?+0fk!)0-Q^eN(=PUA3?=%kXIJj_b>8?L%`4o1*3aXdLOK^q9Nz z5$m_Eh1*M1A$(i#|4w{z=P;W-w4-Sub$fPxx*heourH!tnOkGfpW1^4PsnBVnLcYr zviu+O&Idft?>p1JZ1slMSpUpE(`W6dP_;O4S?fcRNv!wlaCNp;gk7ey(vM=*oTTx*)X^WV6&kD1ySYKq(n~a);Ihs}@`1X2KUh-VniVK{>a6&DB@DS^1YbC)oLWAMj-Hz2MW z!yXK+SY`~!_QLdK3^n-L6N4YVuE4lI#(OcGz|e%@d(0z!)ngon@n;yvV*C}@j>3?Q zp%5y@W6=Kx7KRnaSD^zXMEOgAE22(k$~d@9PKkKl?#>Rb8sj0Fv&PDzgRrd@nGZ0+DAzG zWAQToBPDX-66^``ERRzErI_itO7h9tS^lK+3G8$B`bgILBn)^br?oNzLl!60DZIA1 zbdJ^pZZcfYBIcl-$R%TV81zV;n-20s7S|;%7x+1#NBT+vJ%VRoxF5rKPN*;WpwF&T z!8crwxUm@WM7}+M;X%;P1R263hm~ybB?IWG5ChSh0(Qu?7JSSR`H~Fs`49t%GX?ar z!PhY&AE(0gRIp3rd5|xF`18S+9I&4c{f-ss&H&w6&`$yM%Y2wD8aJ}Xk$sKq8SVg# z=kA2hu2mu)k#Pkcm}ph;>~=*KQ(xl@nbz5nt>B(~-8TB)*A3+`rgoX+Pqa zo%tdLan8hiH?Cto7|)e+jGg)7F6xWLz{ZX2qrEW%fgU+ogkT89fbTEpX|MO$X-o0Q-9DS?P|_`APNQwL2L(<+(C(SNcAPvIa|bIBkv~SvDMtWldRwVZ^^oYNfxE5 z#^H43USm6b+0Q>NfEC^5j@-eFv8r5W))(Cq`D-MM1#cT#5&YWYqhM!egLbygzz(h| z`n1q??Da0eCuw|iH|VN~jD2mfogtJHs-+x8Psus%9&Cppm6hxgUZ6+TU{B6oIY~7m zcKw8PMCUuH)})%U>PV_4sc@uEbrnwJ6i(!%{Yrfm^Q3Z8U4?|F z4RWb!s zudtUs|7}=u*Pw!Y_0SiKpL??`N*=X$eE2TQVFoJ8v=s*30?mA#zO;-zt(U&3aG@_3 zI=Qd@{8zZI{x`;Ff00;eGFx=Toa5_7sYk*MB$=a){FV0h8Lu9@W5uJQa)q&g=suvwGgVLkXJc_I9_c+M^ zN&5iBFJD+B*scEy)f@Z61xgnmxx@UY^fJ$%1UqX&DV~7z1b?hN(oXdzR=14LXz~eZ z9T>r5{;Jl)u@pB?$+N!fdzYl7rbnw&$D*sV^0+l;4@B!L>EpRKPcN~nO z^cT}osJz#TfmFVB!GpB@=m<4!ztQ6gZI`tPc23URM`_oM2~_@d)g;RQ^yN>e{5LNQ zrue(ZO;j%8OfYT#E6O7Bp*`RBqwTj^GbsPhkM^c`*ZL!re|qU=s;AtugxRMwcWybA zYkcN!RPJWTT1uZCKAX~aj;>?*p>&(+0Bt{VYdxhezCrE#hqymZ`Nw-*bg&;-HIpB@liLpValPW9URj}D@ldaL zR&B$9_sDh+9vh! zz&LkOzenN^^_#?%igeOsasdX2@Wl_m)!v3MM?T?&r{tgxG5gXWUF8X-oXMcCU zFX-B@>-Qb^W=|^Dnf~4EceVe2m3&v*@77OO+waEj>NxyT|L-*~o&CBi58Xv~SKM7) zuic%8dzHV}xE;?i4mC2AvpsyJ4`SK#!VvD?`aIL&yv6SRWh1%Hp9TA z)7ix|cEP^CQWa|8+|l6+BqhWW%JPOFd&mv28n7Q=f580#hXM`*91b`FFnhB<3~&_S z7{DU{j|6-l;8?(Mfa3v=0z4XU0^mfzV*rl@JPz>vfX4&o0keQ15A35-#QW>krG&kU zvVIeC%JtyyQC`6b*`3dLly>cdf+-s_P|E6pci;ST97>xTR(mI?3S|$^sPVcr6D7rd zTz*`265T&7d8?=E5|nq&`}cn=?~Ah40ePO&&!Eir2d;W~;|Y{gDLehm+UqDc^$NNb zbrPi)WYm1KY$eLc|M-hV4?cy`Yl<4GGTuk2IX67FG(C$lt!dkimAazLQx6T>YIqp; zbMcjiF|$zaiqr*j27G|>@|&9{q46l|XyAAL+u~5x*8#mh%u7evKA(KQqZy&B^Ar5? zWJ6F|)~bv*FTai^p)a`A1#*<*>J}Nk_bkeMvd#ZXtx= z9(rZ*;b??fgT9KX$wx^azm{6R^DC5;<(B=(n0z#@N1xeq&UhpA_shdV&f$C>e&YO| zVeTlYK6m}C`V}bU!j{j|@*+`ky4TTL8CMY+pq&%FX*WtTUs46`uSJ>Zi$`rcm5au_ zw0z@pKTSa>?D_B~pJ+iz=l5s(ZJdS1jP-WEFJS{3zeDkUd|)D)u-C(5&*;CPly@3V z4d<%S{WITATsvnqN?6yB6IAPo#;tg@N7JG89r7?K>cQh>SC*jghC{cT_N_+AGfW{H zH^-yYXH)7H|MUY&srQ?AevuBvuAlYRy6EL7_1#rP-&e<@%zsSXJNL&cDC5|R$KMJ` zMx)S*U}NsvD11v~-QtHnLWA60N~>_blHPMYdF|;>P;%SM?eiPjQQD-KDc>$rqA_0$ zO}%{RB8nfqFW}X{V<_%*WtzJ7X_UO&_bPg2FG}kr_s!0TL|I<-7h8_ZLb37b>))zv zL8IS$EA2b4&1mqhY}e7l&ZCLpRnv#OI1i0}?)jG8`~1+jB43XmSIk85yALPo>YhL; zy6rW`!iJ)_wE2C5-+uume4gF!66zxTBGUk@P@st>g65E9)6SHcqq006^&5ix@0nlFL f+hzMJWT(@^g;+APxDEPB8rnYrXoeS&kTL)OvX*Cs diff --git a/tests/testthat/_snaps/output/output_lm_numeric_independence.rds b/tests/testthat/_snaps/output/output_lm_numeric_independence.rds index 127becd1546cb9d8b955b864ce7e85005981edca..96b22350af7cf6be3d38f0c13c0ca6c8eb0591c2 100644 GIT binary patch literal 3952 zcmV-$50CI4iwFP!000001MM0KR8&Xu&jG{jfT$n}L;+6_@7v#;o}l7w)NzE7nK;ah zGXsj7tQv7W$Qn)11UFu5Ok#|=+%+ad2Q}Vjyftx^n7A<>alKZJ%69j!p84|`qC82m z?Q{ADbyanD{ononNI#C_6r55f;}l-_lJgoiG(Elx=GCPQ0`|rbL}--O<-%XL z&YuW4mtodk9uj-yn7&ejWR;JyI^VgE0@r@CZTSl)ochu8PH!&UYAg5K-XUbbYd6c= zz0p2?-%MX;d)uOE9RtR7D-XRoYw>mCDaU{PcdEC)H{NN#{*aj0Uzwgv@x@Ii%9TUy z`hjadceeY?jjz8iA&WJQFqm@K^-x`&h1tn4o9ucZ6sg)mNk6_;^OOYES0D!Y4E(RM zvhtzSp=_hp#vGCZ(=SJB*CyDt6O1}H&O|G=C@~P6U@+NrR+HA4VAB~VT6GgKvp&Eh zfZC6in3atK{*WY#Ree~=UzhG=k6Xnz@T@S`+;ovV)a z1AXbWR8H)Zx5;eH(;7vI@nl6N^3F?itq@%s!LrxWC-Uc<_edjWj>triRe~!Gz^sqf zVzHXF*{qv77OO7DkZm`ZO`2&ss~OlqCQY_EZ-T+3B`r4QV6N4i&%E_DX>8g&i&1BD zF(zp3*?K2KY18Rgoa#wBorNlBCYr69f+0-FVAEI%?Rv8b82;vbyCvVQu^FbZd8o7( zTAXuIZ?+nyIi>xmM;fCxmv!oGH{=;ixy)nTRBg7M37a$%by|DARqV2Es>P@^FncPK z#%^_yfgrCD7Au>(HVy4|iowR*3NUF{Vx4kzO`3d@VRF9CLsPy@m!py7*tKfpP+!^n zBJ(Mec!!|^!`FCV@qCk!RfS6icLhTXhA<3cFce_ejNuxV=?1bPn7)c(D!%r|5Q?uY z7&pRr3x;DDc3`-Ld8Dt!7&pQA9LDW2{tj%n#*l$w2u!%?(EnBpxZcWIkx7PO8HNuq z6a#)6LpTNphFA<_VwMR$a>ubA){&)Ph{F&FI=DV_i5MPW*eCcxVvsc@Da1G#<8q8~ zmEq1~n1!LOkRPr$=6A(73FBZPx3apBhb*v3avlnH2je!ikV6@QoLmDS@n>Tw!Eh48 zAq){1K7n}lz#1if&%@V^AvZ?UZX*4mh*I)fisV4Y0NoVm#y~S1zn}aLpw>Xg0^LSf z+9(=u2Ssr2}d5n<6(OS}<8vJ7Mv3{67lV@?U{?#DQ#;J+KKI5}~>jTaF zX$81LxVwFZrE<}dd^W3wZYdcD<`;`cIv#91S$m?SKNc_Zzm-HTMuPo8p5;;MzZ5e) zZ%IB`JIkMRK7oDCRUgS(?}uR=C)CQm7zS`cox*FI>%-BSzzv1#vBVs-6S-6j<3W$q zxsf1GWN}^M1_D15^hjUHphxg%3_UUQ;)MD#81&h7I{1d`5!W5VAdzpQFgy$T{XvHC zMsPx{9SMFBdN{;D^oD^Qa;*g)Gey3ng8X2Jfy9{xdKutrH<6FS;d(gOCGtGTXF>df z!Iw<1KN$M$F47$hx?`cAEa;c{FjO>dPgzE})w+{k^j9)`xCM;=t8FhpX&&lhxq5d?ZIs zFwi6IYR>h19SJf%AQK90GU!tUbVKk*1^os=91S?vLp8Z>1hJ@~uR!1hfLs{odghmd zkBvbl5`1Ghs|$K+@UgMTM>XW24%muFIjgp$)Z$Eb=zV2PId0UT>Bp{z=~RP zNA70El%J=w8nT~?{3Q~`f_DzB2!84DQLz29Q9D6rWE)i#J%DoVTLUNJ-8A058+8Rl z#8K@bmS5}xkOj)L0>MBmrLa35_yHB zT_I^#a_;p^Ch0@WQ+nV@brl}u6dvTH{Yrfm^Q3Z8U4?|F z@gX{JeI&>HRS*7UnaqGqueBI;g_AQ-d&2<&zVbcQGkl#?b=~f-aLE&$lalO?GGQO^pZMj zDK?hGQM~R_0hRBt>wf1F zrE?BGV*XQlf&Wi}oswvZlaPVnQ_6#tR4=9ALa)9%f}^fAjpH%@m1_suQ+#sRAjhiU z;IKM7iU@9StMN%nM-Jae<@Yb{LgkJ%9Yx!3N35mvhTW|x{mqCpDj%@0DV3jB_$+Nd zoT#Sl_kw<;?Xnw!o#SJ+QQCWT7b?F_)sOQ3wdyM>|HHCo6yKa-rgCv#N7DAaXaJFq zuJchSZGUjBFXeyn=Xw;EEj>v2XNumUddkhSn0-of6)#h{^7)6T-2JH6D1Elg1WG?T zT*~r8=^N&qwEf_NrIfzBp4tzK@|{8XM?x;U*^elmM6v(H7PNhjsiBbP+c&BHRX>%R zd|>zr%717dFO0*v3j#m+Dy1)+e%?(!IN)0$kGX58-q|xRQn`00hf{oMXKt^g1pgk3 z?j`Xc&x1S<@(z%9h~+cS>Ui*n2Y(#k4-fu0m_K6sI9?v&bwIohh?i&aitLkoIv}4s z%)SHW z8!ybaI9`}jSU%NxZP$A39v?UG2Z^ zfr5v6!VC4}PrOi1b~~V+@IpO#=w=_+D<0~V1L_qI^@?Zp3d{T5d&k5J_3*w!sE1#I z-n&9SC9%9v5AD=`M5i$hsJEbZ7y6saL%rpp-fo$r@}f{X>ys$m3jFR&oRoExKK-WH)xv7Ysl9d;B9p&3-k11bI4pQn~8% zA7{U&{r_6>HEn-fKQ(QC9KWXH@TC4fZC|G>Yr0-*I}cAQ|Fm(tZ)t*@ z+X+snk8u7=&w|;JWfb?D9;v!*y;ymdwdJZmn09_RWwYqAotu)8>|zAFV4s1hhG<|5 zQspBkCBzcV@`fOL$Oo_*a46s~z>NS$18xF125=l;_HjW=z^wr%08Rwl7H~Vj?E!ZH z+!1gmz?}hi0o)aEH^AKi_W;}za4*0-U=}dsfqf>4k}KBjpE@lT_3d-+#Mm=qP{#Lf z&79G3AW9yiJo?qS8z^Pj#l^Ej>!aR2zsoh7LE7e6g{zhxQf-{kz%W`pOV0Xf^c9-h4(p;OT>wN4y_ z1|E9Da8*75r6%A1yw7?CN-O&Mh5uAEM}5B8nmb8#7xjx--6FI{Bh)ide&^hQX=q^I z+mi?B)^xv09@5hd0~$2VK`GNZ#U9;&2bb|7NLJw z8cjPi7bU+~Jb(X{3~w+ZgKB}0W%T$_o7jI%RWTO|9o$Eqf-yDKX>2$q%a2c==6DR&}*F#f8=J$$6p>s zd||Qt`;bV~bIHOL+gmk2y{6wwJv#g)loS-EF5CSo_9y%LaQ$b9KX>4TIX~o~ZoPBc z%KTDMkA-gr?bx%lN*;R4RIf(9hfwDaSFDU*S%Feb{+$Z+8&OI{lW6NHEh2E$b7Mb2sS9F?^|KG4ZmQBPMP*k|m#e#8nHkUk_1M$6 z;?lD>P+Gu>HY+2uQ2PCTBZj8)C_PV`lw}%<+V47eI&roVbzU9Y{Pkn!P^WoW4;IJz zp_DT@-@e;&AL{&qb}z& z8eT#5B_&At^G7EZjb3YSt7$8t+ezs5zv5v}t$OVGcAOk1PQ@O=doZ^~wMJ9r9EZIx ztL~*E3)L&f?)rW=2ovJ3daJ6j==>~Nk_)@e>ij;KWQg4W%oCo|W!s%!@d{r7bFS@z zf-QeG{i_*%Ma|Pz?YmIt;aP#!nD0DW^I@OVvvXVW3AO7jw#Vt=MJ!oa+(v_qhW0-^ K)+I1zF#rGvt-eeE literal 3934 zcmV-k525fMiwFP!000001MM0KR8&Xu&w<13fT$oML=jK$zK`FWo}i%O5p^73WF`(X z<1nI_WYvhP$i`@bF}m?uV-jP`<*p$iI;io!?;|muF)dP~cto(6Wm%I0n-{og*T1g*#GOZUA^`F!4CcPhD5&c>a^YzUoJUbrW|V1 z4_Z^===YoxU2jj|=l1f#$i@F$x|6@-`$ANt$3u=&%5lGpQ*vZ150f@Wmy0jd)H#8u zG?`60xK<4@8@1M$G}blTV9H|GLv=Y8rYG5Kvgx6rNYLg>#__V6C&#d{{4mI;eRW}|J>j69l zsCjRRS~VlZ3)?%@m zwV6y!ZHrZxWyrJ{%qGoLoz)Cvf0HKDoReWNX-Q8mGa%b)p2V#2GHG(PIToWX*Gb6G z+A{SHf-+a9V}7V7=yVn;pc!wrYVw9KAw#all5f+SO+fH5PqJAi*)+L^sVvWwwtR~t z=k#W)VXA}Mn_8qXYO~p(wQPnQgDIO?tec|Ev@vFrX1q>on`9N6teavnY7I=E%A~Pb zolQUB*9eP|AEFnk&q>$k-oX7Aro++FlvikTM zuW{}ghDZ#-7)E2r!>|#<4b0OWcmr|!I)*9u+6O}rzP4c85aUf4j$+t`;b%-EV=ctE zF~(;x?tt;Ppu07OWDG+fgQmgwn=yQWd0UaJ!LSs=hZu?gzk?wJgB?Rt3?$P^1sl0z zSPsj`;xR;F@B^897}{dMg_YYQ*g|}eH6bCyI1b}7jB#1u&S98|p`8#Pt`DYn!#Eb> z03o)rIuM66&`Dw*1bS0(pIV5a3_(n801*E(F%)Asf#Cp#Pz;}fKf7R25xWcVbr{6P zh}w^*KNPx{{FWd&v?HP21lnQHW;l8;`Rzlkq1_bPZG^RoA^-=1e2WhBSAmbUL!iGI z&{;bO55pv~-Q1-N5~tA2*1d=Zj(HmjuF zQZf(BF6NJPKG=M+{aRuaBQ3HAYg7DuW5Qq1IPN#e=+S^T8=1o}B=eI#qW zKZdcKP%Hak7|02A3a@RhFGp(vHx#bN5OvT`_!2OT136OXMgTwI#dV1r1oRY;BV)yZ z9KoY7^uo}a6Y5JU$g}GtunpHEt_Oy}BHKn{coyUb01u%J=Y(220_-B~bnt=54Ff&o zS_?L&h-^s!{#5XR_?ZZD$zW@Dk&Wqaoep{lKM(wA;D0LEk^=fuVcZ@f*-;=n2F6K) zahVN6Me|1Papb;6?ipSHjOOKr&aPD=8sVu0G)Au_>SKC5L?D*+5M6tU=M0@nE!CoU8B57BA6Q%m+4aZyk{zwK0%;HMyAvgB(IwME%j9CF(9JnU|_5E?XwADUL0bbN}N3SW#o<$X(Q!Cgtd?hRkX;e~W-I z=N(fkg5P?66l_Cm)Mn_6Z1bw3Cq|CFtlxONJ;wWSqb`r|IM)`tGemGgwUoo`DLL1> z2fM?N%1Z7Mz92`|U~SG>IY~7mdV_>@MDv|gYf?>FbtF}jR5(&aNhJ=4@#_F4dO6N{ zj3Pd2k#p{kT9jPH;~2R_MlO+)OJwD4=UUHXk}Fl31j(ShnIIk&HPk}peP3Uc*Y zi&2-anXEHp>)Fx2^tFcveN$1%^ZdEr;CcQJ^w0SME7xqb>9RQ2*IH7Gga=oWqhjN^I`r6%Yi4%-h9MNM@K{apO+^=q_pL}KSnqphac{%6fVjl0i=@WRO?){{*FtpfxaT( zdzZ>ZM~$NGE@&dfc?&nX@PDQqN%6`nF9>=U?x1o#?p~qoto@If{j@#L=NCawaRkM& z$UyK(<^FOi7oT^rcfV}`;WwH@@tFSVjeQ*`J~3>tePuvEaP4gc1lRvL>;!E$O5Z^F z_b%*8`HnUjN&D}FuA%MqJ6qHCh2e>m-*?K|HB*oDE-U7)up&} z$$m;dUGO%QQ*NBe^wTzX{uRnsHunJKdl0^ew$HT5pzX&87qj@#_AT>v+Q0wd6577H zj_MB%_nJ=WhXb#==npNLK(Wu|7PNntseusZJGZI)b#IjmzhB65N`GVG7@wXC?#J@L&jUXX{C42Ci}_Q| z=yDXxJ=$SC@~|Fx zSdYAOJ*s`irgh_m^z%F-yxu49!g_yXcdmD}&z6S@9_k4%)RX6Vp`PrtLp|Yz zdh*CcKdx6i)GIsGD<0|<&*~NC_rCwGi5KeO1G`WU4}si!!Z^iEd7&QKsQ%E-qwP>{ zLGB)mH;0FM%R{~0RJcujIJBb|sbASyCyFR8iu#1&uOj0pzILOOV14TZPs#m5k!8r? zoLg3M1P~#*U94a?cG33}zxsRfBSO`FReuDjo<1pGW%5tbU)Aw{FaE0bKWUt*_CJYU z)p>YY`>Pw5%6>H!hni~Fl;2fduQeTq>hf3DZ`Uo2zhgVW3H1@qf9Y8;JF*Pt{?H>; zm#r5o@3MAWU+2I|A+mxHI4`fV%?j2Dm%m9)NoS z?gh9vU>-1Y7~;UbYeaG9*Y2G%H463Xd-nL4(_>Kb_ixXb-f0ku8?8L@)!ADpe(B|f zvx4fQKAvUUR?f!{RPWBVY`wY(q0n!)hQF>sv14`=?A%>|QdMU*4qg2KCCv=kr@Xre z_4)Fbc^|YaMFSe2o6;<`5Dm=Q((T}^4-h&T@sHMRQ_-LUZyK)4Gf_g^gD?87Q=-Iz zuV4J>d~?+I!shG=s(Yw^DKIv5?!}EF>N}c_;*^||8U?8guYuaa(C%R zDDFS+?`(MT5w_>vJD=t^MLj!zk?p^z3*ryoj{oG)A;jkw$-fT_N4;L3zkF+}VAOls z{e&awFQZuhV0G!v*RVaAH`Dc{h(EjU#o0gPpzeLL+sV8WP|x{q`ET2`q(U6}$W*U2 zdLN-KA1z-Iz2X8&F!^-O(|?NM&o_>+&EJa>_wVc5yySD#!yMu(oA?t-O73%QTxxHW zST^?f*!-cW&j((Q16RhP&ix|NKKkJs)TvEM)VdyCsGIj&d3EPrLh;cV`5QXzMv0+* zE1w%vf)eIM7U^g0L)}%2Hx-m#M_sS)cy)$vFzUH0?EIByZ=*!t9ObROC2^Bt>$F zgpK4-%!YDqBZtj#vyGj%@80k4KfmAY_xt1fxqWwg-uAlf_1yEd=izay!y@dZKuot_FV;L z#W(yeT)uqa@~N(*8{2lP`)!eQhC)y_q%o>CC6-}LwUttEJt@%PlFuz~Kev4TOnNlC zHQv6`e({fkTg$&ENwp7ISi-9Ba+xjaspv!9bu$&;pMH21NkwfWo49!vD12p<+&Rw; z%|}KzJU@Xv)HEr9m9xYxKG)G5kxzax`Wyf}Q@eZ;;};!i3MKipq{cC&r{ zw~grek)2WobEXrJTfFYkGqBa+;Kuwt_3iPltI+QawJzvf#jQrf0`&1W)n<1&RkZ=T&lR3nhJ(8^ z3L)san2U&!uaDmZe92We+M{t$3nk#>meJ-62cKUpQywUU#0V@=7w-wi>y-zJAc&FY zG1Hwx^`xU_b~Z7Beq;8zmD$uoI*@q^<@X8(CYJ>v543GTd%%&opHJ|FWTswE^4#E z*kYiF2ZR;MPB>}sN4GR9FY7J51Mb2LVyZ2DA<<@Nv;X!a^Q*tARql9~-cDf-9}xXe zg;gZuY-VVDCfn(Rn|p@WQ9TJ%)UP6K@#9q*NTM9HmQ&UrGV70uTJ_Lq6@u-hkqzGv zjc(GHG2?Xj9m?G=q+;f?ik(qUvk8Wxq>a0eM_gVW5ltDO4OC#Bhbg+~r6kr-cWL3_}LgY!P1RSzWN2%RL|t_HnIr^nqcd1mR~e0M%Hue!C> zwv%*lro!o-P+?mVmAl=aU}gZHYCPyhj_mzuhi!;?K(sazc{$$G&E9qQ8Hi(ZNxD8m z`^;pcc`+uUAIdQIV3d!CHpG!z$|UFpPM&-5q(W1CrY#>U`nB(%)zqoZ467;o&h|#x zjk`~e>x90Y+3YGk>dpbkT`;1RAv(1#+;$4|+Yt8Er8(me zZcpkPqc7Lt4a!5aQAz8zbjX=n^DY-#%aX_{myJND`GbeN-+;b5Ailb^T|g&vyTGhU zMe7FhBR|aOLDgf;PpmO}dz3H59&bwWx(JIi{gEP+7eA(|SK9s1zqNg&92E=x16SzEEXi@x}e0;w$bCZ`o!V92!!JM~b;YE_K6H z?AK)wx;yameneK$zwy%^*^(ohj((|pY|uow20`Xv3H zOZUh9{-+gD%=celtv!T3{f)K13hD%^j6Q=6U6yggkBIvd$6UlMqKk`tVy6j~OB*b2 z+p8IBpW0m)m`e`El6ZY!@PWkW+7tAX(E2iJ4)9bXfbv2mdRg__VZFciEXAR1k3AXL z4pXuG_4M)5i z^{vu8xb=?{^Hy#T#MMdJSKT@vyeJC47P`CIrMjK)=T8@jH+=b$Ti@F%#^IpWiFgc= z?|L{x#nR2GT;*p>=ESsjsE?-zudzp|=fjsHs1r<*@;3~IID5581jxRS z5_lZ->c#04Tuo{~_Z{E%?SEOkDI3xo#Je=Gi_0h_v_8;=>d^Jhp(TJ+II%|*iKuRCG|6sXau*(YD%LKpc zAI#3ripMlgJy$(-E$Zy0ysYQ%50oF}0~cK{iLx{Z2fDz{gq%{UE1*?SrSRe&r)5aW zd@`IZNQo|&7#igCH5iDW%-);0#Cd;zZ&s9KQ4H&nRv;zDn1#OYsnW0Y(=_{OxF~|- zaqN4=<>&5;nCK_3uNNI!PZj@YVR)pZ*nbQD?qu+zq+1z_yhtv-w&h47kv@{xzup za?i27#kE^wxBGQ0Gw{%2PiKm|&&FoShHs(G;#37I_1{~$EouM4D?^<>-I_1nf1-IP z%$i%sVy%CxRF4D=)_T4ws*Mzjt*IhOP@1a7OlJ=G$QM_W7bahFx>b*+!cbSTyC>n# z-w%&eJJ0C8rNEOsYJ&es0-|jz4xwq2+&gH`JFUXhp^tYX!!Lfy??3d#W)#MFObA`+ z-Pbxh$xdUpNq&~zZ`;IpX%sOR49Rc}pX=*2zme~i_xQqc!xdnM#0xW}_l+YWxx{Eb zPaP9Db;MYNUIcob+&v?7svo7^6Rm%Ihes}|Rc!<(a?`%3q(J`Gz_2%drTxAeY*$C; zQkQTG-EAtXM7xq?kg%kT2m&T4^{LoDMa*MI# zqap1G&vj2QqN4)}L8Q5E%psotFs9eff%Wz!92NYQ=;S9!PX0ld?r%LXpR&;`;k zT{4GVPZf=t5DxBUd)2@4L+58-?hiA14_;`B@5QvSBC`I|*ob+WtZ(h2hV*gYWQ}Lc znM*NO;YYx$S*h~}k5*ps$&02d_01w)^c?tadxiPt@7Q&*86xW!|9h#nRr8z66$kJNYUD(C56gz0XgMTBc)NSo2>uz?C$skaS&2V?2_^henxjss z9BuxhCbkOtBJ|ud^MYsq{({XrpgBVU6+sf7O>)5Qvo4iN9s@f>!QT*H6?WO(`E=!R zy!a3>Svrf8YRrsDo}hNH81p^rA&X)bY=k8Z>w=9?#oujYZxm24?3AmNFlpLIkY2VG zReX_FB0%q2B^8r1)C?(OWU}Q|rC+vsyr1~ZCUu{e*|}_^ZGLwyZ5(MUrnuhUKBh9< zeecdc9beaPUp%%|s`UiZu2OZK66l?9>V(6Kkiqa4s{?oYh%Y^E` z&z{ebKvQ;6J|5rxl7DrM!=pc*sb1QzoWaL_Qr z#g^mePS#J!eG3Wq>|1JEcEx?o62c~rxhLNg9p4`t?)A;>R|K0M*7#hK(sKQ{<*Mhm zE0U<+Hc`lfiHAc#5#F7XH<|4pGX!(V2Vzjfacg}&6ZzAq@Za_OlfM^xJ_&0MUwv_m zS%(Y8n6Hu^MgHZQpY`{@3G|E|`EvnXb(WWwKO&8r;;775772kw6h zJuVp-K=JFTHd&XVJz2_Unp~HrH4R)(JizwS&LbEhuz%*hB?#D*YlptEYg+x-6z+k= zIxuzeb7KOhrSW@j5pCftLCGizQ!~(sG&$%B2md-n4V*vzMS@8U<}P>tErU54LqpJQxZ_ z6rMeJd*xY!gZ$=`Z;K|CB^M`M3iFNR4J!YAGodej6@1z(Y9k8wSI%Z)K4j`$E9XS$ z&jKCKmF(w@vjeENeal(bYFPRK1)B{V_|)9@Z#j3L7R`sEXNCf}XSocxH{xFTwISih zZ8%KqcT(21AZOtVm576@r2ZLx(3z~rkuh}hFspp{T^Rah^wprnNYCLt)^~;HKAV0Q z3k9!x&U}BO1h*qEsVp|`g?!|ESQ-jmVJ*L=h@C!B@{QanaF(sfAbHB()tzuMc;U8QCeC{gPmO`AbYSc)oIDbKTu{Q ztWuea%hE?2 zzjGtZBVtq)9(?FXx3*H(iP!-1qDn@*(Bq(S=)@vZd&pyS zc9?7ipOUE#+unarKR#=2>ywngl?ZiB~ zq=?^nN48+gez6kNsl@>o2W-dk3OD3fv-k7_+eF)&EjK)qB=L9$f)m!kUDgYJZIDXG zaQ5@M`kOdWvRN2%cK6B6DKD0|?5)Uj>9yjhaCA94WbfK@yEuuki=lN37EV+ri331( zsv#pWZ;XBioov89^(2DC%6tVBc|W7xQ6xlC;KVAL%NEjKD=}))yH@Z^2VIOlA$a$Iz3q;am z$#OBrSZ==ibFP_kR5^zxG+EmrDeGUy5;;-nPH&7RNMq`j@P_>ppw;+D$7Z@wue?A` zyn~;BOn{SprUS?+kq)+w=!;=LNa>@3qEW!KrcB0_#akqDxYEMG_cCSKjSS*AIhxnC zZAZwjDxf;T0cZfIP7J<^0p3B-ZJ8k1PCJ0}?%DSx7QHmo8R6YVS1tB`D&spb>~Z!! z9blQBfauEE;9e7+0di+^oX7z>7*-5K$g}(xZ1M~Qx${qHQgRB}BU4!>MN0IG>441r zy)cg1oC?d;-H9(k+&AUr-SH zaK-y3Nc|O-2Ar(|?eK?@RF|2|^;IGe zdEBj2X7X%#nuu-Ts*r6E-w}pR@|5F12Kq3{=C7Z&K)NE0(yfaps{mG*USrPj zZn<9X3u+=2iF_N~WezKmnWMsf$@6X(LY~BD@u;R~J9<8*Z4jFW7Q7f`XJY7z4JN$Y z9`05YusP1|gT87wQ0zbVPalAqSTjb6L!XAl!>(XTsqx*W7tg(U3i1aVbGm6La4(3n zYfhE5Q<7_V4U_?ZCg9`I50Umj`}bpR)WuYJWXj#o9@GK6NZ_uOApSn@bpNn^tF0S>V5jdFc?V-E$ z&Y#Et#+V^u-}#vvCc}2N=`1|hKS}MkJGbZnV?zyCzAYAP?0CfxwWEgYN^ZGb@Ke-} zuxHQS8>Z_M0pa~ZIWjY!5oAv>1dw&fEmg2_381Y5p)Zz)C<}<9Go6`X7GYkO z(r;7$rurkNWAqpS`7t#MeVbs5CxMbo4@$~0w(3!!*pGK{xJ2A9$&FrCLXd%PaJ3b| zc1-;_IoVPyklPTR!6%*R${Y(uy#qcWH4s1t)dSzn=ZhzcUsD&WbH+V~S?y6|+v%uY zdESoj4q-6a#SZKz{FAV0u6Ucyd+dh&&r?dAnIRSDbCz z`0FPgOHNDcytmyiMf#+a{OX5d7s5thd8(_VaAj!XRI#{wH$vt_+Tqji-h*>k?$y1X z#UP|l@pgP7dJC=uWUq;p-uAgxaPg~PD`Fc<5pS2a3%LWGP~a4%6&tqz5O*)j(GT{j z2=c|rdog5_+jjE5WWI4LQc0Y^+Ut3{U~1_oAUpx#h;?K*z~X@&Mp}Rnv>v(Xc45Uv zSF}7DSgI#3q|wOSZp=BhBBo~oLoMly?!F>q*xuJ7X$4DBDXO#D{t)!Z|9o6tAO3GI z7N@G;ZPASo-KU!snUBm?IHjzo*BZd|Po@W?Z}1k$zIOgqJ?{UHp@C~gQ&-cGz=ZX_ zpC8uQBOD|JfUfM89=no`bc;^b*e|+21Ka`g#it}NG-o4%n3`6!qUWkSWnB4;w&FE{ zV;F*$p(FJo0@1C*yL*D{c-m$9w#y8r(L<1_2s+agEOK%3`Ami~Ym(vhl{rIK+ZT7w zgvI7905D!Wll+J)IwaoDU^|{uz4S0u^J;M~7ubKj+V^~b2&tZCuEiWuCIs;eJ4srS zIVLy-ViDzFvx^U<~uHF<~Hu7&Zu*loU<`+52K z?6gCKVlBg{Vt+mQboj@j6-`yX6D$r+Y`d3=qyp!ZH_T~xE6M#G`9g7nT?8pjqRQVQ zO#~ad_v4U7%A%b%R$M?JlBv(zv+6scec$9XPZ~T{;5u|4iFK%Zol@Y4vG*wfBnoWj zbP(Iam1E)!e#g4D*GvN=fGG>|ZI2_9@rg2j;0Uu{D{dN;1X|PgN4UAQ&abyU&9uN< z??C7Zwu=U6okV`g4Rgn^+*nP^5D`nB!s4O9>GI^@DnKr+qet0ievkbErvmn`f zR1*now&vy>f-Kk-Nd~x`c@YU`bDBw4*zxFNv=f#fJfNfB{gqaUQ3q&RK8a7UXF7is zr|TT2aU1j+l$R2bC7``BOO4Qp1VMM0Q@A8!pWM`;D|L>wmEJ7V-a#qL$nR5NU*PYDa1D*@!YRdz`CD81B4bLh2)+a>t?yL z&3BDDNHqk@V2V$sE}r_mzv%)H6}G0W9Mcz%baH3&BY$Wjb_oLyC6BA zVeQsu!95)$x>+hOPDDG|=JP$`7YIXMrhP!34(kTzQ#UP^#JdinMm>s*n@T`KQv#N> znF|1ZTr0a(5vc%)mn5Sdq~?TN;bW_vl7~~J;#?B16->1TH2-Edt0CN|iS8MapUA}2 zOgIO|!}cgegw-SyV?vyJfpa@qThLa^AI!S~*II@-GM`U+Ejg>nQRZj~dJ1}egcnnz z4SKn5OdEgttq7Q7LQbd*lVNR)bXldf@*zi0)9*%rUqmlD2#b+S6<*hrS1!F=R}?s+ zojMJOfVU(MsEKP4m<@-0K{f)!%hU|C*|f@ zA%qB77f|SG&P?xJoEp>r*xIAazw5I7*VYGlt*WyR4o_&ab>P;5IYg-0wJPG@_-z5&R&^e-^MvcEmLiigUCaaP+<#Vfh`r>#YH;3 zkMX&?Ry~U3L1E9s*3w4IFzy{wny(0Kar^=$AOkD0$KDD1vwY{q$79;1Rd8jEjxZ5qYrTX_EvZRJ{iXwC-Cc0b z11^K`MvBNDE`{BudHRVZsMnmMIHAr`hHk^;G86(4Wzvs6RnomKAvtrxnUb2ABA~c$ z`H%#?g;UOV+d&@`@rCvaP?vH5VhD+KUIt2%iY%$N+GPwU3bMZ~SJCGrS=#MWc0c!? zW1n;Ex|kRU-e=k}-D4&;lf0Id@BnEX*f4B? zqIEt@aB;Xy%99xOD%JoJbdIyB3f17D;I?8cnKHYhjgUxa$4slU#abEGPP6NfJ((7C z z;bdC()@u`<5{Bd?E-e|u(U|~_#ZtgZWFC;GD#BIy)}x2-lK~D#fvdp_qcYQ}9-fX? zklH^XerlX>g>h2HJue_)3YGE4XH$oK*BCYC-zzx(;6E_hgpDzL?r+-gE*Wa=D5(b2E#}1XWDcFe41V|vNZzv z#r_{h)aMU70%af)T9{01E&81=tk?yovfGH$AU5h#rpzwD8i&^yHLqD!Y@KVjo-Q4MLu9!lV?$*YFI2dXG}e6d@Y5;Occ^)c1z#Y)In4 zvnko~Vl6}KhZN3&(688On2jfl*9;?xZ61f*XV=BS-LQDN8Fl|)^mG*6*`Iq^P>k*9 z$@Idz8{9VvhLR)5`Nf(D)4%RJnev6;On6cT%6oAuOuH@rLOPOkoO6VVc@pV>c=2%fFJ2-SNp58I5p)^J_Lspu(%evn+r zkAo-b0L99XPHuwC>w)d0r!jR@d8$h~+LBeqUyoAfp66!R!Afze_q+?#qD z>}sATWbY=TzUxrOXdlrF2C-s&0YC)g9~Z)|6=?@pfqdZWZNYZ1&S<&jWT>TZMhC}T zHKd8!6xhGakAh~mE#EEbS%+*s!lGvw(Jwd7`k7DQF@7rpUTIIom}nd@JZ_UFj8X$} z90v@gnZd(FGL??sOb{J|m;JgOC^;Q!Nw_IP!ZY`B2?YP{2S-QKEAmuXfS4OC=5yc1 ze4}Il4%g57^ihj%dw<%M5|vbB#_a^8Jsou+Ym$SfUFe;~$t5rzK5~{&>dUMdCtNz2 zj@$V&pWxKJ{3l&G0>=9z%#Lp1?>S^PH@u=8jLvlOC;UXPPbwku#NGXNZDd{CC?FHm zt39L}`#zapbfwu)1M9b9zO4GM$piQ7pLjglykh+go%|+eJmCBf z(MLU|F+ItSiK<*^xvT?3-sWT_$B0umEvdMlyweno3|#d-9(9Fq=-26i2EBUp)U|Zk zv>?Gm+$!}pNM~c@J{h)vM-ljbnL7e=8EM84au|75)K;}s z#fk9&bb!&4w;uhj33|JzV!g+>P=s=80AP&NS%E9d0t1ou59&B>r-;NAl~EmX_yhfC z!ytRP)7HH}3`1o#c%|~)M?LYcu}%#l^zlNlDBNl%G>J0JK*Ynz7+F}0<3D-!n#OQ+ zH0^Kuohm9cm8iC?FAs88D*9&s;2fTOY}j-A*XQB<)!t^mkw(Ws0m>{`jc^OB_LfOCNIZJ%cXvM~|^W!~u6V@rKu zlMW&AU{^0KzCCKg7=rVkX8$E>i@&K-4~>H+P?C|3Fei`$%mM2tO{5k#Wk7!-OSr{N zWB6~9W0@X}*72kZz#r=2@{;KYm0lpf4E+WykX!x2_LumWlcI>|ydmGs$&ZxoC-3L$ z;cCKXI>N;zzf-X#`i9v4o<>GQBBK~I_Jkz7K5fKCZ7-Kcq^v4uda(7e)n^%5ewLfp ziPV1SE_kY%!2Hd8oq=Bq_G;8(tc;$kupibXxI4>C(KwQE4r5LA8a3l=5vJ(0+`Q*- z8e6ZgjVM@M>L#70I$@dogPT%?!tSEIU4a9C2SQgc+r@z+;D?mxY1din>UDCM?2uJ( z&*VWmwomZZ$P)fb1~2F(Ehy8eclT0|sK`q12Xzpg3FuXy&=+lKc9!O{AL{@G^5K31 zDS>toc>6vFj4XI_v3RAG0n08OZ~7^UE|T$jQ!G&t$v2LXE_Rt+k4ng(zLE?q-)5TB z%#ML~3dk!)!8YGg$?mr?XQ@s&W>j^5%zh#Wv6VGITiAz(pW@dNO8INghaTQbAavdw z@L!CjQ}11SUrXAHUr4;C7~apm=r7%FbDz#6Jgmh_JO3N|QKd8g-|+7LA~O6x8v2$0 zZ$bWX>c$W5iJH4>%iDtlU;O5T`*`TEf_L5guqkCTC-zY?mB{6Dq6++Jj8`*~tp#vv zZdn}ks3vWe$UV^@8n%RDD&%ObL@w%uDxRyz)t{Eg{ZOZk@msc*9ZF|&KUud=rM!{Z zIIc)+^h24pbPt%=98gxQbx*o=&3js?N8}#zjP2_YZ-3(wfFeDw!nZ3n}%+axRKA5tJ4_wFp15c7y9NIqTfD>cyJk0(JhcTXsW%iAPOIiN4XdKKpk#J)?) z2ulbxB4EymZN()m#WHO$Mx#^tmGd8v<9MUMwR|t{bW!0UcA+fP(WfU*8-E$+jYWy!JIX6W2^r+Ss{gKQ-!l@yv~OFOX!wY%ZRW55O4(qZfpmUTJDb zRasQ(xfI)5)?9OKSx&6f{LsK&$UgbDu!Wzlsie}-nJBru9<58qC9zRYk~;P5fxrpgX55h-a8P5u6Bd z*qGMSu>4ruN4p5z3t7;gay_AjZ+og3OYoP6(qgrVQ6C&M#RF7$qMn0$sdszWf>8My zkZv-fj0EdpdIr)bb&@4!+$z(H2rHPRNRFd~sZkK^fb4{P<^JI`P~x6W88)MWLh-s~ zft=rG!G&b*0{W^-8H^vRb=zBwm8}eopDLjm=G+#mv4-T)4lOb)$_@V~SR%tY0K63y zd|3hKgpc;QiEqg%o-xmJ@AYz*gsNhwf3RLwJ(3)!Y7ZmW+~K`03qtwSOcDbEK3z`T6$ z@pTGiTIk%PRyb`7s@xv^#biuaiEP+2zIieY^+MHBWi*nary;e+cg0DwqmEiW$GINUY){!*_ z&*CJZYiCBHrvvEfKa|67;=$E{-HKv;)&Ms^2R~>wm&xd|;+_J$Fd*g-dU~j~)|=mp za||Ss?E=m4TMH)JYevGY45+Tbcq6;lS|us`7Dr^*Va_%TO$9M9Mo@3t=#Flu&YzYP z%d?V@2|8HD(FMjRQ~Wj%P&R56f*ve{~4a8+&2HA4Jp%bM%2rV=iT+|;0d+x?J;q!8i!b1v+kgiMW6&Xx^^#?|KzDe z6}2Nq9+oRCaiW-URObo_ef?~GrVVeWK#Qed6E9-6anz{B0Xv@~5%-V*Q2RW{FFfyZN1kf<4x8T$k|T~OD{(@H zIoAVU@f~WMFpiR9Ky+I_x020WC5mU1&Pu=gB^9OEIr${Yfl<>fH=QL<9&6WF!Rd18 zCgc=FIj|TBvzyQqCkZ|js*ATGctxR1Fnu;gwT3&0r-OW&>LHrQgvi8#M1~79yd?lg=&1r?fi2v~53hTTmYkMc@8ax*a8t zx-lZB17dA&o*3uB)HCv;as z@YE6l*5t@(f5IS@i2i=(e8s#y`YOpu(xFLC38_gim}WGuM+NVt^cAGVT^+70%v z&@7>r0Qf@3OpjiOEN}W~-D{Y2)ga)}NZ12e&Tn^kujEDuA>*SI|6d}0lN$A3US1;n zpVIXI|6pvepb31a`=&}KCQIx;L%kz%lJD9MyD(dER0l+0968Nv`cm_f5s(01K9SMG z)qNQOzNRXQpP_x@t}&bML=di(JE3)kE*pz3* zhO@Mm0H&sGgZc8rtmbXZk24<59C&z16B3U}VjSK2Yudx9V&8?M1 zmNt2a94bY0PV^s|XFq*+gu!(+K^&uSD~@Rs0fld|0Z?;ei5i9}nd)B?eYQ$jF-IcS zK9aq_y~>;?HsH$j5|SZ|Y^?<(`(*k@_;_HfY1bMLqXb2a2ea(ETEGi%x=Vz_naYOf zPrERUc-zDQ1LhtvNRT{l_o@P-T{>&2KL-%`57Y;pWNHg^SCyL0xGNe68O67~6e{Dx zv{q9kj^gveK&|kbYr6--2jP!o>B}`4E&47^O}rzdnxf3Z_%X0QxntvPne0^esgq`GT;!&IW!-2qjzPPB=3 z?p48gCE}0KW~`vt*lAd=?%dZYPi@W+k=yB~*YQan)yqYEki@q-VsqEMI~xp?rGG0a zT#Ci7oxX>hrFy*rVsEcSx<8*UBwIB1~4OML+GSGhGW{g4|RE|)Gk1sHXJ4hxy z@cq`s&*pcERm6$hY233nXq88%`4oGE41pec`u$dn|4p>7jj!Z1`mXWL&nNWR`a?3Q z`IWFVnm1I7PcjHV47vpZlCG-m#Z3o{2-A<+1S?v)pg~iPUJW7 zmv9BtKhJpCe9C_+zHDxymdPcZQawNP%zv(Sbz(VoSYrg!4mWDC-QS0_99$IUFPhsp zLc)y?d|93uIR%`AO?aIAku&m0vcm|^;4p+!0*M@i_=Cera%s*q}wDvp~})#BFkXe zzfrzcZ0Er4IoWjNn@WvKZp~BRWM4Bb7ajwhc=X-DwgesMnGI8ApM=GKIe!S=2>kFX zZuQT8qv@yy-HH6wxc-2ufNK|G%|XXt9}4w0oM3gW<0I7Tut_LDu>a{Uek~+!Qck2G znHK9emX#4MlJb76P2obow_5(3`*}Mc)M4YM?P0p?L?w1UAKLy1?-n`-YL3i?1i08# zKZcHkRW-#0YCaFH_pC+jSiFEfpCum(YYm9GDe-S3&H8UG_eam0^+D!7{kbkT*%S?x zWchq z4>AA~oUOxG|B+S7q&r=AZ;&5N^@uYh ziefVONK>onJYTIQqBv(SuGL)u(ji>Vlwa^9$46Izu7aH0$2U914ccc-YjQ4_GCUr< z64XxBqh}tpo=3+Nc5QCWryO=&jK*XM^GA(WaGkRUzB|CyPsqtk`2@!l>r_Px3BNg< zcpL*9QJ*3mhi&^YyioB~^p(9$Rs`0=>fzKOnXR~0)z&AD$OUyu6YYTlTZwH!8okOG z>z4QNY%Jv-!qJ}5t+S&V0?ypggf-7RP#6X@-+=Tid*@35HIr8fW}sOJX*fg}LHF#n z%IRVMVF1t2Kh;_N#vmkME=H|Mm-KGjeIN|~g{6p|je*wq=Z1~HPh;8W_j#Xr3z%F! z0b7WD4-{Sv7u#Tp!0RFdwo)Fh({W*9adE73=OVY^Nup3@wT+n(r|-7q829#{(F z&2j6Z=igi@r)RKzhP+=b{zimIJR;8=tW?Wv{qs+xxleq4$C&l z1{i3LOFEHX5%Dx!CaEraGqH7Szp=crI@bZ~8_-3aczMfe2374n=@+|_fkg2qa zOjo92lLg0OawA66$iG^rSF2wro{urO-R=BBchh5@|Mo5+Ve-XjR|su`%>{sd9ysX$ zq|c%DY=Rs3>asLkK!{7-`0!o9mc{5+IV$VK7eqWiadoSmDyubq72}YaA`oPR{RI$j zmDCl&Zs6kz*sWO`>g*b#B$d}H^<`_)kastY7M@)Z2H5IueQC7XPgk% zV@|%smiL$XQrtflvOg9YEug$NX-sxL4Rv%94`A!kKV%T-QH@>^!uqy+?!inDBdr#0 zyevnlnUmZS`@gd$sizZ~%f(lr(I`K*`l*=ASOY+w2cp-SZHyhRY6^+OY`#0LD82&osLYfJ9we( zC3;i&77VuOGPC}OvAl&9-M!i?Jk^V%X%>L{jE58NH;V7{$}?blL1dy3d0d=`V4^`2 z>h~u(hn68wOc#4+zVsx6VW^Me-arv0@K(|n+HQN;M9q<(`NCXU+4;vn-3!9WxjM+t z$=BGy&^Mr(mT~u_d6{KS83#R_f7&BI$qQwBO|!LI-Fs$tb7iYZ7=5;aAuX%;z&=ow zg@3Oj<9k3wjIoK1$eJC?N|Vi77Q7ame2hLw75a7$dA^FAWyc`h+8f^|`rIIBEO-^+ zm?+asz$D7sZf%THN~ApGG{)SHeXGe)$9eunj17btLP?lUn7fdWZ1+vTO-L8(PQE6ary>}0OA8N?s8_+qu~Q4Q z?-J}GoR}F6?O8_4Y(FaQjrFA3ULzzt|2$}H4eSq{XPfk6LU0R+dbk!ZZFO5CABF{= zGZID_>XR(e;d$Kw_*uSTpJGlh+sHr0*VY*8ejW3Q7U5jw9xWlUgNjn>L`<7)KXPb= zb|7DwunC<}eEfO3OA&4#NLCjB5PFO+FzkT!eD7NC_#VR_`TWQH6tP1LR8HaqE7gxF z8enUzxsy90l{RYvVrKZQM06*sW7b%xKe6c)B59ZkYvkAwZoopB@}&B!(y;~2M?iGl zct;3Y+!zbu+wG}&HmG_Wc6}1RrKU5cs9VB|CW-Fk2SlL8RlhDb)(MJMVcqCTL<&u4 zS7g>b0qgtUrC9%O8}vUY#kxt@2_3y595^cUUY9_G^^VZ|oA z)>0zunb>QL`iPMdY|lUb;T25~jxom=!tgme(UvQo0I3Q-DxDNuhTOFE!?=E>ZB9$> zxUVKi9Hnt#xeWew-M(rf{CgzaPB{1hgkAO7B5^w`{8k4#h9mvn^d-RDs6U2aNRXwh zT4g`fh=_iKH0_HtZL{j4#s0nu92N#!fv@m2wDrsHesp@<0sc( zr!Y(#Lj$8vFf}a6V_mE*(g(hW2@@wo6Cqs14|+_Svm;JbqlVHdqf9WBbYnJn4Ky;_ z53n<>7fp&BuKI+~4)cY3($B#-nnG_2TzHGoF4PgsaoB}y3%c=So5}H*IuuUsejOe_ zs0W!+*!;b^Af{OTI7Cq##x@Fd=In!U)F&R2P#^I2i01+MM*I3DSclRyl8XcSF4c8L zIDa*)4rYYI{Kuv}K!$#cL~rY5kpvG(`*mzC%n6ZWxO`Gh-4xTti~M&sFL6Va01zVw zG8jSgF{Zc{U)YuG{dhn;Eq2PSG2)lqz=sDT9!NWJd)BWeC&(FhUp<>`yQv z7>Yn5V~{BzmMKDn00BbGNao>e`@Y{==X~e={y6LWwaH$KmF#Cf&;4BYeP7r0bc?y9 z{C$Qj5&`w9;Mq)^k*T+j5`3fBuDdO{KcV=hduR(>TZ$PeY$o#jT<8JQNv3|uY=qRA zcfim)G}?Pz>b;|)R*U*(D0T5m(Iyx@iqtIFTWhcQHkYf|0D}+=Rb$Y$P!_|Q)E(O? zSVpft@8OGrG4O?NVx#N%g`&5@HNYjznw#)~%?N`i3{;K#G) z-^#S4uZ7q@XQv3;MC%7}C`R>&5s&U7^(X@Sl4CWFY%$V;s0H?`}g?>&h} zNnTW%ql8w3hL2bO5}RNq;Hyrd;sHsrvM+&Q({;NNGkml~nBW07J>RCVW$6DV@dziF z5-IVK@KS?mS~WwAtsnk0@=B&$~*T79^hoVvKTxtkNk0YR_skz~&~Ed(P& z*)7g!J^2nFBO;Q)K8~al5SVJA|&!xH??m%scvO=v1 z-ZQ#qL}RawjNokgWTD?x&Cl$?-RF{b zv0u`i6b}0Q7Z@kKeXMbqOEo5($?7j8jlcS)4MMNxTT&qHGl?J&F#Qk-G9%EZhVQ-O zjplSg%=^%5W+b&${J(mrna1V$h+$mXG*@MW^)(4sj35fxA`Woo5xa+KGdE1RqfKA@ zo?iY!`{bqhyUFT?D(sG0h{BbEO_{#IyUDTX;|hHV4d*e3VdcXVhuBV2O9fT)!BcPL z#+Pc(s_ssyZlUDHWh4YdWbp~dN?j_8<~LRsSk6ci|EMpfXdbN_ZJL2vd(3E;Or>y- z%L(72Q@f_C_-GN_n%91I){Unn!Xk#@w8byp{X(=qSdDbrdnxj^wLs$7uplFUyx zHq=p~6#*be-Ig%cBJWaI(NHq7e=wRFfC@Ng`qJqUeEwACtRSxIX}Q?+ZHW1r`ERqv zutbeiz`3>f@$)p?MB)sBMyVI0ZEFxBxXCHL3RB-B@fww-2w(k-9HsFFR0RPKB4~v( z3j9YX*r_;mU-DO|$E4Pqarm_P+ck|_a=Du<2!``!3Xc%^$^VM~1BB9n!PPuMQB%`W ziKS$%qn*OJ^T&;znuf3VL2m>uT{b$a`056E&+(dd9;BjR#pvL|e&+!E+=MnuoTNaR1={D)CR|WroH2@@3}#S_yZEs$fhk$G z*nz2i7CnZeF{)q}$Q`;H650jrOdMh5iGVBiO#7FPMZqCl-i$Y?kjinm;!>D9y71FB z33CxbcN6YZY~>Z_F*dt33C8N_x0-;~VXxDsj@62ICrZK)YVIzz)}6aUG%=5yK3)Y2yOC z$rNTFe{BLb=`&xjZ^^m_cXr;ST&siu{5@e9SHl%APK5sX&lY#M0Cu6g%~bNUJ?8+q zTWzIGRCRsnEoD>{fXH-@JkfX9oIO`n;QG{Wy4vu# z;4P5wGkoA?Lh^@djEg>Eq_^s&d6zOM@K3A?G7WYBwMPdpKShqV%+&T6I)Pt{sN6PQ zZ(JOar*=CA)35)5{YQPQ`48`5MxSbIyUJD&)0J?Pn{YHs>waBl2NnxoUVl=^)Gr;T zX0zcfz;)92Jq}Kl=-ZfwJ;RqKGS4t#C@-;3G6SOc&t8&|8>VH37D>`1iLq4Vu!FH} znoC;BnlVHPpBKaP0A;<0y|2vCGk$jAvvw5Me42Oa|MN>U<_=S@8Mohf*efZ#%JXjB zk}C`{|Kv)xMzFWi;J;dwq|Y5Kl7B3J z1FT-aw#l^hc1(R~4&q&mxeBwApWeBcVqP{ok@P_W?0*jtFE!h0`fFZg*pjGr^AO6{ zrmSW9l~tI{VEjyaf&H@wXDic&?3_8Q%AHc%{WUhsuHDezv?x{7z9O5Q4=Ib#!2v4T zl%ACX<{e?GL9&=?W3&8&(#)cm=0|?_3fHSUG9|K*BpzPTX%N( z---Eq#_eZ5bO5i_B^BaZ4(tJ*-%7o-*HU|VZ;-;_KY3Jj2R7!|8;4#C?+vh3o_kO! zlLGHqAFW49QQXsZc$o|m=s`FrDcX^;h*p3(%2ESK(r+~_H3vG<{h-%&w3fzRzlB{ouG{F{nQACKn_+6w@0UnEVD`eQY(^p_Z==?eBYYJAJ+T=}$2V%;-P{LWibK#$bxj zPZ1)^Pm-p!xToL3sO;}B?*kj=6kAy9al2tt_KVj-zzUAGTM`LZI*hhul-~;|e85$# zp55Le0UNMSgKKivMKoily%ZC`d(5b}fKHgc7=JBuVdwx{-5<_n@ZTg3WS>_gX*p zALh~!ze1(A=y>U=w4>4|IZ59`;}2k`ZamLcCprf_;O8J_uNm^RcK=wAI^}Ojk)wM) z9^oi#++anpL#gsTh57L7SK1n~k=ViX4t|B@ZYL4BFJk6W2exHhKsU;l0%5;^g|T)j zc-cs&`JPy=&RVY>TNT?SIx-dJRDL`pZT`o_w7gTdw$S@9oMcv2WfYuEl#2 z9;}}GQm#|~W}n7XjW5S+V3lcZnf4= zKa*6A3yjOghxUlRI``%N#;6#m%X zlT2Mal!YJ2#}^&85v}-ytcKf4-&qj}{C*|9o#Xkfy)sa1BSQ2sLYc|_75b&)FGgIB zz0PR-S{pR`(YUb!dBp2?pgrrF5}X8OXLqkQ?Mh&0*E$ZEbzWW1&iMcC$>hZ*Nzu2@ zNNzPOPF#Ib6?P1W+7i{1p6LXa9={=uceZ1_Gs4vW%0?DUQjJKuu zhJf(VyYrXYtvXZHkW3P!VXhDQ(O(JGWQ(75(2qPqb~JWdB?PwgSk*6j+31hOpyt^3~!cIclKoz46(D{1F0S=@(S zg7ZFuqmko$tIap%TjBSp>XE1Ax6Wi`z`zO=YL_ufa{@*c-J<4TJ7`%#`}Q3bvM2!G zz__fji=Rw#bF~-4gBVng5P;h`+ zJVrqG%Dagv!sA5)WkW~Uo1CUwbUbO|8(P-l_f$Pfvd8end%U0ZVq;EVG5(_M=r|SbE)lolj1n^Ni@k-B(;ID~Y)FQ}J z<-@B>=T9A4e792xw4(D^{`FEkRkt3qF_WwMvQ>B$oH{j|$u+L2>IGRQS$J~jY#H%_ zb0I#*nDPc0&c=MSqLHQ7kOle3+sJ}T5RfPZu%c< zjOP~ebV;omSdscC2+yMX_08ESnad4K4sHUIi=##4UtQPvgmfGpVwN^M5N}S zehHEh>Tg}?yBWJXY9aYf`?#I7-A%Bs!-39SE+q}lrh;2-k-d=$L?pSXU8qBTJD#$l za#I?r8Z$&a#!EBnmmoG6D`cnndHmz(`xaVerQ6?)rDyFoXzg&X(_)vN$U1+eSlyUU z*@*7+K^eyqdT(&BQfvzRD`T(1wx-?#ZYSN$?b-*?zmgHZAUcDAcAZyd8B*B1yFeE3 z{*S_Ts+40v#v?)wVjeE8Zu7@%&^!KK#;UY{9KMH2&p*&r)lrT%5o4A^v zZ%%E9ADQ9Un94VNiG9i1WlG(E@cMX!s|X$!o@?v`X=6!&lzUL(UuZm6fabMqR@y#6 z3KD1Oln9S$qtCb`?S;J;2;4APRVr@mfANpbeC8jWABV*Rq?=$d)_xSO%Wl2T2B;!7 z1Tww3V1`yM!_yrkJ;c*3QP3sc?S%*Ds!VRg<#S6zx|fWBw8{;AT&?Zdrw9f$!|0$a zEu5@G4wg62LuYN8_v5sOxCt)f&}p*Edk1mek;MaSneKtUiJ9fL=0iPnG9A>(CoJsA}7dLs4`=%s<1NHHfL6RL<>V0vaNSYnVKtM~D$stfcNjMGZZ>RQOjJ3aGw)&w6{H*D@u*sN z0iu72X+K*|8tE4LfB_%MD?QS<*f~blMv6*RryfcAnkeduZ6k8uJ5N2y72EmIH(`jlndMs` z+TTfT^wpnBKRfA=P}YPDS(^>!I}fweXXCQ5Z)kAFP#&X4_hqPzg*3gmvtaI+BNUvQ zdHWE-;1NRBgYZ$if!nQEOK5Zy8Ik|CyBp0j|4Kd7{Li`dZpANcj%3_mI=C*EgID^S z{Www>W9wtX{@;LNBs?tlo!UmU=?G4_wE2WJcc}U}#>&Bb30yKW!B+iEqP6!p>bozD zUn}r#d?;a{3jVz$P-cp1MISDb>%H zx915#G1<9y`=xcF5|nRs?`ndgwg7Wmn!80=25D@7b43BHa(-W_WCZ<&lonrBAoJ=h zHw<4nH#qj0OB=9ilE)IfN!SsVy3bolZUwHlciEJb_UQ}NnHwc_8>r&rANV#ZTQaUX zU=z@)y+o#G%Iz`%OS~c?$&x-4VQftZYpo_@IU2iTrdx>JQG>R+Lal@Rjq3ZyZsIao zKP(FF!_FvDM?#s&``9wz!AQ9;3vB2)*WIJ{yFG-(HUZy^fKO9J$^%y7=XS{}B>nvE zAwT+xO`s3!+Wr8-z24aaz4Yd~o8$2dl4hcdKPcT#EXiY6@Vl0HZ*W(yiX?_XPEEz| zrHv1|5-?%VFB^4UdQqONp^pZge{1sifau^X(7+jn1kM$~wOb!1sli2bxI7wYB5nuM zA)>>a5Axk*PnBYVu$C9&+}l+eOoUfq%jcYDmV-3!N~CV7G7X9DvJg$Dk;k)<6y>Q_ z*574rKqeTwe4t%dThaH^CnKz9}MomoguyeJ7)JB;mKu)Vyuwl4@RX_-u{aTOg3v z>@?#CC&F)q6GPY3-tr0ki8W9$Et9_oTjN6Q>c|!D>GMJXRjdf_w1jhD#)zD?A}B6m zerkc7Ks!@;Kf^&)JLZ{0Tc1-zS2tx)4!&`KFP>*x3hYDwf-(|wvLwFgk@i-!tJbqV z>)5Fc(+_1E!P0@^TOh*h>&D&udYFBS6ZD=slp2nH%C5#>MpuT`V0bS0NAB{{brZGw z7B2!{!mG!UwcVN}k)B}@gP_a8Dyn}OIW2_AoBG1Xeww2wolpXM+mIp)W5M)8u}@h+ zn*+#~>Z!w9DYTI_&(jNyB5NWrk$4Ez~> z)<>y8H~d8@wy$1HR9Z^lw79^@O6Vx2nfkm>KfVB2woQ@)pRWw%0e2=YXGVNN`jCB6 zO@;O)FE;B|E}mn5r;$ zt|;4lcpi4103;tGX!3p)4DXKV*^pj8;a1s0-GKgQvr7$4&>c@p{SuLLhw1~zsR z+}9ijtMQcASVMvZy z)05gfZ*qkX7eS4ucjxj(!`TyI=6$B8<=bJ6!mEiP9YKid-sRpK_#Y78njPulQy(3! zAgVtNfX-@V=sO+<%f*JE6sJQ1ngX&3SGOfq929OmtgP~OK2KhyTbl9|()Edg z49>pOA9aMP>aJ=)f_dmRZT?lyCvFKgRtojX<4~3G)}#Emj}H-}`Ex(0t$rslOV<&~ zHQSJWM|WocX?u|w_@~hRm8^Z<$9B*yC-n_SyuN>E-1r_oJ&|}Mq8DRZK(fBeu|PxG zgc%ytjVcT{yo$Q5G;~D$Hj&){xH)X*<19 z)}=5M^_+2i%+bf616y_8)s?fqX6&U_Or%LNZZ%9ROlAGGD1j4sI9i>;i?V6DQ>CBs6^Ukuu!_?=IPH0_>u$I&SE9&u_sSXq7GTw1;~WQwqy z>#z?o8-`iNa@p(Oum}n|5Bs=GWl7k(M2McD!RKZ09B}=ksqfZ%S~f1GWkXs6Glu!U z>RwtLw3i-suZ)J6WZ?hR)40O2!f*RZ|kHUM+duX6c&%61PW69FmjzBV`~7v zbSwjIHR)Vvx-z)^X+%d5&`L^~4I}IkJO+1guq8+ry3InZ6?>c2)y3qOd%BIcOcUg* zar`CoL9;zvr3Dz`L{7VKrMlq-w880Hp1LZ7e0z3Ai=@=vQk$)?znH?$-UMYQ4|0S5 z!_CH%Mt?+t0qTasEk8SKuGyc+(%H@RH6BQSeb}y8N)6cYc+{4frx25SPx>pjq z{DGFOfcxw|@_~EM&L+u*Ud#R@t7>-Oj(_a6;UY=9$x@fMV=7s>q{M!4fYjH!h2MAE zaE$#1Gt{Ly6WI`)nQB~}QfWGdry90UJ|(JDg4pOtuiDXH(G#!oS!+HG`@&UEQ(+M#*xs_1KL)3rNpZI;v@ z)NqR(`wnYmXqy3A&}=0_1JgQCcJ-vHgYe$z@!9rL_9a{^SUdoZyg3Y=g~0QHKJ~U- z8+~}u;T9X<`=?NFr43B~@_I$xHsuT#_)j*p6uxvkzQSd*A$uRR(;vMB&UP)~pWe}f zM$3oz{e^(K(HWycPRnj-SIrG${&^%QH{j|2EZD|@elPqH#!aK^=1=+7coFTH_7D9! zj1!q_$WVr}@6C2ujBN>MSxD{FSNcJ18pFq(G!avAueKqII5p5G0^_)&Z#C{e+I{pQ zxHHSOWNtNm>%+ymb~oXsV*w?1yE3I+K7_SY?U1G((lC7u7FW1I0@hZy=E}ofzk$ve zYHtzDBi)khke0ro1^-OaPV~A)NBKL+zx4V4Zk&Wwh+Y5B`k!vZHb3XYC6c6bSuCOA zKkXro(sn_d7hwZjHIBMh9>3a!__8f1q_yr7Sidw~iGbbIj(0uEu0_RJ@A_!v;N?15 zOqv3PPlVl5$p)EMKUdtY7e$r#S~wlFm(Z`FnUqp;{|*~kE_CJ_{$ zRctBn5S~1=c>EyS!Sld4Khx>aEYg_Fw`^n!w>;Db>>t-e22|6FB6a!lX|nYchd z1m9t=%~P;`vaf~IB6T+6HB}Nv`Q};w`Wr{lxp#o6xSa2RVz6pYxkLIymt5Q_4^Un^ zI@O}ryPH>4!&77Jv|i6<97BqcY)2U@g4`k8b=`&tRentzD5Yx*NczwWd24BEs{>ua z{h0J+x5pVWRVR!!-U}I2d`HhlqT6q#C2dZFsSqzV>Gn9tZfC79-`J0M2-x8AI1c0N zOewctNeH%XLyDh<3QpZn7M1p;m(kmT5T&3cW{2LZc@|Q0d58Sh-Rhqr*BRP@v)eEY zlq>B%vXUJ5PdHrwI4gB&3fTt!0^|1vM_(4ZRp~5WUI5w>92fZXf(m|2L*HS9q(08O zhqW7kG(PNgH%%QImfFgFQBPVlb#}k#t|7g-wXt*FdW3B69rX-rTi=uTqQ*BE(iPO; z|9z`3-1Wac{*NH=e>QdNUWwnu?n@_Zvbt;tCewRlYqk27euXwzP(*2|UwnhR#?CE# z7OD#DXiw@)mH6&5`EPNNawXaZwElj+BtfJPJ>(KX)OxMWLtY3(4Inm9jnrZ68u7K* z{!cT7R*#4NU~blL+DLztt@a)W1BTR0{g;}MKS??#?K;d4Qvu2i=ruT$0P^eXcB=8F zrher@?S)U@PQ?0PrY~#G@>|TD50+0PO#ut3Zvk%-=I4WiB75zcu}8R8qiF@?DGRL2 zUN$JxfGaNVZR2H)+enCII>e;jN>_i$-^vXWemRewdegL@)WX}dw)Jn^5^d)Rp4&Z!<*xVp2W2l=AR+@zhsGZ z!?>XgTTmXn_gaV&Ip3zvkQu+*0w+1hjQ;mr%my!hK#Tfmo`fHXk}lEXB1(ZJI8@(l z-Fns&U7qA*TJ9AkXjO5g7}?F|?=+E@NF>{Yej$6hiF97m?B`Zv1-1x!EK6+qp)8#p z*uro5L6`C_KL$BfNxcOB4|KM3KoiMW!H#Mjiq$0TAaRc;yrE%tbPnM^;z06C#A;=p z?w8>V%4DUz2!ygS%yQ$+5Kp}6jUw0aPO6;nDDCgm^w~c?cU@p%{~J{NA191_Z<(Zp z^6S#;Wt1OFC$HIw0{1>WJ>~*q`x{0d@IA0cQ~!v*gF6hbX$^awZ;c^FX=QppG@JJ> z&Pyg?0+W0XjKdhP`0^FBT%e2f2I)PC7-Ai(pP60>bf*Smc@p>623^m0{(yla`P|7Y2u7P^;Xvuxa#$s%JoY%;Vm-&s{g1b4?@{vPuiiFR z78u%h?cn1~95I)z@4@^{q8UbJBHVSx!RdZgP>sN4K!9ZV)qk3K!S@^r!1~o+QPZHK zQ%wO9p7KDA=p4pq_n2RLKkTs})~JlD(dsKLqDUNFQ^3)DG{);T*2__(>nVelywYpt zCL+afrY=qkgtEadyPrI=HIr7E>HJ~`i)-w5f*F>}ZcyxD)1y zjIU{g^Zy`Wj6x(lW)|chq*|Mip`WkjtEiLgtr+$$+So0{#0xsPK%oeV7#@5DBzR%! z_thlC1rd3~KLz?q|7daZ;)})7%pE}uMazu~rGUr-V}y%YIon|aU9#weUogN+vAuRg zZ`6zrS~H2@+~L9^FDKFrqng2Rimci-rd~U8Jo$l!^SwG4U9Pwr7eoRiLl~bfiF;Bi zoqjEPe5w{MbV+{waAm!5A*^3lrF%=KH+mcj z#h}v%p-l|BVMg1px?33ns15~b-O=Y>8)gmzv6CG7&$;})VLX1?AZwoE!j$!LS>2(u z4{_w{KrAjvQZ6ic#nsK(m9;RTUx`Wms&QQ5Igty`(1L(FPb9ZxuBL}>(2d|QE|IqrEA)=cm`8#U&1f05?QQ3xW1V}Rf<{_Awn1P24? zc8qHOjxM-bA*?c}*oMJW_d4l-EkNp4>gN)(a6Ep^T>8eg^atQ0Z~Byt)p_sbbIYJrdWI&mS^14^y05xjH0-&45s|xSlPWT|DoznN1 zOPn}Sx@MfIYqs`idV=vQvB5Etmgwgtf&PNB=IP!_8Z!a*)lB~1p`}Aqi49lsD0w@D zt$Ot;`G~b)<{!iOAkg1?H(6O<317p-70e@{(jd4_M#E~E+Vmc}@-)}s;4?7-w_5M#5+Md9?=NpYz4qzIE5fCYjy3@)1b(B`Gjev zx@IKZ1H%SM${ORR+FoT4l{fpUKU3{qehaIDL_KZQJf$k$jjer+|8_;^L~yPN~KT} zFyD@n;bqRFGJZP+AiDqNRmnHFkD6Z1{YrCOPL(ynu^J;x%(5Ti1^@;n!VFZX&kk!o zv`6&IpYRFaV03?@0aF1W^!OVFfXmpEi-Wi00Q=~AKOVx}d&VVzX;Sk}se`DxesGPt zd+r6Y`*4rW>kK;AQG)Y;UFG=8X?yWra)oFQdoej0W-BIjoMiDeS1#N81yPokdb1~8 zA^^ctESsls{Vgejj~ZjZla)z*!bZMf2v=}nz?FIRj~Y{2e=pyok^Vua-88JMr-y)S zh=1b~wzcSUm=ZO2*13?pn*FqiQr0ILB*NWD>szJk0bQIBUB_r zn#Q=Mh1yRa4bfVi7#@QLR1QUa!j-IuXSsYJ2b}6U$X3T_v%f2XX-YeJ)L>W|W&D^} zm^K&YX;{c-suo2qH1gzWiNiUaQRNh6yduH`0sW)-hEYxcRx@Y6gA>lL>W`}s_}1tv znHoT~YlnR(+ax`})6CRLCWel7*BZvDD_k6&9EVKjVc=!`xn@qm|c zxSt}^?Zqq>-!P6dU8zPK6v11jW6jU3`Uf)5CULzC+9L7clj9joVQ`k81|kiUM!>&9B{ zAf6$RKi*eoenFItBpQHUpI49m315{F7PqN6WVs(9w&R zBZ9n*$_GbG(L~;NP$mHVZIU-N&OJIG!C}6w!sXq#IZ^#@=}SeSxr6AoQQAWt}Ha zN8r*2>DNVJUHp@Xqwq?n0R}vpIO2!M71jca^*D}dJmF}*zK20-4?9cO-IqipR)yB6 zi3cyAVrp}jt&A2=M^I|O(8LB$a{RmuIu@7cMkb<&*Za%hh6R5gqM81agv0Pz#Z&nh zlz-8Ii|FcUQF-d;XiwgPsn4Q2^)m{hjj4R&0wEa6jv3@W?}>E48W$b{fM`HbZS*R(@6Rkzo6Hobw$Z&Rk9G=wM&%oyF%5Mj45d3#oCA=~SJQ_F z_3rxn;J=!0M;pZvE*XPa>%~NVI~0)5)jnS=*V?#>w3~)Rp@k6_A<7WS!pyxHrNp zjU)d)u&05a@?SGvO7RR}_Hd%L&QW(2k>X?k_$nAJ#Cau#KP&HHzhyp`DG=3d5jx|n zz+f1(0#qlT=hBV;aM80uM8xF)cG8;CC)|?=HvZ>`?7jzdtT~qGhe=8Y^=os+Pupwy zMMC>lS#k=9#)*HBf>=QOh~`$8fD|n;PC5UUbcgQL$%T(l870$5O#KtAd002b%@UUL zlT+NiL5w}}Ym`#+L@|)-uB~~MizP?Nj0>-U#ntchk(~7oY)vMDX)r7_0SPCAlJq0T zJqn`PO@mi{F1M-+W|P0cG@ch>*!tkSD;PacBityhr=vg~!N2$m5%%w8PsS_K|GH(n z`g15?-|E-#e()2W5=A5ml}uxEq*w;%|8S)8{Y8@KbV&r2d0!YIgp7WQsk$Fmp^r=x zCi0WFV`!A>Xn6LVidS3p3dvFPu-+$4G9F?^9vwR=v=<{`I_-4`dD6E&;QZxNL3@A0 zMDWn1N1!8`@c`Vgj^1^VSceAmkxcR*tzIX=t=8M^XEvPg-v#9m(d}T0BDfii*)eL= zMjGu5?a&zn#t5r)j9~%O{`Kt3G<&`Aioi0cj;VS9o=&KC z$8z{ycBHW)$|!VU1Au40PNW@!ObP8T2@n`FGg6zbSX6|)yx+p+bzWp|Whe2pjqtI4 zUH<6Quph2QKJCw_#2O6SN*A$j3c$>X4nJ43SeqHaG|BI> z!x|~=T+BNzd|WjifX;eFNnVTje{T*u2j$}bju!!+L*)S^$R_^x2DSO$0c7+*7s(pN zPaFG`2wTMQs@n63IKyM|y#RRI$ve|_Rq*kHHu?`vc3x`|eu+Auolqy-@wW2{G!nOb z*Doo8#50er-lBRUPYNWB)BQcmEaSJ3%Li=oi4^ZG#Se;x zf3*=WCBEL05SW5p+IfI|zZ^e%>bd3gzbYA4bHMG6eG#!3>w}qH?mdg`%LEP>_vJot=;wC3JhiW-z=>3)&mE4K zpFSC*FDkILtMAi~D!oRR8?Na}VB0}M&r{As{;hY_m^FYu@YKF*y^N9qJCIaN@0WB_ zyA$^*EvHsY#}OVe+PIyg=BJ4H<-|U?d!4V*c5OeVVAgy7wtT~x$!e3Ir!wqXb0iez za_ubW4YgTkySOi@xZ$90jf=unxZ&duJQgja8wC1bm}aOVL9b1 zyhrbVCM@}d%f8PA4|FL4n6lKxK$rc42M+P?1O9c96lGlYeA9F>c^_PE!LNq-ko(cW zA)B8>pr>P2Eq+XxA*_&F{We}ono1?T?w3?V9H$iGUIt4W4(eM#oB5lDV>s!rZ-TOZ z4qKotC_}u}wv%>}lg0a@1 zOI*UFcEx=D(-lA{=q^q>X84q{eZ}#k5F(UVl-h^b0+ElUHa~^WenDA2t7ff*8X=xJ zi242zxfi1p?v7=ukI;gC|&4<%1VZnLB%Nm$m9SyKT_gd z&R@%XYv77qa)I`Xsg=qbJEX3flo@*)#gTg)Qipgo;dfuz8}Q9>%|3`OyES46@R8tI z9!BmWI*Pv_63`v7R6`SH2@WW0#G{991ODb0jbBXPkPr&5B^+dRLn5JlZMs!jh+RJx zJiFy)Y_w|W47LU?>N@B<9S}&VaaMS7y^i5{r0YX=+k_1vptC#O$3^pfKgb95%b;i5 z^Y)JBXAfSsk$020MEc@SwnVNWjf4kQqeJTsuuB{NrVv6hNnhC&`=18zhI92xMM>|I zInFbn$x9JvmY{Uv>TS1BrotSkec&0BWmtUUat|Mh8(sF=F<$Ngo8k)A@Q}xLjM5j^ z%YBVY?^N*drZiAq`R!LFjRaN~DGT(>(EcgDRKX{h=!azZ0{h46>8)tZ_c@ch_&-pJ zv0rV0w+dob#m5)Nr2EDLXqYj72p4O7N(pEo@Jaw-*Qt@X1xtE-y9<`9d^R^jh}&EL;T3~ zl`aQdOt<^WpSp-v!lX(YRUWP*fMvm5 zv(bf&7vmR_zM2(iH_MlRRPn9>35p*I8mGjhrK+UWao3I(;zp)&7Qf^135{)vHJ@-b z$f+(SD-8Wg9QSGy5pU$mQw;>{gXt`=-5Q7r$*neKivNjpksg7R(5CZ+x!q<>LAy51 z(7|%5!ez>jNtXS`ocFBK3H_EH56>^G)e6_Votg}7x~oT%6uQ|3BGHiCB< zPybWBiD0q#=)58=pw^)u6Xe0jrt@#ZM5KVgaQcPmHF20)QHqS3UHR2ml>dPwIbh3Ek6ih^ z`Wa6}C%}`rVKRWSbh<@!VXDRChUXgJsD5})<0cowZ`=WC1vaYXGf66Qs2K$|;K*@T zaMC67ncBU)tv-oM|49YS2Y@ycF%riNsxpOPa4PIYy?vK64?cXw@!0C$n^ z`fMBEQ6#Qoz1+X<5LbU#=?bS=bln3a*R@)y+mg>h}ejc{bphLFov{=6_9;}fTva>wlPviJ;~){IhzQpm+tIaL z;{4M5<*ZNL*)1?RZolj_wR-#@O6p2=Lz(wc9+cxj3xi-O@FkVE;J;sREQMZk5&L~J zx>t4SUMg@MRb|@WNT6@>=?{30N1dYpgY*jI-7P@ks!}*1q#5Xpq#o3HpS#T^wVT4G zw{{Cqqn2|7M}e-20()1CCiU*TK6}yZ|5&I+>#0A0jt}scYzxho%4*gGF&R!^y)m^m z@GXrTc^2_yp+DuDW8QrLiM@2TDDJckX_S+0qwwwJECio6kNLUj0Gg z!gw|!$u@pTFhsC1Ob2O$?c61{S95@q@};9xvwCXrp%|5LEN5!Z`GPl!1BKYCv*_7M z|5j9i2TzbNqVb*+D zu5XI+~(L6 zdD(cxOKptQ^Zt;q0y@lJt)NsmYZ}%vYKO0Mh#W(>3c~*G0o%0%%0uJ&D3O242sVp* z<}Mj=-a9pR1bv+tqc1V;qD(9z=?KBquNk6jgzl~}@dYeY|AU@>eSF!f(#GN5R1)EA z{-OAf-n^BXkWC@x&DeX%B#S#y*lF@nbgd;Q9N#V}zkvqN&PWySj-rH8+-vM5mL*Qd z;C=Sr=+gL`7v`dHQ*oc1=DgMZ&WBAEr>-@yKzpO5U#-=mB5|uAcKO_W7>3@)Pw(?Q z2kW&z1gze!a6ZXJ zZAu!!T1vXDPCXt#V_QnRWPdL=g<>|;Sc?1~Lyws{?FW-)-XI(PFZSL$ zsL8xqm3+q z3W7LA23Bd4c-%9C@N2fkU_Qe0EBKYpe5Vk1jTiAP_7@Q!uz{naDjHQM*h25XEHVqy z;9E2Izt$2RmA`wZ-bEW-ce%7rL&b<(Bf6W;AvaI4emOjF7;~e!uge{GLiBYd_>{9o z(LfTOoE8fF)tG6`>fg8i7tNLL@~e2oef6uJVcG|@@c!?xdc)O_4=N`bc>6D7gm*e0 zwM>Mnoy>>5v)^;H_i(qLTaVzoY*u`b8H(RlYg%zyRr>Gsmq*9%&|d^W^#zK%%D=`a z*4`TRBx8rmy50a<*BI=9L^Bw%P5Dvfk!HJB5`L2*JpO^>#9+;%1Pq2onD+hJPrHa! z65Lx<`lxr?$~n?H+6$_sRT0$2O58-~IaEk5% zWDRyzeW;kpcj-O`zDnv=g;lA4GMRs?$SqGed1eu1oVk4wb@SW5iw;~{=Y(~N_Lcu; z8SS4yBB5IyLn%?kl0i~`8~o>YCJz$2O@z?T>C)fi<+aL363KTtCQQSJaa5jThi-q; zeg=FxamNHMJ;zu)hq4^UJ-G}^ER$%9jHSYsXI#!TaHH>jQZ&WpdAI!gHkxK^4#z#z zX4{nn28{M5{SLJipv`0txrPeYbNuZ~cSV2GR#iLkzB9_b0R2z$k~Wns_%HOF@`pK^ zd~-5ExjnW0U-Q<9lE+|<9AS?KcA@O=XsBj5GZqg5tf0MGT!fme+{mGS+XP&7~e|1DMpD2%BX1)s&HXqLE68r#gzc?r4*29cry&ll45G4{9 z-LVym(=Mvw;D4Au|2;wde@z6cpAvSmN{?z-@AnQoNK+?16`c8-_T^nLp4)z1eePG; zE$)g@1-dP>Oa3~+Yfp#Ca2#MT1!m17zCeApd0rqnvktX+f_E36_*;TnHJ%qBe_acY zInDDn0bsOR>$rt_i$DJ4+Qz(#+`hOF|6`-@e&4x+S|S0GbJ~L@FH;y@)5xU!`W1hZ z2Ruje2CubVJG;6*8F22@gk#8BWw<(;VLpe_2OuJ)#%DjEf0Wzvo6P};`zf_#jnLMF zGn7i+)8`e}J~X=mw02yaQ(EVR1Js=?aWd>Dsm9v_BYL9Qek{Goe<9oYc%2o@~$M{G2WG=1E-P8n086SK3DF<*=}b%&`p&_{<7w}WdyPe z+0dfNK9py+y#|~IX3`o{%lvIMFJ3a`S7qnyUXC+>*(vyt)~$jmrporrYdJ{^k7Y6s z0Slk-e5d2*?>`vV{aNxMUi}%h@-r(f8JeybW8UuCPbO}XzJR*Kybap3drwQU%Q*^P zS@ith^@WRi#U{UL)F?m1Q8oJM75$i-^FJlj0j>a#e1Z%%zW>t=vXeUUEqTJFx_Y0A0@>8U3uc0pZd3n+2n)|Tz1igOTW; z72TX86B598r?oghO)lb;v%dFF#X|hUG{OeP#7fjj3^(>Apf+j_-$XOvqdptJm9P&yt6Nwj$o%*+e}a@YsvwG%wsJuMK!h3iuS< zheHkZ zuLa5KBe&3C)0AZOQ%UDo@vY=G=qa*hkcfmN>BydHD$t)4?P;CzsWh(^y}RBvJbgjR zcF|kc3|eOGl!3Hv>ZbHDm)XYr$jU-aT`u|-i`j21*XEOd5pKu8Gig`8xlU~SYSR&y z^ZKu(=~VJpXvdmv3+C{jz*}-XfwpQ^iBuWyW8yMW-kEqHWkvI5w>0jryCwU_wD&FN zTqm-4x|#xmfE7PcrFYVN0`717wsaJo?Qtq zA&wE>k6wcS9B4@)d4?KS4&X&$W)o}2{5#h?$rjBP3t*-{M2Do>^HT4Opi;V!SxA-Tf;`EuJ0tuywbi#pUvd8JN$;68PAL?HhgFkDz z-cck6anAp>HiI(wyhURY2>A-W&(q(Gnnp}Cebdy1|5vez|IM}Zf7D;jHl}ahA!P(H zGQ(P}@xm*qb`$52n7<_#{x(*5?fRBjqIoW}X{k2>U+-=|X!5xiU47wo+M4E>IUg+< zxvl$|hUTV0?{dF&n#{Y8g$^(il%@t%)TXp=i~d@Tco)7Ag@S`N;B?1|7gd zX5<@_)%xuB6m88m2m8t^;(g?LiD#7ld@CMi29c-7ko-Z}R>Bhgy5VKIa{UYVd4|&J zDCz@pR~rj;lpJ0p(TZlm&T4AJ^3wVj>-Qg2Y2DY`KVZN|R%o)JUhAG&nVW6hcRH3OH`6W>zVFEp8*`@qHQ%Z7R*;TI5`S>*n!ka0#rz6SpMTtSa!vh*bc6D> z9tNC8!Su~W+}?+;`xojEESV;AJ;D2eNwe8B&sY5>Jj}C-r_`!u<#?(5uSVWa8fvFQ zpS)$a*IP}p?2z@8GPo6al5)#|3s=SCM`JWm|Hg$~DTUu*rA3QK>GrYhpSyLNi@EhSSKOSZks>o1YptQ+gkW_*5x z=6!o?zTqV>iy=h)xL(9N*C5S$r#6#DoSh7B=e|cfF6yfo|6&#lh`*uTTs1<2Rv%O) z7k-hd^w<4GWy#C550XuXT~D4F0^Sn5n@T-_E-rJGP6C50w*7^@tl6(y!Tm z&P@9X-$ALv>|v@q(5D|CG?M#$*KXdOLD9dt_MLLs{G-J4Ip!kmUmB&Olbe3fM4|Wx z%A4!Z-9rVGiS(pu@ak<*@e1bgQ`^rp=DQQlLX_vS$p^IaGO&vY+)#8(d57t(E7!Jv z`J22>pbVK>bnUgE9|rQ3hn|~giu~74u8uMFMF)N&En^Hsc_!^9C<`MQUim{i{-msk zm-(mDda>Pt9+~x5$InddQ>m*G{cQ&U9M_Rnmlbj8`ZIilxk~fm_SU-ZMKlb)5u@ts5-zOz@GJ;r>tf{YLCFlI z=hlfqO2=io>q=~9>ZGqICr)#iHJ1G1S~{gUG!-+yC^uB;Q{G#yOB zZ+SOp>Nn*jsVazT>7G|b!iQsoDuOkI*o@U|_ywwZzlsiufo zu=z31uQqNmDSHWXdSsiam{jxGqDr~PIEh9`!OU5|m^B=9_?^|WS(ALm^{qScEeKMb{g!LBs~4_$ZUU}4#l6|TP<6wc`OfI_mx<;RSGld zExjy(NRIcQ0BK_Y715ghr}qu1TRF_KdceA`YLG;no3r&t+~7d4u2JI!@#mnn&EYz5 z=qmBiMdH~o8?sD%#B6^<`-h@zmWNDI*-Mgm-V&vxwbKF*jOqs1-H%E$dcrYg+v1xXkVk@B~hE z-W{976CYRQ)Sc`8Y=LwG8alvI5bHDRyRJORj&XAyIs}u#BmBxnagM&WxD5!9s)2|y zcjN^NR`ek&xg(jbL8X1OR;6DGXX9AT1lNJKW(J6DEvl}BL?xectZ=MxxS`k)oy^s~Fwrm5`p zO@5U@mQxOCv5}>uji&RrKh*7vanBiYN~IVy)j!)xjdFa~{;9~WsjECAeEGFi?Mqt8 zBq|fcEPhykJ|anrNJY`dCyLunN4mzhzx)&h$h~!>rT{IWhlkzBKvgo_tM(RIk%?^q zXI~^-xSSxJ_TFUohi4t#DlZdz6yzD1NI%6c96fM@ilca_$*^Nn&Tm@hbd+(Jx|G?_ z_i{v^wO{MQl1K3PwQxOC_caha4DNWuEsjD-_Rq|01j(ldD!@rl>!|}ammy(r7!|C3 zt1LWLYO4JFv+J z^Vq|5ME?#wOsb#(yP7)x$$TpDWdfiweAe05B&Up19upkL(q*G*2>msyI{y?uRpVSI zP@>yl>sTK+RXtxi8o?}fRdEN+l&@;#2Y}7qEth_!RKFcFrS`aT1Y^W%U7<`E8&m>Wb>M_SZ-uEkk|Gw&iDt#7$~kc!GHZk#SycLKfZ0!f6|Q| zDuV?{24BsWjF=C`pA}y=13{hu%<6cR^kd35Pp$xX)<~1NsbjAM*>-Ur&7%B=HCZwF zIx*Lrmd;aK(?)B}lc0N*s+s~9OQ|+{DuTNyDl=;DMkrWXqlzdnRe!LDp>kHMLmyLO znRiR|+*OWl0A=*I>joq7pvpWD+>=#HdKRj5+}VxN>gqteZ` zY2^e`(N~fi22y$1qAezWi-HO5*f{uo$VB3Cx6N>x^c{vkF_nLTA}B@tIuXZk{Z(H? zJ~pozNt3`R`|p=-2@Fd9n2U9xi0Gv-=s_dr-7#t26vI>Z_t*T5M-61!HN}XlF$`bd z6pE1DN~0;ydqAXI)&ocq4gfj7JlVML3)S(;SoiiLVBChOV$ux%b1gO&QK5f~L&vf;xWvHj=U@zmJA~D4Ci)$wuw;n>=2>dg^${>KO ze#ZRqJFIeKy5z3XI1d^;dQ`StHiDf{e;fjLIb;oN9|($#XM*Tr1+|l0;SZxjm21Q; z!rD^b+z08n;I&6{*Q0PZCS-4mIYAtOYi@!2K#8>u77x}fI*Lk=Bv~QP3t0^WV&t_UI1kF( zr;WSwE&V0Db-~M7d`^t{@4Lz3TTb-Exndg!uPIA*6doAw7KZ^vt;LLRB(4^02_t3D zBAj_J-3zH4xHw{g^{!PfkTH$enp6d8MgXNFnb-7Ft9*Lg*D1P2IS83| z@WAQuqEcaN_pzF3KQV%; zPgdLN$CXbnHt#qlIT-AR)s>*a2i>+4J<_|nY+6eBJ_b#aZw@}hf$SIwYjnMCrVCsD z20m^v7H?Yq(KUDkuydqtDxT>vnTVZ(U0i7T;&-q2>5Eaov(;ckM7*FA-_R0OKUd$3 zN-M1uo4z_H+YgMsZkBEdNfRo{AfSQD)&WXo&oP5Ij_0hrZyhR|%66UpgHwzZ#?E_8 z3>cfEGDMZ=-iMO=zv#-uFMdm?ZfKG{1#BsW#!0ss)&yDIPh4OY90fuIdX4z_VS=++ z7z3meBfb7;?)R2&4GPJp?zcbVAgR{kWVUh|T#0GI5VuBtZI}pyz%@e9a@KYAnk98N zDm=d$8KQi*T+k{APs-ctxt3_uw2ES*xGR;!tBqMDnL9~Let864eYapj^<~kXT>ynI zFIdIo)Hm#q*sz0rou(!@?>-{aODD$s`&XujK|Y89^P})X+wt(?N&s#&Fq38zNl!|O7x5ceSQrS$FY6~oXSER77lAXBo4r>c; z2($b+9|0O}aQ+k=Aio(pw3}Gf*EAmj$bYw7r0ZF7>b@uR@8WkpEw;P)^WikIwVjY_ zN2s!}kfuV5KTj`oVpCbGzMt%2mK%Et$5x5A&zbUib-{?h#1k@7K5F%^7C80hM9tFV z3hofd#4HtOL&a4AyIh0kD>KbFO=log=Z$SFNIV5UFT&iDNPI>~pxyN}ZKiL;lg0Go z>^O#FX6Dwdc_L3l;x)za8@?i>yEwDB<bYmf<84F;~zU8^~B->TCaUG9Ccr)OdM#N?s@BSJ@sW0H3`^z z6MqgJu$CQcxBiN`^O8J-k^sZRWe;q6Y!)6Y5aZQ}FA~V1@4FC;w2g8OpFLEY3OT zvtu&*hJjP;SOzPp_<(fcQjQC8-i9rc!#0VNa&vFpC8~UGbeMv6t@+2%tF%hg>2;O| zv~=BNpAK+S8BHE^oAGzAXWI#(pTi~dE`^i6KDA8MT=i8mGj7kv0z#X>6NFrz(s#BF z-m9cFUlGk%50_r(Dd;zG%{k;+JATz>eQ`5LojARG26!p&5%n>KQnpea;>byEuM4E* zEh{EU!pb+%g`DkPyyN@N-78E{Kb?jThrX{Rl7mU;#uA`vK71sGtzc_H$JO@96*)6ECa~4@c=*gu)Rm-> z2}f2QR&lj_nY7g2LXQNq(VYWP2P>?5;XgddxAngejz%c_!v8A7i^Jzn=7wEM@23O_ zhII|{(833vaBU%VH5+=Kfoj<*MUC%g;dd3YjGnEp>d^f1sw%=(u0dEW{I(YOX!x4) zP(`^*^J-4Zj5K5?F&I26>J zvKTAB$23FP?rI=S7E-aw&RpwJ^yK-t7Ln7;O7P5T>)?8;P1^F!ITw=f+d?@6SM{^p z{3-zZtFgYh+Pf~+jJhnE-e{zohYK-UX!x61f4ih;WHmQm8E@7qB)>Z%%geik={GWb znqexbFk~(#CFw*syk(Nx9Uf&D?%Hp8z_c-|{vprcZ9+8MKqNSm4s%>@OK>bbTVcY{ z!4}T@d9f3{f~o$O4zF{|?6A1{)bl-XN4f=^x(O`C+Zu>RM%`PF`pPb))X8^1R2Iqr zlJN7i2^m{>U%w&X-TGFx+K;9S0n}L*k_Atn4EmM^R_Fta#cSuOi%sD}rT48(TgUv$ zlU$?!n!}-Az#m&1nT3Zv|FEBO)nnmyBqBHuvd7=CG}0tRb_o=-)*;ySIFS0(%4DEt zcaa5%HMus=kB4J(-gG|0q=Iz}(xeZDg**Fkw{CqNajf&gO-@8A0!saBw>D4nix&)g zJOd^ot`JnuJ(2-MX{TDVS)M6z3$>*d&ZgoXrVTXc@VS;L8S6D(c4s1SkpF1Pp$wFg zF2^5qu-(%fmWyfv8N z?&Cb-6bm2ufy#9vLYW9*iFz;_qpIvb4pK!k?pAJzdAf7ELohLRjcs==xn1I141i(7 zt0#lWs;g`VBubWxF~WK|+u2-*K#@z1l4eUg3C4MQeHRdc;|T*YNhT*%vUYC+TkL_J zos<}YMyd-~*DnKLo2R_3!e^&uRDEv*XEW!Il=x_JO$T&5J|Vb3D1RB%A(X9|=N=kv ztKRzT@FB^R4$iaZ`L6B7&ecRy^<_u#n;c$8!gWcbScgV+C1}er4|ZtJ7iCMlnvnI z)#R%_9Lr*92CDz;kb|^XJn5Bj-u)RgaAm007ky!zQqgJH3f)G1V<#RU5V-pV>r96{ zN@G#Nq+jfst#xf^x1e_|ZPh0k>ag5kj03y))t);?`{ikb=9TU^7*dgaqsq5}3L?Lx;dxFKg%3d&V2hgdObpB!IUWAf^Y}gz~47RW&Zdhxw>311vvg%x2ftS8P!|FSq%uT0_ zJr&bru8I4IBT$i+qV(`#kMuHLC!mm^W+dY#opOhjs-3ZNEr{?q)WxZa#dT0yLS^b+?U95>G$Q3HPA|Z; zUr$#SHDxY0on7keg(uh5cYix$PmcHu+q{f{BYE6R4+4G6+}3IRap=lr#YkC+8=apH z3x}#^E?{wEM_XyD!qUMODc z=+i1ZT|(9Oiaa7TWM>O!U%UF}cBCAL_8+^IVankt{J^TUHwozFTd~4czpRoL`vT^w zIEb1|9;$x9PYK=z306l|Jnxq5uXGiitEmsXlpMsXKT;x&0JjOlreLLG&zA4`6~H~m z)$J`iv{Jt>0Y9#ex?1da@P06iNoktn_{_2$P4J?)maXflA9eZ>Yq>-ATT+4>p1&A! zW%YZR^l$M{1IbPmqPogc)h7NU(}iBzbacn<(YPp*4eAukz6jlOklGf(8-pEkgxEsxb^H?WGo--MMmoZ-gsa zXC(P;Uc$8-=#a$b^G->Q$-^&wfEl}zxD!zc_@C*RRO!SD?~B(suwHZ`si&DYyN=|`fu^Y6C8K}2glf@%6rY9LR9z)^HMB1)k_qMmTP`)mmjKF*x*MU!6 z@_hyiiuwKRA5A4>d*vVfU>@$QiOZ1|`5j=NqM4?04Q99;4wS)$Ije-ShV01w7z3v0 zo*OnrP~Wcg24zJ`Z%CTEG-0cZ^g}%#JmcUVH_wJGr?rq1t`A*RJua_#I+vnD_s}ug z5yP^IiF_N~EJ7u$&buzvWT|N1SE7$ESMgouzQm(33J3_wXQP7S;Mp~j#%^f~V=Mbo z%s>~8RD3Ak!~w%9s@g!eI=I(s+MAz0aD3Pnz;{Cl^} zt#dJOjPzv!H8RMN_aq||mxSkyA6cFI`NeENW07pw_hdvJ>&^DHw8DdIE~Q_k8Y9s$ zOSex}8yi>$Yr=#vfj;LiQxthw9&P33=VZcA43!+F&vXuTgw!#g0sXv4#E1k&%`y6wlf(@?)Nr)Y#BKch@ZeoJF~DQY zhPjfd8Kmbo<~(%SC=y?9Ug^!FViCfb2h}acc_H(c(4r6b*7jus)o~}}XR(6~a$zTK z1$UAFOW+en^*|n#X9>k)_RsUA=!fARYm?LWfD0@LhD=>SnS06_p8*TU=KQHkU#eDLy0JhDXN*+!J{OD05&2 z>5(4QGHHa}o6S%ret4PDF?;po)YT$N_J)V*Yg2zP^{~nzbBS)#Zx=Ral1jN7_4>2+ zz6!K19*b(3Q%T=HAIfS7A9~=o00C!Ny{_w~3I{?MBwQsrQF-=RkIoLtwi+G1Q0uUJeR_=E zYt}sdau)m=RW=u7*k^pCx_T?JjhVN=Y_r@5CZ#Fv4Aq$t7wnZ#vMPjHb1ZF6APaXN zFB55v-~z115QQSoj@t=TbOg1XLpDC-Pgx-!;nw+vzQ4;;D;1(+SXK8^;&*13+`YP@ z4ipyEnY(EIi`2)q*RyLnokk``$hC7-Q*SLoM()puucbezG)Z+6Y&QDA4{7g0Ltaby z_Q{Ci&X|PXt1%ote{U{0S-zA4_DHEoyBO<>1aVjU?j%9x@3BDEU{0|s^xhCzR{IH$ zwsa$}t17FM4(@B~y5$SZ_4`{vZ|s&o+=KN@Z}Hse(y}_tPfHs4ydmsO?^7SM0;W|v zUr~Ez;xQ49t)e>&8q|KkN3fLkPYS_L*Q^^+b+XD-)385# zv&U<6JtTk$fKraz%^pp@fGuo1Pk)vZL+9QpH@l+T1e~;kV?~FOXR6;Bw%(net68l} zIhIw!W=6LN1&6VAFQZlI?FAhIwc@s;qz3mX{QNWTnT88?>yJ*f)?SIp8Vc?_yZpw_ z-)H3wx_7Q`!qlRv`Hw!NzGtTGO0#OAwHNeBYnIV>zS1;8XQC)sW^o^jOa}kC@Un%D z`n?)T<1r89kAmO0@S8JAVQluW(3xp&fO2vmzX~rl#lNecu8=H%Mm8OJqMo0dx0`+h z+_kj=jqA>sg8zD1CE+`@xe>HXs5+UxxIX`p7x^W9$`uWdO_H-bqc`-rI4Mum8iRQp z$0Xavu@){Qj-=V#zwjM4jdp@fe7*pGl|(it=@HP3x6606??6uap*ILO>&7`HCl`=l!-(YvaT;0}yGg zgLYMqV+DHkNhgR82?x0As_isshPZ8_gsZRBw+-EXvZY61T~a3TI!@#suF-=!u*Jhcg4>P|N)GVTd_ z=V`Z@+roPVbuMMz%6~|pu(d!F2=3c3Tw<=V=g#6haaeIe%D06KU{q>>h;rz+T95mY zbWZKIE8{LL7w83v)-dE_cX{~}PQpa{4Imn+SR4z^^Z4lS>8hlSa?z)_*m*Jg*_KjF zGvUB+bIslEDyg~Y+JucohCF96r{x^o5HvU0SB8`iy~h2W*$ zXcaM=Ua;G9u7e_&HGO@l+e$ejj*lp_|DXrj&05@lBZI^zF=q?#(lt~tgnT#@dbEMzpVvU(A%JW zFy%vj9VH>ZfV~{Oev)FWwpL z6Y0rDa;O~I-y@pT>1b82wxMyJ=*Lbk{J6Y^@3KM;j51U19V3_kUW_BIn33qWhug8G zW>L#EY-*};-iCMvfUSBM03v#i2K)0KHq+S|eugGapD+8YP06li3Lu~*t=4#+flr`M zrM_;Hq*{hWU!c!fm>_aCYg0MUX6u6+of8?^zlGF^TxOn~%mpmlq<4{WnBTBgrcsQR zy?0@ZL-apq^7L$MO`u&S;|+p3uvztltI%)+ZY>C?2GCr;LN^}^_$^kxZVIZnxbm$| zKgiTE9~nHs{c2=Pp^Udwb%C+sFnqqgEA*0&Q=5Fg&d)3B))q{woV=<{k4VVfXiJ_9 zpnL9kLK4$u^aV~2E>EW_cg0bxpFpj#wFviOCk5Zt!M5;4nQ(l=MHz}rT%*PVwK*A{ z2aKA+Z<%6RL%zNotjRvfN-#Jg?J_S_8yhqwor8e#aey{(gP6`e1|l!B70#SZAn zjNB5;D};?BG7$k%lI6;DJi&&|B{ixUoqGchAN)cGE6sBF1z_>n>S{~ z=&y1Aj{S0-J@swu;zN-iwhe_=kC+_G%AreWviQZ1A!uOYs(%B-bKIbrSXS?1N|o}e zrxN1qK_sr&Y#4jhQ_!(J(@?>V!urRCTosf@hfcq#z7L&C3a~-;*JzjL$2b$Bm9iU!RZW@cFQ);kv@#}@A0L}_ z#C;a`JTvifbemglF)OQCzbpf&QpX=w4w@prFatAkkNb!AUJ3hgfO%*m95`D`2(;aa z#B_myWmQ>Z(kE7QjlaE%UdsGrY7abjZpSM;TR8~F+BK^5DZeKN+u79F<%0ba)4t24Ze5JXAM>M8ms5*aXrrmflG1ES^ui) zIyH<|p=SIt@$d!t6y6eZ5;wH_3dAI~vnfxxrGrzgbt&_B;o#@R`3;^b0CCJV0vkL( z1HpMoPu&hX>!p*s?)bZ~CN-v6eQPJSMIafqDf9(x)*(ei4wp;r$VlS;k}(r-?vpN* z_%ppZs#LfUKN(M}^9y;+bt11jgjmM&{_&ytd6?2J96y5$p zqb1@6ozm|b?>inz)wVGjq%7;l(dWW#Cj{+J#B!eJ-^OiD?T@kzG|jyR<>GgBw)RzH zen1E%2`6&Osg0d)G^019j1SwwMpBh9YbThmI%{~_r2U_&Rfi#*OsY?a8nN1wAD(9a zN3~AdX({4#U*9uLWtzo|=iEZ6Z-6uKgfw_~X=|qQsOG)no z4C+x5E7Yj#p8FVAn0Q$~&(otwz^bnPwOEfdxccseU!(_ZMvA9+&!2RBw~+Xdn9!d$ zWX8kLe~T^?!Q)PjNmkN41rC_6b!u)#$;7j9kjYW^>=)qku4&>H5S?3iM8eYH9-PW^ zLH9DRe23kKcR7w?exysW%#5}hd_;tLq%m@|^l{d5kF$r_1+u%7A4*)94lFX?crUkA z-Blp>7$`Jkru?bgOl=_ql`C=hJsaTxDT5j1_(NlG34k-G-^mfecf#I1mzUcmcRg#6 zTtNHV5$DbuG;-`LP_xdhf#}1hHrF%bBp1wdyKi2#j~t0y%N5l;P3&UmWS7oTjd1m{ zvd5uARYHNx?<9L9qVEGaO4lPGJ%1uR_$atVw{ZQFE3+m~*Ogg-&53U=ArwpGm7EE8 z=-Mad!1Z_jaRirF0}ls_?c|ptX}V^RzsHgOxfIjXF1IeOw6toD$Pi35A&j%yiY(kd z4alG^L&q(|rAEGHtD_cH3qx=AS6tCcXp!FyFPU1kZK%X_{XmsAoD#ZC3wFrI3TA3v5YVR-gVGSiJZfzJxg+pSNRk4DJ!DtS^Z2f+)J& zaARfUQ(#Fig4L53p$ED&2G&hdB;^$*3^MNWE>OJAKKUvc!Crv7$IPGW*$P#+x}y8nkUmCfE%KQax94 z>q031k<~y%^Gan2erGUWH9mfqo*FUeS=JZ0k5qR6D43WzNpD6;2AmD?zbqN2h`zkZ zyns{nFPw)Ypw%P6^gr8j}T{2LP2( z;6=72P&S1#Gxr?zDX&?~Zh^EcAYMOpT(kp4B!?`D9y^!z_DQYE?58x;6axIWKS7uA zChDm&1}7%>GPcUW6_HYpA=jL3{6+Pg}U(8cUfnm<{B83mw8nBuIijq@t4+HLwqU<5nzy|s52*tu9)I*xr(`AQo zd%5g|1-(23H@aolg)Byf6DwwH7#4T#P^z4>CY~$V$fPug#+}V7y13hRk-V``20Ee_ zzXqBJL8&!){%9%ezOei{*AR*s7{7SD^i(oHe7*lis{#jYaZLh8H3hHF68SUFYm+VL z;<64q2mn)eR85|{ht=>&EyDB;6^r^&`)rv2WXS!@(ynm9((R)CW{AOpI$yl{3^u$J z4@?O-LJh8){g|O;l%tS!nYc9fpQqY5aNctz2{@60c}X!G5s|DUH%D@RbT)hSp=I15 zY&hppFi)XU74lp7nZu>(XO}=JynyB#jJqt4j7vwLWHCpD9V}lsSLDDr==uzr{Bb@) zS$b~Vkg1Dt{sn5QA?jR|G-HpD=I2k{S>?KSD3D;^WL*J9NgISFRR_S^%*A)Z7ex>kH zxgmUAoX>A@&T)`^@TN;%k{+*2V(y9*O6s&$CU8##Z74wFLVhl6(LOuLW(;#r6mg^f zYhuB%J1MI1Z);I{X{N!1b?$rFMx#(Zn`n;|6>TYDmcz-=Zza| zrSiz)2^YVVCte<8%jxH^0cMq>*z=4?5N?s}1i3@E1A zN;p{4sU=e4^s{l4sf56U+pK=`$;zA8@_QX$_K1E_{q?QktKgmg)sGSv`Z_ub>jwl&c&2A5NU81hm;jw+K-BN?dP zXc~_0DIYayJ7ZT43Gh4Kf-Au@t}pG^aq51`W>y!9K~1ponq7#A`x9Y{d3lg>RJLuf z9xo!HBUTvdzVLA)k78j~1+mjx(>2C^NCoriOW>D_R}=}6`PrA;DTR_K(-jMAlyMV# zHoOjiQ|Q9IlF6wEi+4BXe8UehO>?0#_6(Bb0IGmkDaZJk--7@e8x84o2 zvt$nrSPk>~qDp9YGJExsQ<1MPsYgfh$o8Isu7*@emUE8>^O*#Y@GU#UabUzj($Lm@;J3R zN!Z7L+p!LZ(FNG7UtNCFGrdm7t609-c-g#x~ zR7=J#k5B0oitJOWxyRDe`*lwW;_fF<8vCsK%ZqK?iW&Tw#PF)Dp%}clGFg0rEoD7F z!myTCnDQv~P)@2%j%s5~VeERg6a7kH65D>Tz~eETK)C!ak#+IZ<$ETwWk+h0YMpU} zqH?F-!za=6LJUpi3#cO1iUL<6IvzFGZDi8@+%3_oP~vVFfm;0ZV=frrMTa)WpDJo| z!UkU*7P}3q@_sJB$B4w?h7)tzVc45EVp1-D>PHY;*KKyN&e$d*kS%ujQ@U9d7)uo z+n`|ZBFnqg?%0JGGxn=vjG=|9$(H@}@CRpPw=d_#{erJ3FgQP*c z>dw%`4_3~FNXbJVp5R>=PBrHEdkfD~yF57gL>yXm6+zLqGUEx+fiXdJ*tS$&uRI|R z93h_U2=t1ipN&gmdVihm2tO4J2^J>SMQ<#np&ay}-h@Y@!mn>crK1TyY3DYrzOv`_ zzJFrHSZsh7)%ypq$2QN$WKF-l$Gd=Dgs>@ZP;#GPXtplJ#amYH$;j*L1q=kMPO|tN ziEF+*!q>eU@#}o~ZQxZ<45dRANW_?-Y)sZ?3q}uNTW(>s$_8HB)H?B3V@KgR8%)wf zW3xgJP>jm@3a-fRyp!K}Ybz?iDk85rUfqMjc#LRsjE@smc10)$Sl}m%fuP#r*9vrV zSGXr<)MsGHFQj&>3+qiJgrU5(H3(X+yzA%SNuy)x39)CJT;+uh&#%lJq;|hihf@XR z_gFZfnYsO<&D2^S(zKN|X1D%c><8#8uqg6CPbET!8|^{|HOz9^j4#$+`NH}Ix~^pQ zBaw8mEdE}JQlyM{wT8$My)g-;s774r1SF}HrlYv%Q(HUni_4B2QQ*?hakel7i}~`* zC!!RdRc}TK_OT&$PzExORzk|yRv{{94krLV6kwZv_0VPF(FlAfI==G)uX>9I-div9 zQe}`Y7U31a534vA`uR-iD6it;ncCK=F=74`wvAMe5gngd*^$Qb23ax~Y06*kU{kCM@0 z1@1ix%V7@G8}feuH9*S0Qma+_|HyjtaH#(O|6d|fq|KJHXP13n?z8V>##X5$St4np zMMX&^ZAjU&CaI)dLQExPNh(S!txDRFh`#f=uGgIRb^U&S%{9z9=ea*0k2!O0w=0zP z6`<%f8Jb0(hxs?>&!_Vni04XNQ=6ArRBVE?w#Pa_aTw^QG_wkRc7Zi?ih9?`6^tt{ zpN&s$gIibs&D}l2VBbzMKNI&D{QAY;Pdq7s&E8Wi`5%^GK9JR}{oD=PhzC`9N|vc7xO&6o1vnEo!BZK4b3NrP!8 z8p}Xx-s(Hn(Fsy~&-)aA9gq@^U(8){8Qe9iFK$`27i=}hF%#<-phj)2So+x)F6Or~ zqE8|pLL5(K+pE|Q!>41!=+umT z#B(}=Sxq+&-gyD?A8&Q1wj9{MSRxf;n+>wkwCtV}KZ)mVJniG+CR`W5VNS;F$hWUR z4U((8lK2WN#r)R=Mhe992f8|Grw&Xr0y*Q(k+T&tp#Nol3^*tcyTgE&qy}> zTe=$#*MI(-UnOn_56cx-Vie&Oe(WE+bs5Z87Pc<`YzU5u)WLuI#QBlz0%|gIAMChc z%9~4@L7sVW!82!D;`sw^maVPg z_@Z=f;sU>H@T;CZx6XF~_h9MEFCE38N2cuk5@Sa^AEED>{p)Tv8N4+{oPS0~A-MYX zQ`uA_FmFy;YgOh0zW<5$M-7c(7BKr1-B1H`OS5Y7a;w*-mNpRd7sx@X=-JIv9-gCcgXI2dd#juUYL5V6${eG;K@3k;_ghxv2}m zp2nz`;(eMlG;2?joH7{Y+*=tsWSJ%k3IITP+7`{uf*S#=n?d;>b%`VeQfPQQh&Q)psx+rL}CMIl*J#LG;aK%5|cU z?mV}%+ll8csM=nef2`1kWq*oU^b_zMaDgLoYF=3{rje{Cy|6bJM@<{98k;B>g2h?R9sz6;Bs zSMUE!5`k^RzCS@A-bXz5?;Z(lfJ<5&U8XJ<^rUV#R%^OAUy3p?pic;9i0cpNl(+ujZx2ilvXg1>$@VfD&ISMcsFYz7^k=GSDx za!DAcOQr~JN3CaU$`WnzF`u0-VzYP>EmvzsMT!X-TnS5ty zAxO_|1#R{60{MIF*Bd&@AY}wCw0+HmL*PHf@0H_46E;15a-&R~cWl~uq@bz~dRmk8 zP6l?sUZ>=zvHxt)KP;ndz50>(U8r+>!tR#-2-uo_d0jH=CKyLfE%AKr4^p)ESA~<} z^+KiL(EcS=V9ZgrYyT?Fw;p+9JlG&U?p)htDSH)Qrqt6@wiBTD>h`T?is#{;+IU8K z`ecx~@4mfs_$yNMTfhk#lZVZm@S3Fg*TD{1yKvJ%SupZ48V}}*<2ZraC95At|Mz>* z-$xuASGvG0^0klbGk|xZLw#SX85qVl`SnJhfRiz@hJr|VD5MOou@8lXd~W24y%m`H z{kmFNTPN%nx2Lm2!J^4st#e*13k21oay#2fJm2of)b3q08MO6A7i9iD25X^zeqwhE zDE6NjgX`ab^1yBe?AT?S6B`N%GXF;Gt*x}L*H1;hGVAhkjYj1Y~eJ*)b`lk-^Wr1~AKny$1g zp9V0CBb^utF~oDvf;}qtJ@s=TAZ<J;oWW4<5QFMXpduWu2@ zgDUe2v(|v7qG~{IQ3;64ATGWCHOd_oqaH<8WitO+kalYPyyz<)W|Dudm(75TE5TJ1Uzr=&h`04 zU>VL!B^z~sU;9)kWx)tI?G_d{#(f00{^ud1GXOXJ+w47KyTHv{bzfjH55n5^*n|Vy zz?;)@)OWuHIIZffnW63C@jB{ja#;pK1Ap{1tRtSsbvE*K=v*R>W7kbS+#KsD-q+MU z$Zp@j@EvWA`pyQgZOt2*N!sG_ILxwAEr;i@|D(wvN5KsYdmjE-TyI|7bdTn8koOx( z66K;80onf5I@=;J3HQ2QMW`p+h_$396A^xax2d;9@} zvE{Nq#PgnGeXu9@TonYNZ0_=0alT!_e4!dGjyFOku@`&vLTLYb!`8PMppAyOm)C5E zr&*Hr{-`tvz4I0pFIotexuLC*OTRe3b?l*&9)p{f_NnZ+EF6UF=Dgk(Ftqr6b2l z(7JERuT6Xhw{N!Yk;>b_p4VS>&+acMUVPd7_)s9>oYLhMN6_C>vMyw2f|X6Zwn1SM z@M+o7nHfcJ_K{0@u2d|JhaK)U=G_JL5an2+V<={?Jbhy`^E-GJAdi49Z!7 zH0YhU@c2hK+qJS!Pv^r-+3)Y7Gg6>>3*M`SM8SUJhUhX+TQD|8f5OpMpg+lO9M>oS zx%_yS=Ba*=Iy{FC_PqtQ@#c=CfFUrwNuoZ7V6fMvbuEnTf&TJdr+Isy!Qu5l@0=Px zFnV$idY(`QyKM4_(ufG)#P!Wx6LyN@xfi=l&Bg29E5Gv*BmST~{3IIE*bi%-QB2{a zU@-of+>TV|i{sXpGk5qs0fS1dVV-;nQh-V7yYxh`e({|QWvsydurIkRWeluoqbZ|* zf52#9oG6z|276q{tRr?Oz_ht2muz+mY|q5#dB_EGPvdw6b|;(y>Xr_SrNPx9`_PR0 zo51k!a#U?@0y%cokJzXx@Yg6bDThaZNn_-Q4!i|>*mR5>69i7erk>!|i*TH$tUo@* z1GEmbFRvBngTAt<7mWwOFnnF>)+MfAxXO@Y`&BTk7EJ5YWyAeZ`;Au0LYTQPYDv3g z5Bi366YrjXEFM2{iYd*Z;0mstId1SC?o7AZ*$O4FRo?jBBd8wS!|peiU-<*}dq@3I zk27E`&q_9{-2%31$hvLJ60q((WW=U&z}`CfZCr|Yp1N7E`wpLjdtSl1)j{ICby@3B ztdkJ*b7t3dtowCdII)eyS3PnZ4n8Wfd# zQ^L9`L3(oT`RiHR!Fp#$+qJL|lm|WM>II5=jFad zjd&iJA!{^$f*=L7`<8ka2H%0<;2pw}-vxIP<65k6Kj@^d8+F#ifxT$r{7X;ofWGPL z=_O$+K;x&cSh%PLl)b`_UaSb>d2MRWy}Vlae0a9zoig7U0p7HoD~_6-1ONMJ+pZ^P zLHp@`@P(BHc-fkJ;tfr}N&aHel^F=GvmNpmDmGkla~b-@U~q;OkV1dF$20lI==@HnFu?=`LABv>e2 z+28}(6VK(&Go8VEMymRfQ~-wq6O%Ne`oWB`T2ip405;6YDJPwjL7|n8pH;~LX}Fd# z$+roN#gXS8Hq3zVYURW9z?q;=Y`#5oA_CkvhSSNjy5KHyY~8j_JdPhQj~TU31N%`? zO2eyt;O*Wz{S#T72h^~_mu)Tsl%r3v}84#&` zGMo4_Bv53%{_^cT`X!)N8~sdOQ!b989d5g7ZPn`3kga4y)*B)PsEO&QtHR0R)GJ8(5@sWpz5phq;%czS+ZR z5y>uXle&b$l-0V7;LW(j z@&>+?7fARv1jmOKcExReN-Du=nWO&Y>boLMaoooC96LAy&%6)MnxF>xRl?%)W<#L$ z=RY|+ECW5!&#o8`OM+V?;kJ0+E~-~d6Svcpi=G;m0T3`cax?p{5u6$8>aW4Iqp<{^ zMmZtlz5~Sw^cCHaik{vuTP2;|^FTy!jNm%)Zk5jukI(jNYeK$mCpa>C_uXkz&yg{= z=YEsMyaz)X z`>2I;Asn_{vVygc;LfmmXqu<4`vKDeG{W9<;kQt4bx=SBEEQVSe(v-ax$cPWnK@Pq zo1o~y#H&N#Etb2V>*xS4Z+p+q#m@*{j9|N(>r^lC{7zr?zDuWs;O{V7*3}F;-NS;C zO+|C9bO}z2gomP6&JHU%Z!enN`fZP|{Z{aA6|Ji;ViFt^ubGA+@1M#d zmyzV7uNVD>`;qMokE>h=dFym1Wt|2qp?gop5drMRVy8UMRfYEwLmd3E6?67i*(S)f zVf?d~$LI4m!S>%@)&-Y9xZM1DKWT>#!TXVLV{{(}e%a4yC-^d+x0e?BsI|c?zwcS( zfH?o$Bv|lWIuN|WAHF`WSt-tom(1rLr-DwKo4d2@D;Vb^lifJ$VeJ<5j=kU`*!Kj^ z&p$sV_$v|~i^@37Nm9`(Kq2JmJbk~BPetBR{exp=cB#xKE z_Sc>KZ3eQ=yVxV!Q~t;C`Hv^Vnexn`ks3tskvJ)p_m%&ZiuCxZJb9Bg*guRrbHKEk z_+D91SNw-|kqytYWt@GJBjNp0SXR?1OYoLh`2}3wc`1+A@Bd}08c4x=r(yWwy1Af5 zuWqe;nk_Q)S-<~qu{b`X4^NCWjuOY6=TC>tzXR62+|Or*4#PFn>C?HIZ`n>vs2~H3V0NdP6kV zM$4AqurOX~rZw@hM2_P|>pJ%NLGQ|D8_HfPT!aG;@8ui9?5tyjVa5bdMl7@Hl}2E1 zuR1i+D}>KU(UP5`Aq2NX!i(W;)!0WGF~zLUoT#(WFW|WAA}2XWTAbIa9*SHbo-cAI z_RcvlLBfv_X`WHoY7jdF&SVS0(e*n)_EImG*OC^^$PoQn8vb4=Gk0dxaT*Za)Tx*s{uE?Ohf|cZ%l{+$N6-Gq(1m z4ERh_UTpRtn&9_vcVEfXSgudxEfVgLx5hL>$52~vvebI}UJQf!&ppB>#To3OP5+i{ z8HTVc;nvLi;(jkY_gf})5AnN1C!M=zx97V;=)dS@yIVX+6U^SFoD|0;?AJo+z1!hE zrBUlaNh=&>6*gYJxd}|(jk+PHL^$#1$Y1GL16$#*?yyP6;IpzPyC9SY>fozwI`i*> zw{O+2q5GP!zJ6@mdW#TveaWj>nx_KC)Y>@JoeRNWjUV^iVGyL^M^;S=6<{yaQSlZ< zi1XuRLNC=$@ZZhb^;=416H8JoGhI zX9{HPoDQtNCM9w`Rqgt6JDa2Kehv_;FYo{F7#R`IA{KuE41{3_O@8J|8^Wm+g)2S9ZEsY zZThpIwjOTmWf5W4i{bcETA;wof^Aovn_jJxNEMUr9x!ngDX)6>JhIOWGs{O47g1)w zaUk^Y_Gd!qwl3&=u}KV}uW$-g(rb9W}eB_uCD zuKK3947}W(DI>1-n2j$sceVPV+frs`lwJhSgpNm+A-Y6)-B$Fd$nBuPi_NTlUG)!c zJ2(sD6bE3YXuR#&Q-C&->*Bs}0sN+pB$RHB0gG{a5*D3oJ36eu-md zM}6P8{pSzD`;wN1=iaxlzI$Ny$z&@SEvh?Al5NA>%+V$E#)q)n8c=&K0^I>@njk80&u3gE>cSwgxbUJZ(@?f@wI|_^zpZg;BG7& zhqd7%+mV(2b9d&zG1f9=_@fYdV>e=_gxv+}at7~_eIJa-iGSAYSpz}lul#v>OJQRD z)W2R@949+OdPZg_!2QR@gjG|eK+f3e^)BB640GKs-3MMG&FGy6N4^R~n$v#n(5V*B zBd;e5h9+EuU+{9v`gsZB`p?wN={^l_<4K9Ry<~#t=f->btyVDvo-#Ij0`(Sw)t4T& z>+=oRSgew>-dhEhOXoKBtWWT%{BdYOZ4p>iqQwtDgTYkO8Cx8lK~QU*qHTGT;MRG3 z7;2;RkN}G*(YGh0it{#oX_#{1;CdtS$i=tPAZr<& zP1-sN@`;G69B(;r=4eccSY8Ednd5&*H>@DI;}%dDCIF{F>yp_WV{n{?Ep(ff!Y$O@ z#x`3W^n*7I3WVmM9cc=fnyXdUUAs^-tGFA^`N@x^y~X3^esaFg_bgBwErhc}i$E!+ z4eOYT_mg0iGs_meg5dXo)f2QD;Hi*c-cJ4vW>3ed6}{&0JT|z{Yw1EDbAn~jHf?a- zEBic}zkqzy@bwncqu^?~{td^qNQ%njZ_-4#tMOu)&}YvKla zfF@HR!^>C#mDM^dv*BRa-*P@oXT2migPvpiv`fEEC4QIald$#QW}_D%9XMr_5f={X zzk6a7ylwqO%%^i9R<~mYu>#B z?+NGR5ve3#vupUa#rxs+9De;VWbpH3oXE-)aa?!jioSSX^a#*dGvWCgkh63ueKS{r zw=HBrWT`UjCp?!w`MUvLFArs_`ACD~?X5O9x(k%aZ~lCe7spZ4B0`U)27%$Xddai6 ztKenPwiqZ~0WG-qPw$k~5J*S9J-GWZe65`?Fk34jxcuSzN=ga1<{1M`TMI$1y;aB` z-3Nxz<~*&_LlA!Hv@i7f3a4v7@(0TE;Cxd3!VZnu;4riYS6b{OelO=Yv+kG7-VIpj ztXankZU;Yq%JqpwesI%#TfTTw4A{EIn{vJ$hTuY7gq2Mv9BN!NSbwD9=g_-&Lz)>p zGvyL9{X!-EB{EgfAkS$Ih1aM3bKPct2lK1qx}qaH!8cebHE&Wp!R@o|AemZC*$cKs zN8fzgZ}148rtIQS4#yjJR&#!s!(Q&f(s7?QfZQ~2OM&th91qJXp5)4Q3``#NbV-L zybSiArfvQw7bA`v*5xa{^n%ZV3#MA){EMdiajyK!Yw&i?b&aiIVt%^(6PmD09LG6Q zUvuO^yF2E*eW^PH$?v^mPv3>|n?uyNuQT9%W5)A#rCNfw=v%q9dQx#cn3vwCnr(>y zJz~aN+lkNNmF@ViATkAJZcU2)h2Jj-sM@}U-!h2>!V$Pba z5S$5d)_zkAVYFGosQYzz-3j^e_z@HA&VPIAo|6fFjF2PKcVgdO2nDgMo?|)iIX2=T zclaH=WD1h^kBQrNK|bxciEFlS4njo#Fj-Ju@+@4Bn^TcRU^L0O!cXg`q|Z;HjojYjLCq z+#xCBtjm$`tQgd<``!yd@8!+~JC6{29N}wQ_McEcLev-%_c>;>>)om%FoD&BW9Rn^ve z4uZEqYm4nnx_DgNx%^w&nBX!B{pYJ69=l9%Z+s4o`<&&@fpF#o(;z+Z{I_|x=8d(u zeNQG`YFt_ZZ#VUu%3GGgyX9%k`EFf!)&`799ZrCdA3KsYgCfq0!fgxfmqU;k%gi@e zOmKU=W;MGUkk$k5tkI5!E-HjATmO}GiRWMXspAXdzeBjOYL)&3mbksg?OFP6E5U<= zk&XSP(h9h;TI=qO(ZI~{+qTtdKkTTwKN(ggps&<)$vl1mBp7ez{X^J?0{HWYZ6UXbqc?q?xQ$Y>1J@Ibu*#Gz=VP{UCy0#gPEmFGI zf>ME!hwFNJGvRT6VfN&2?F9G4xpMi7%q`+PT>hVvpyx6?1~yH7)No9k=RR7yoc|Tn z?=GgB1$H1GelY)K{RueO_AcH!CN7s1DP9yb85F;;?1kY{Acd{V*)hBwE_%V&zCY!{ ze)&bM4{0d?uO#riLOw_h25;PU2ZC(%KyQ+3EvOCG7vDIN58H?TuK0vDf*km8pxN6O zB)h3=A4qA!P5Ju0FQpgYKKuIu*8LrD9M#=3vMU%iK5d7;YzqV>-f>7c<00HRqw9@5 zKM;IH(#=rYkbO1;55-A0WTYj$7#@ok?TlUX0`48V7C#vM4$`$7cdY_Hg8WeBe8c!y z;A`be>)RjT9_^)aC*la)*DYrZrpbV0wK2ZodkP%V9y}?WcL|hlfA4O1D~?D1x;3w= z4+SEhf1afE3?%Jopj`)rlvkDG^*B(y=hr4N~H`;OI_`m;dSk?O5Z+qH2)VE%BS6Sq#RMUe1!Qb74=L zT=aC>VxaBs#if^qL5d2v7CxyT9*nmNdn&|v;luNe>31)Kw8Pp#`a&hhXT=?gOsqUY0ya=5B)s+`1i*UkVG$!#eEm&N3%0BUuNuqTZBre za>YuxC+Z#hx%Ls5la^Z2C)tB6{b0$F7rMYylbl-X?I1@4-AF9#1>;*}R(PNcXsgH> z$Cr)=wm$jvIPVo0Cu0p=Tr1(OtXS}^pdIdWiYw++BfXsv@q+{TsDrWC`v_^y@nq9btp zR%grRD#G?oi`mWx$*}(8qTMq`4W@GaH#+sC;OuI;Cynz8WPY<|t&j?rU985mDS=YHi#QHx=!{$C z21~&iw)b;sSfAK>h)EBCsn?cMn?G*{pb4vtBPFkF z@4-0xCx2U-CEUaK^WK{6hV_W?x2uB}fQSPBb415QH7T_8GMKH%744N7k_|_!br@U(QhzNZ}_!q?N@j# zTO#kk)`iK5bHBY``osN`f9G29I%oC$tH(I<9+15K93I=+!p5`U&#-|V?1Nc{{Zu~z zDw+n0N;lyi@4dQZMh_fs$|;~1Dc#yp?R1~;2T zu-|r5;lt}}I4#Ou^ymH$*!o$m8{P69E{Anx13L@hFpokToTUKUC+@V@FZU8$C&_(o zC+4>LJ=P7dYOnkB?16Yacy%+pKRz3_TRnU0y($SFq`lDtw{!irl9Vlgjfu^az3zHP_B%oCNcS z+nv@|L!iXue;;?un&3A}xXnCexfwTUec%nf$vdQMLGZ7=3f=R64TIoGNcb7Nr6tA} zG<*o|w1mSfcpiWG+nloyPP-KOMtTNJe-|8VpcH{O^+crfEM0MqPO z+62anv(>?J6Tmg~;TBF26b0LU5A>E>G;)%L@p8w43?Jh1xAT z;yl1%RY0EtSX++oe0g&}4DxhU$||A=E{9iq!H;d43kdErFSu~x+7xg2Mtx4OYdHoR z{>AO7Kkth7r=;OwxghcR9R=Mc72x{slbw+o2<{i#ne5?qfQxv?sxJyWn|b?ceI*p9Jq*!WZZ6Sa(Tn z^eFfbpI5;z!=rEZPMy3p+MwFDu-5ES1(?^G>G){`pPRAT!tjT?4JgMyNAEdT3c2@}bCmRy!6U!Ya#_#|p~}$7 zn3xq{)oPx|;OK`S@sIm-O#qr@(MJx4oNdM}w-jG`g?ovix z;4Sfbvp4x+#+$7K@0WhDQTpKHB!XK_*_<3{tB?z>-*scBm$L|tu!N)Hl~LxMT_P%WeFyuLOpQW;HCV#tmf$BDV4667mHDI%#+>9}(W3@& z+_PTFNGXxv&dhUuv`wR+6j=4ne(F5~0P=kYdiE1>n1tIc;WbmjwpFgH*M*JntQ(nh z6%^fcRqEAVSe_Fy{@i*7?wuowo844k+i!SB;Zmh|9#t;hksJV)jP=Bdd3y;yw1j`- z!t0Cs+RGp~QvY$WMFyK%Qj{@`~TyMb3XcB^HJdv9BopU{<38Y0MGT04lTL2R;0%~8$A9@Iv7WOFX#!U zfmU7}S|=p}Bic6Vg4GMmxxIDUVA^@``HX#|H`!Xu|PsON@k%>e7C#-yF;(+Qrogv(7AO41g~1C_1PlmTQb=E3$L=vszu`$(x>>ge1}D8XMy5n@qSc$ zY=zXJQ1QC*+9x@}3#^8_T&qX#;5J_=ZE^7d7%Ro~6})*U(l6Y|USd%R`r^~M( z7C`@%jO`2!F7$Sm9!{<)gTtE*<5w>F1iH*$ohk9-;XLW6CTUU&oc{!Exv?_?&ViX% zE&bLK++qn&dgkH4?^$~sc7@v0rye{8(zqLo zjuqYnNk4tj^uA{VzglC4v0wMuO(4y+zUX~Znc$O1ILVXdTn{n~3WWA|%YyYKlc5Hu`K;mdKnHQyS{Rh4Yc{ zfLwi7;K;u}5ygoFH=E&nJjuX*2o^?{pYkThfpY2}MX|6O^wTXezLTcGL+@R+UG64= zOHHwpzJ(KqL60B5DmPO6`3|A<(x53KyO$s9*-j5V9<5v`JzhK?^he{H66SkJIN>6B zr*qn_gLg%G6(;k4X_vscAx*#ILpxa0?;CTv^6Rp%YGt1Ekpe~VS)iQc13NexRE3m) zwAsS*mIDdSOZQnUKh6|Q({64y8C@f?Pv%|SFcM5~tIZA_sQh9(S!8UwLA`FX6l9h1 zXLV<8hqdRB$TKb)&eswev@TeSRL0fIuT-$C>kWR`Rigq>OWo~nrHkk5=f5WthlB)I z+~x@FP;q}fabNjA4mIY@{?`^3*h_HFr*^5e)ORR@PL4a`np#V6zDdzGYou?8^B0vA zdG-4RBHR0uu9q#ahfa)Xcw&AaY>Vs{KDQ@>HD6)3Q_d=aGfwUamr5PoC9*8@@L$=# z7Nq$rL-zmcBzW5r{x*GM0_)JcU|6PI(n?&Q07p*mRO1B*9G@3cls?bC4*H=+!*xOS5H5Uc>K|VL&ljS!)nP|rr$5;7NAD#Bdf}!o zw7cMtd(Gcbcz=kNzx+_VKFKxb%u#Y6I5vVwzqW2Jb^>q0xS6Nry}toYzS-s{F zoEysEcJAs43GjTg-@c&r89X(QeXTez1G?_=eUo2KfPhr7@tUaz1RhbD?@P`=aA<&k zU}YGrJc6VD(vK0`8}|l_4cd}EZ|$41p8bMU=xlAZo#|TL&ed47tBi1d%d511iemu=Q0}&cyHGF zvez_FoL6$1)l44}{2yjVk^9dn6|lPXWX}^9aUP$#k3m|P3m)rvLUX0Ngy#dwga%m# zEso&BczyKn@n4<^uEEEqrzgaDyn}OmpXp2J_SZQ~ot*;KraRe>K4^fdTC>jmogd6B z3lo@{o#Hsec4*P+k6xu&hL*qZ(Rv3`ci|mT`BBh6tT$Iq6!$~yzwc9B z#qrFc#_lUen?V1e9hEVz1l+D*(ZUIFaN1zjF<n;TuGI)zl zeOIfV4N~*!@BYi<2~LXU$SWzYzwe+s*-O|_XAKK=zqrxrV!~&l?X3Iiv|2rwax3F{ zV;2Gn^VHs7Q3K;v>eRbUt3WF_GX9=r49J)N9G(0ABzShOCKt9F5Izs8rFZGfmByGC zeEGX~pgwq)4!t0`RM&kkop39!%@U;Y^AT5W-GCtQxznrv;~TGk{R$21ZRb{cRS%{Aq942zTYARp~d%{kjHJH zR^|To%)SfOGqc`~by~37d-dR|=g&YY9&bF4exLA(a9@Y)&$JVQw8(sK1v?ge!P4-I zy9dB7(6p{g8GzH4`@+2y;=Gx}k4oJT3y1yYv{T;;>po^S&vm@s4Hn(x&z#S*#Oqvr zf2{R*ka!FAQuT#k?{Ae?RaS&8a*DH7TY<8`agV~!Mld3BejNU?8|eDA$24CDRQvfy zf0o*T{&rKtP?!cRO=gU}cAfyf@vRy3hHIecyLYa8{SW+mhSvVC_JZB9VPKlV0WgLG zWrZ6*5_}nr-l>;+OsR0rzI3hhLK8TytIT_+tcBo7&*#kjQE*b<9p`-SsW`8a%`h?i z1IDf%y7a+c(D*#uErT}oF3W@K;(@!q3(tb3EG#ZqZVch5rk`n# zc%84Dy?K)2pg2IiHFo{M7J{FIWm=&!%EoX>DwA%RVg>h7l9ob5BRKf`IaMtSR!$v% z+do8ro_uq~Kyxw7xg3X4`JXVcx>(#lst-=9 z`tA)%LdrY1gc&3pn>7aB*vIa_cRe8dVICx-TLmZA<$G#hFT)gBj<)7SalXxv^9rv& z0d0%04X>JIz)Q6X{$#%wZY#7?XQeuU^D;KeDf1Id+zqcsj_HD((&0OG*$2seVUc$0 z_!inGzJz-sn(?o)(PYXCDAu{(HdPRSv}a#&r9wWe&d+tTA5+J?Exwl&;}%Q&9H4pF zyfXZ#DAHb_9PCu(4n~FF{`eX5;SuK9y7%!{IIZ5kzj5nsI2>C=vfN}3XPMNC`K68HzXa1zA%VO+dDt#?jp*2w?SH!v8yjdJC*zWGU zl^X}9_gwXkLSv8`=HHxfd?MjpVU9bO>Rj*~7EePO=4D5MdH>6s%&P{lzr#(VpL7Bx zE|0T>^#Jx`-AlLR6v6hy%q72lEWpivN53#LPNZ#nJ<_DtOE2Dyp{YZ63l z;BIg4yeD@9v~Ch>GScFIDeWwermQJ>na$I#Wh`JH^lLBVo-zL zdsqhTG9)>5YV%f+lAyGvh@JI2VuZiTbe-jDR%- zeuuBYYSq~v8RWGdKR&FS7xcFP+6S)YX?O;Mnyc#GBF%+E&{w-2$11q4b3M3hTv6S? ziR&|-trWL&(VI7;;i<6yLNjtnkrhq*(zmVF-4(X#pVJt#!bK(%Kd5fqcvRwv5g8tM z-P~rE2OQX|Zc_}HhraOn6FChgJ72fO7+AylY-{{(&2gYnZsoN8ume7LY_#{N0CUcS z7FJOMIDtL(vIg;lKSbg$5uQ1I!|q`On2qxG3R~V0eh;3TdBq9CJXbtW>;yP*tl==-&hDA(_#g^@;Gn2&G;X z=-z08zW<@9*@CSQq^=z>d-n)jpKk+rT21&&@OfE%Y*;F|N?xCTZZm;UA#<&doF+Ji z!gppS>JZq~8bpd>z*ctJ{xl|%@PTk$Ctg^6Rh+MR_N=xHtp}$ymp?XB0W{_W_h+F# z;4M*FQmgxz;08;4GyJ5oxNVVZ2oDT(_|*3Na}^Ng9}Edz7yz%TuUlSfcM`rC&bqR@ zcP80_>OM~4DEB?+5%>2O23&-Xhw1dx1ysTZ!|l&%J~LQOcyZYAv8{Jzs}cSbiPwhr zrs8B>=R?9{!+!DGS&-xpQbbUb|C!qmKC7XwWi5u_K~rmVSSR6+;X6*`emngVUZ&^m zpN$uf-{)O6n{FP3IKkcC|HvNf7Af+vesNs>>=JKQ`WrCA54iKj1&Y^qh33O@8H7)V zec{V)dZZWOe-WxGyf*Fo3SZhZyRa2EL7o@iG-{Fu?)<+@ZqP0`T$(;M>|_kDxM^CU zQNv*53clAIO9z|nebp(Zjqs%iPv4(rrW6Bu;7HdA?W^KAb5eWyKRUrBM%1|*by~X# zPl(6CyJw$;n}D3qsImPmA9PCTlvB^lfESwjmN!}n|BAh|W^s#ODB;my&-@m#g=+@Z zdizZ`hI)a_XXETYeuT%aq04SJBH(Fa|MJiaDY&}?{FYWw0;K+wHq0A=v)$Sft=nnh zyl~-w**PKM-;nr9n7`L`$4u>k{Qzx1lE2JbWAzUgiHr^AHoV%E4&Iyq5u3cPb6QkW#hcs&ODE&e<7wT9)v9m>nwZaExsOb5H3m>5v(q zR;tAccIgrKgB{D9x0dS9CHyeX5AB2*lW)L%c)Guy!P)ml);{O3vW_!_2pXm7nX;Zd=wnLAuweiO7w2d`)E z6Sr@xk)7KA@q7o)XQ&&7!g;z!kf!QY!dqhz*V^rUd<`%ly<*%u2QaM~7oK%cgpqN3 zf7DYMIL0^6S55gm-V=4~&&+_fdVFcR;M(^l)anf^QB?xC?$+0zJQ>qXo3|fbx)lOM6NP9|&(k2^QTH$E!=% z4&J{$3RY5XxvlLWW_mArTD?jJY^{s$?0?39V!rZYU)4q+dWy&M_eIds4wMg^a2a@% z?2r{W7gYMbi(@${;QUmZ-sb)cl&4yP{eQUP{M1b_ySo*XZ5Bmmn2~aD6;- zbH&7;gwKM(N||3i-VpRZxpl7u39!srEh`uGk?@a@`L@Zvizk8-HZk~@@m0cO!nLKv zUHF~^a?fU$uE=AAj|Cr=*~yi3f>Sq~ymrGM&`y54|7+PauvZr}ZB9}nc+Tv}9;EiL z$Aq86ZFb`acjrD($FovoZkB_&J7V;-xPSDI9X&*!x(Q^jR>xf|FF$-8cT`cr9fxi7_$;;ABEb66^=R%IkOoW@ikFG^ua_lqhaR3M zIOcAyv`){LiG+`YRj!)1@zPIFLUsRX8!ra^=CQY%h64!C2>r0d_Q`^agztt*DK$`g zbB*w$u&PU!uhXEy{C+@kyloMnwWhxe+2D*Cm#%2XPpVF$jfpn~w7 zFm;nA&I$MgR6b}s`2HoR2lZQ(92Ua*Q)9*>Z6!D=82dE^iRYd;#|TnVZ+C^#o)`a6X3V~&WK#q2SMljdV zR^={e1`lt1`pF0LY@JC}btc$7ll>|&ky2>~&O`9)_{ORK8X?$p>8$c+cW}LLe6S*mkuFqnt*eB zOX=(`aXk8cP9HVh9v;%KkAMAf3T(e+3$Iq0!(FlD-tx`5AXiS|45%N0`+(pcD^Zu= z22(~U6_1ytf^=(lV!z@axLj6AX9dK1V16s|atLwcXMulQ>nN&ZD*0Rt|w>GI6oZEd`KlIC47qw!r;6clJDz2kYhf zTaLo#;&E{-_SZZ+I4pSHt+eg~Xlg4S8Lb`%`m!lLJ62u-c}arBlu|2DT`T%RmUx2_ zx&L2{#SM_QE6L{A-GusjDd)jjN0>#PH$1t!802s374O`50%ym^s!OI+fPSg%a^=UR zU>sW(baeO(Y>VA)o^1XA>*K9S)#e-Exbw#qVc2^(`(|%5VNV2;+|)KY;t5XZ&7qJ0 zXV5nG`Kewh21%-b^`i3>!-j!K1gnFDHBuwCIU$ZJ{^8PL66g z7q}E2M;fL^+>L{w$B1#M@jH;t9*QV3kODPxbJC$V$3a=G&XEo@2W~&Np?o)mR-)X% zCFfvxG#ozMen^~uTyZ3~_h*1U`_krpO*+8z`LPZwPJ))vwDF+HK~On(`Q_Dbm?s*( zsW3Hz(=@@fV+=N&MvU)uGKxTUKNQ@nm;lD~!-@xfIe_ecXv8sjEs!&LARz6Y_`2^S zYBZ!k8}RgvP|k(3iTiT0j}`2qpS1cb7lGThO?~rQ5#ecs;qKd&S>HgKFL-*Hb_cW( zvlT19SitpQZp0Lxct3t^d|<`e95{GKY}{W+27S>p_0)&1pw%(HTzzp1Tn+Q3;a{e} zcHzZ~^5d;Ru1$0;{C*##*`W)oZpneVdD3p(oqeF!EhvB3ybbQgZ|_VWcnzm)hn+9u z8^9QM?|EBDJq+{~uxrHYoxAR6dq(1BFd8askC3jxJ@VO_D3^<%Gj}FF=&*z5-@L8z zXL2Dp^y6t&(rK{b`MFsG8T$82I}RKRz(95-gp@x>}`vFb=z@8GFz`{d!uL z{`C=%KWFm;r8w|sL@9MqZ^Q2Kv>jEig2eMoA4t>w z&yMX^Y_nel0&{oE_IK04cDw)gW6N!5obsc0+USGUvtxtD{tTG+j+>Qb(FD%iz|##~ zQ(>{MDp{(=8tmLO-|J6u3BMoL`A?mZT?#1i%WAh}ErUy?tG8UbI4*j<&E5I?WpGhk z0#`k_thzuBYaRpR8cp+Su0ME@`wIKBro*$?>}1vhasN*@6voL<0_g#7)L|bPy!CZE zejlC#j{ByZ@(NRUWPGPxu)H9y$FnW#+Yf-_;jmApa}?C;Y)|3NY&f0MfA>XS1=NLi zrd+)m0oSC*0oR^JfjM5G)oXp^okc=6%HQ1N~>+3ny)8&FS%6!xB61#-&6^4A5wz`ZPAy!_-E zP;&ilhVdrCqg#1l!-KtWx_VDtV~`B@!bdB2@2mxlx9gtX&qd;RY*Sm^or$nNb6fAv zuCL&)bc`QHTEZ*e@Ul&(MeoABAGmB;wRdv$`znmJeb?n`*CH0sFo8wW-Q z=FYygL>#B99k!+(f_S2&ahUtpz~*HwSPs8r|J?fs)@P+-7X<1c z=lw9f*5wB$RzTRw8N0#j4lL}+J4|rEsmUdpbh&e&z82`bGZD}Kk_hitktA_k@O0UY ziX!mB)=yetPXfK`=bMx6JPuk-y~;zn@BS-VWn=R6RP7oRtR_e^m-_WdS~kPARlP~jn%+r~31@zJc%;S2J)RMPxHA z#Y`>!7ig8&oulcxgkOi=nHf+rBLLJ=QRer}WrQclN{g&U{S_`=$SR+C)=rJUdR$RD*zDL^sF(1Kc(3-TUDMSB`llrorBzqJ*A3cnyXh%B z+tqqwQgWdd*88!bSxp>gm^HpuJ`Srd*BSoi4TJ|psD5}+(a*>5x|<};KIZ96cuM~B@Eo zoSC*c&d>=|;gis33g&S5kasTpK#<4i#*V63H)!TdylR)CwwasuM8LTi<|5Zfg5sOjx3HRDaSge?)q?B zG^--bdlpSzq@&##U=|k%m)iwtNj2+0iVc3Tx+Dgi#mn}^t!X6uIE-P#suM*9gkQ+n zzi_q6>Rt%<-WwaYqnz;j(7%sPS~MgF$MGkM{<`}Uo)XIyaUV#(n&8^HAmWzc8#t1L zeLE&Zfw86V+NupZ2;a(oJ`33GZk8HUxJY<0jGoV_%~N>+w#J<$-+~uGP@)oHmU9#i z9hBLcc~yibL*fIm3ECSlEcHq>?n8~|7TYzTd)FRTZ!{)+XcF&*yR(f?N~i)@XA|O% zdvpq(>{|C~O!e zU#2vQ_Y0Ae+|8jlaP)pEIw@@?yfO~y`kJou^N4tbqhYakQsxyne4qB9@Pr9iQ8%2< z=j4m5d`_Ovn6QEHs?clx9w>G{i}%ZyBOAPIWc>C zJFF+a7`pQ*0>ZRO)ePxg;6!oIzuTuo9=AL$R{aUZj8p!MPqBBwJHMfJ#;aW-lReQ_ z$cWAyP zEUy$e>97^xc_?;aM^6VF);+$yvPD;f;5v&;?;Y@+a;9j2mjZ6kjU!3ym2lo#^=$pl zub3aCRFRSw2g_e))-Ty!MfiK{PJFCAJMSliVfVL?ZMK8m{-R~-;RA$k&o_VGb<#)` z*cLSfoy;u47vq|il@%;=6J8yL|NJMEfcC^sN=xBA_}0byN3MzMB{lI&TxT=*QqkVU zS6@JonJ4p(B>sHh!VME0c8ljnNz#RRZVxcK=7#f15ZgUo^J^bws6XWrg^Vs z!LzhrQrK}R2*)+jgT5DlyJf!IWI1W@qMb`dS}zftXikgLH^;XJ!GFw3ilC7pJShEZ z($hxpL$%*7a!`gqBl3kjeFk_Y`E$BVq9OQBR=)RW3;5@1R&IRGhd^+n5Z=r@ z+-&6t&bQhA%V$3&_}zlQy%!f(m4eTn^8ChP4S1^clno}EL!fqcr@n;;1U!n~+g;`G z{95z6Ml~J6-xjvXNhjfXcV2zt*#ZdjlZ^@nze2cm%k>R4#o$w>ZL<8^0AagUV<3MC zxN#ko?e=Bh@y;es46X&QqO&<^x;S4ozZ9`!ixT0Rk$6@3dI`0yKj*?zGc=&~+7o#0 zN-c0(Q33u>{}dT*C-BSMuAMtm3{KG7vsJd@bt5liojr*QUIuI0T=`M(-&=RM&H1vryBn;TLaIfGCSF0H^ARtF2yU90oTsi@@m>D@qVqdFn_%t z!3p>L>^|>TPcOVQT=OsA6pyFrf-OUew;`xBucdQ?ATaHpn!DTyg2v0go`>&&;Ix7B z=71h>7cg^Pw^V|EpR51${Z|NFs=xAABtu|gTX~HW4Bp|Uz$H(;!7Y5JH@0RFyr(_( z7kNDd*IT%7l@~X`AN&-vi!Vo z?-H2FSGpl+j^@_wSPb@`%1D=858<^l?6u9>HVBSrd23EngV);bGkHE|AgC@|qqKE0 zcz*{9UnE(Bb4n^v=@b>*8|z;NZaGSD+<8JXmj~%92<|pVv*AgIND~52>8*Ei6UBLU z2l>!&DEQhkiW6>bh2U$#)lbzWaMOHQ9d+>*Xs<%rj~WMqRy{v_pF-VAbE z+1_KBa=>=`*+)Ot0}D?{700!KLiO%m-|-f1r&L#{=Jdh5y+S^GhH&d7<8k^+t~ z3@mR|fokup`N$n`W$$rZ>pOw)sknvz9`N3M2BaeK;TANUddqM=Xfe)*RbzJp4PL)K zFIfOOBUNQaCq@P^C?*PMfP{wr)8zfJ~uPrK1fF*_(Bg_Afmm!=X+BE}o{e;uK zxqm>upxNepAPfxko~&v1QXn5x3Q_jf1SKqplc#JB*k>P!rS2B*KdYNO9`wP*dU}^u z!evl)uJ?BMtWWUCDUB({`H<3UkH708Sq2diHtfmD6<&9s3)kbgUs92z$Q z>Xfp7-R)dp>(!O5*EE2e?PNXka*&L+KX_X97L?_0vpTwWf*z5-!(-Y3csw1`sK!Bf zWWPH3+msKg%IW26Z3;jid}`h^QUS95TfNj`caS6g{rRBw5bigUZ-hs=!F|iB&olm% zg8byv7qj2~Ah(;k1mC#;yQ9C91{-z7iKYFbRa54|<;O17@^N$EIN^_Nz)o4X8;6^} zk)1(!J8U;5c+JSz3j4p?i_BLqhTWloGoj(Fa9@#BP@>@j$81Y#Msot(PnJ%Pn0FNJ zt9Q%TZ$1SVH7hG^sv_*hSC3uaege+>ekX49e+Q=_QMCIsaUN)4MAyb%*Tfpb9#%FSeWpiI{Jz4m(7e>hv-=C?7!}MKKcA**lW&PFvV*SmW5xlHaG;r{YufZ{y*0QwN;kdh2=inSf`+_ogiOOiOla9pJP;86t`q!p(w*S_8e#~Hsy;z?)WJ}WBp27MKr)+d@8Bprr(`H2m~ z2S362;SB%g`Yg4x4!_cEj#wPRt649Rs6>bcEMeDWs~rP2$mlw zt!_Hg52uUAb3f%if=!vR^~tOmAiGF8)Ogs!k*A_?@pm?CtwOelbU*%&gU(WYd+XzQ z;HbCNjh$6+d%^!TYGnrJW|iMAYxLo!JkXwEeT%q1Z6Cz7Sbk?892EyMzP?#VJcmtI z{n3&p(+iiWHuny_y9S$|bosxErLa-^sT(E8fWw`qH?mjVhBZAWf6dQl#B<2@70a7D zhwsAaTH(0Oqeg&&`YyHXG&tB6U07zognenaOr@(9>=dpA@w)!NLG&U(L1_(Kn>xo_ zYAs-YE_4MmCmPPQXXUyd1R&9JSm`Il>&AL&Lk4RN><4zb=PJt+9wC?cg5&QN@?jG? zd9k;CJglYS8a3l+U@V!sXWrJmV1=x+J=j%8_{n(dH{L{1CTOf1Cyq^0!mO}g^oKf| z2(Os;^|_1xl$n7sKkLiPm{7Pq+h!Em-A?%1c;^0}`z&M#Kiq_v%%nJG0r+>+u3vmE zj)!^;jb6?a$MsQ43`hNL817O#JTr_756a*D47)Ky3`o4~e`Qus`dOjukq2h3H%&Hhw<(7#5VIogl}t5uUW zC>t^%2&=iWSIZHWA6UzG(A)@4HA~Akz%_FY1AFuB_g|#N6#>U z_55o2loZg8_^BxDt|vI<5`UhApDpnXN_>iva!Wo>o78C^RX7j43(KscCT}46L*fOb z%-z-Rw21;*WSepWZ2{pClz1Q|@vQZ(xckfgWWlR)Z~|*MmGB^{2Q>zdUHJ&=m$Nm- zzcb-9_3&`xuWg|IGVr5}RTF+Ni9e2Gmi0G&=?r+i+7SL>)DBeb)<^V$F~SRHx}5ub z=14DSSKB(J*aetXbw97Q+XzPbZ^ru^CPQ~lSmv~Y|MTXlMs*i{yA%n|#C@s0`b~tt zOl^<%2x(UhgeR32jK%a59B0bqp8Be<`$5}insfW51>tw2370KDm@fe5d;xi!+aAKN zCh@vaOvB%6$q#~J@RK7ut{pBrwLX=~9wfYS5`MDvctx2+t0y44I|j_za)R)>N&J1> z?ase{WLyCAdgHTl!6A^lI-<`X5XY~+8zN6EXM=7$Z+nT1E#ZHYl#@B>_CTxgez^6Y z>D;YaB9byT+3l1bNcai=<8y<4FDaO&9zb~d*gnl&VZ*lYO0uNx{6Yt-nfI?{Mh=Xv zLygwWXM#RHgc;S~N0f_2-S@@K`Uq?X-mZKip3ie5{L+6^yAxi!|2WTt-;njIT~^so z9t`)M$-NJMf}}Ump-#MCIj_+-S>qf8`pE9_$Cv$paOb}-?JlQ1hIsiK_RTH;RV^n{ z>nIa4VYbtkZ_ozi$>6;AMvsZ>a3##HE$nhY{mYZJak)|?wx zWczC%Wu+I_7xG;^56$-9SrP_nafjO7_%+~@<68gj_6GY_RJGK3d&0-(G@-cR$a_bT z{0;f|-(NZjk0ENZZt;d=2;UzyF(LL0^MBq#&bo?+j~C&?w1Ly(CRWysc+J`=b^bfyjhoKiUp~vr2be~ie9Us4#M1|oLdc!A z7Dd9draAm-oN1gURF7^sJsdAZc=;s$JOgDtwe4kt5|5q8IQQKvJJr7)_YQSw9-S@) z7X8)^VN$He3%j+4-aHb4^rD8{YTN{pxBE(Ksx9cs`<1VnYzH;<6!}+KH)bo>gdfh% zB>Zw7Is-=hGjn15%X!fCff~{7lKycreZ9}WTAUBBTvBAT#vb;UUr7fQWrLKph_t)1 z5r(FwK{a;DgzwF=wkag)k~`r~M4|I;uh|yxP?hc1IMz)(Z~R|5>V7)NsXQo?l6VJ+ za{b5K7Ac*b{Lbv5C1_2norA9QL4WzI`!1P7kc-&EKCr|HhF3$Tgv@ayyo@%Mem>mW zesGXlx9-6lE}SZ7IgT$LhU@2}&r|*_2D95|a@R{!!Z!%tl9_J{H;Ht%1{q!5XC}_$ zdp_EJ*aTYf32Dh-W+l2)ZPohWv>#I+u#3+OMvv4*?I9a3{_glRXePAk% z?tK#<1*fnn=38{t;7&cacD9E;;VE>mH;R3-Z3C=QwLeBG4-=ll|9q07Y01(vkKalM zJ-hr;@#Q{P>1>oOJaYhyMQV93Pbfq9_(@4lMj~87rWjdIjE2pGM#kgzZD5`qypn$5 zC}uzV)&)S$dQB{z`Hk>dx6N z2YSwfq;|GUq}U6a`wd!4Lh6b7TlKDgY2^BXs3&>!-`4^A#}FtK|C^6`@wl-2yur5@ zRA0j_kEZ{G=UaulEiY|}^8Uw7CivQnFZ-Jo-Pi!9_?q{ByAy%AGW$+!-T?aD;`K|D zP801QDTkzflIuubCG9UPxo&!I(Kdo#PAip7OV<7$&z%2#*~yE{8ra7qaGT@Wi26#} zUBcHEWcRPW(f<7HvGZ_%6#i*EQ5#D9KLq_b%zE=dlStCq!o>N^kgwIayN`GAnPThma zl_yhSIb)ehr|V|m=ls*ZTcZfxwdDG=ZJ`=D$}0(PvW<%Tt?E%}s8aMEXvH##zf&@& zcZT%DgCV^$%;p9SZVL-OaQ#1lq|J-CSY%Gr!~I!wO|6Rw;UQ*Eu9XVW9Rlg%jiZ*e zhau=03y$Sk6X&6~QLVf*e_&2$2t`1f# ztG#DJ8oa#!s_2@&0b{@{iSK)jh$mRj;+l5God7?hWsQ9B52Acb!RVSh!CF4cXpOSieF0fxj z@|_9SlwzgZjoHMw^Z2)9de!;?(5F13tDD^;>Lsa%F$Y z=F!$86Xp}o#ZrgVu7)g_2i)^;3phvv)uFt_Y=r{hS)Q&|d39~&3Zfhu<>N&3#YUhu z>Ha>QxCS~pCxQ>ezXRojb3r-h1Uv+1Tk1~_!)?l%N$Ssz!19|~T4DbuI8+DU`Yy*N z-aFsUU!t>Oj5toh>*lY!EWKL)4)LCry#LMH=v2ZdY&~h!s9=9Gale{tZq}5$vk{&l zOZ4_$bAj8+MahQ}romdL4uUbj!3)j;> z^8Hf367?q4eGJ&FdmXmE?q`@|8lYypy>YjDHqjmy)AtuV&6Jk(2OJZZ{8Or@Ui74zRw&K~)C8$7Cm-6EYKFh*w8`>)f6 zo0*-;T4k^Q`G()WFE~{+kGLPqq)=j&!iNbzGgs}2by<@t;Q?lQD!(xjD*ewZ{GUHr z;;EK+qG?H$jk=7Zgr8b+yu|A)aJp*#>BVvIZZ7aJDDzZ!@*+l-|ud zPk6IgtqZ~rn1BDDkGX*sIr?NH;XU@$?w#kVodW8SfGU6McA|ah&XYtwU-@AAw_PxK zWeQ|y5k;utbrh?IXfq60^z^r ziF(X5+K?Bc`TgFpJbe(DE0$YF{VDu1%zUDWt>bNffauZ<(mzf*2ZhG(v{ zhN{mPIMW3QSGW0swEogb{<|ljJ@b2%m|#!bKc-OMuhN|z3`Ws3>Zy$*gm+pp59o2T zud=%GfH?j&Lv9=3n&ucdzZhi8hv7?_w!(7xI5KNrOWnWKJ_#@8XoK7PW!uKe6ktG5 z{Q7z~oS!NzjY>*`n?UhnXrVY?zjM;CYgR7dv9&(kyF|Vw88okLTf@~hi1+O$tD-p< z#PeAtGd@Ni^ma{Er>qjfcT6>$y}3$s6r@K+i~7XzqQpz=$zFcndr1-)8jfEMD!CAz zVTM7KPEI=$RukOjD~(fz{o#nZ@kNe=FBeM-jwg%PHCp7%wD(hnL3LKpQ>7cgw!Zab zO2<^fGfgTver!f?CgK0JeNrv>;$Kwv*Hw6FiFjN}eACuHQ;!=CW&NZ6e1AzcBsN^!$OMZNz<2dWwQJwRAq* zI;|cH5?6pa`=r6-ZTA7@^vI~$7YXk%b(OPVik%73{*1zhlQ+s&fUH}+`&-ron5;ZC z82C+`hq2@gt2)k$$HNKRZ{>3U1KDwuw<|#I*4SbBAJE%9u# z8p#on5r;t@OA5$wN+z!3y6tL6ICU~ey;lxT^z8xjOH7)mNs;g}(=RBNO%Je+c_!)q^NZgx{xNW1IpMpO^f&#tNy73+KR{8_j#0Hzgq7X=+w@OKgnyar z-QAuf(*TzOK=SAxF^Ob})1Ii)6+q=*3Vv#P6?8`9 z;`)(NFqf(h^_AWMH0K#PZEc`^D>VJE=J6%vZuEO!w{furZ%Qc;eh&?v5xA z+e&zMC7xxo7ne3qK70`jIUDOSv%g{7$dyP|9N#`7yrHFx!VMB zzIHTq{*v$D`szpdJZXS?L!xxr^FWYgY;&$KaBT?0V2*r-$v? zpGk~=hTc)zHOI{0mip#haEU%hsfT6vmwX2GWX-!|i)SDkQYO58_zZ%3HYbi}S%D=A zpe_^VJD$M@XRNz$9t_uz%Rh%2;3Yb9uzBrsFkSHb?xUmNb*;JcOzJTx$B($Uc||~& zEy^!VO(BkBIcqxSm4|}=imPz$c?ofT;r#sUJ9GCzc(~6&Q2GV*3cWLyx;5Y}w5U}z zX(4=hWWVhEdy&Q99M1kEUR^+*v+-+jVG7uLR30m(n}OFDt-V6j4|k*3(;womfu~k! zZ}vkI{Im@Zy4NVV5?(oh)#WqAbP(mGyCtuiJ$nee zNmD|$X^G>eKPN6;j=l_jZb!oH!a<_kUiKbYC*LIy?J>{|&tvCr=WMMfj+2~MQVvP^ykvd|o=8t6$|ETswQ`j~ z;;K2|rfo2bn57KH&6BlPS|7q`%IjCV_nCo|Y4`4R^KRJ6eXl#Uz7zDX^u-Ilv=QH* zdiuSm-0Y5kt4Y0qbCWn9nXZ<}(h%qGBj3#B>r{yHOFl1&%PF(Htzx$ZLU2KsH^ruu zD7U2FCH41IiK^}_sUq4(_(ajwdipOgZ|oem?^FR%Z%MmIj^og_qzv1!!KL~=YE#xA z{x9G)$T*&9g8SvE;nk9aR>AI9aeud<{2iTa>t^YDq0 za-trR@-z1a3W8o8B*u+oTuACA8CR0_VhlH}ewFosxUOR&`&ozAW}-hh&DXQ9Px1lX ze_P$!CGBv_HPYq8h}Z9)uWy>Sao~Q?KYeYyGpL`JXt4TT!ZFDWs>u*{B}+}s~coQLvwm!@n zgWv9j62FggSbVK;f^`Bwmp`DCy$ZBm$0b^K&WhK=?Z>ns}v z>lfe2P{s-j9ed%NRfmZ0x5#^w)6@EbiSpBqsmtuDxkCJ1QXffq*`{lHJ@1nN?+Z(6 zS6(9eMN(hMbtUnN#gSPLzOCyAU3ZZZGwlXwr*3rE9rz1suG@`suY159O?tQ>B>GqKen#n(!QP5s;=QCkM7vsa>9o2(Ch8|SUh+9f zyGhzx^1DV!f0L5W39nC0hll!)Ox>$r{`dF)`blygVqE=y+J)<(uNql@2Tb#-;9_-g z{#zrU83pjb{%O4B@2h`sS-**Q9V~Dv-zc8?S`GWYX!py<{QuVv8sXnoZdpzAt0ev> z3&Y+<=m^1|7Fd(NJ%i{c_p$uJTQh@*&vU?RKl&4pi=_QIA&*&*Pq zwXwgjtOC?&li%7%e*%4Wq|?E@tzd@^aeWMRvsBJkHJZQkRW z2+pNnj^ExlLQpu}^3JEj5Xh$6-#uCc*1X|UJN&i4>aI9^-S{_zrtt=!H}pY3>VD*< zE(6Du$-|Mh(L2QXhh7xZ`7E zf#+!avDb@6iE>+4Te?ihUrYR-G`6rpMKP3k&Q?-BNjuY9jr5upmJszP@Bel*+iMCD z=Xu)SnPkf)5%rOji|cGhzF7STlm|x_F&iC;dN2!v?~cyg0LJ248GfE8aX#iO-8yHF zNN~;euaoXQKwMwau9EUg-b>EM>6_WBcK!vZZEN%96w8C}@cC}Q+VzCjP%;iA<&)$O zl5rs^CoRKdUh}0}pxpYBoca3~F^(jkmw5f$KDs+Kit{#VCckf>a{#pa-0uFk$6$S3 z8XP&|4#DdBp5Jo1M7v17S9E$1e_$Fbk7!TH^@(=iZdN+4766Z!b4&C#y!zkgmdeEy zeY`-76G?d_<5tp6lKzy81D5)jw6caPT%T9XrJV5s&q;Y#($V9@tE60#@%rEK9;44r z6vZu37TK7elvNx!2g>bwnea|=oOF8e<-!g}!h=hG8ou||@+JtA&pdJ*=qK*yk)|!3 z!1?MUxj#*KZFx(lIRyy!*X89G*iBw61?G{ob#wIJNqohGe^|JuYUYukG?5K`5;HMj zIh;2ti@0SZ%s%lXM?pPN;>#ucy7sFltWX@+A@N0v$W|BfAEq`C-d~9)mr@tAWZ;?- z=7uI2pSUM2@j#38WOj#IXa!*QhH6pU+i0*4Gk-TeOCWwPDDgl`e7~fj$FgT!BZ+o^ z)|K~G3ttfTgGqhI-+mjML3n&6o@Enu7^6FvERwP+(a!J|=eGf6TOVtsipFtyZeKGN z5T0gaO>j3)2r(7sIg)ru;=!giefe_f(PW}uc`K=l)HB`? zUT4R=MNR*1?uFO)l<4tR8$?#SQ@+TnPKR~(k7aXIJ`vZE#F-Mmu}ONwiafh%U>(#_ zitpAW#*ul;l?5c{D)0@Cxc$Bq-1`ji11o-1B-O7tWJkO|BiK3)oO4zJL9%38MW38TT~z zyq^Zh)wJ|9NQqR+WcN%RK2|p-d#|IY<-5n>j>9Xz2TO_O-gWBgtu}+o>$F=mMkaBe zllC%4*&%5&;a8S;j)lj+I?6h&0PWK~tDmhM63=kmuq>}Mu3Q@e+p)XX?kpg@y*{5N zE6g1}4S`Wh$=LS4pnoilzI*Bfytmt(xn|k`di}I1M;~X1+}9n{dKzOP@d*=*s&%6cUurt%!|H{Lk@c&Z!RLU6Y4zRz=k~w#CE^(jK zX?#e4Wm^E;1^uF9b4x%ni{HQM<6baN1q+-1?Iiru7V*xhyQ>#ND_s4i-0r&=cQvfS z*UA!l@m3*GGpV4B_p?5{{TksR_L@z;o3^tUc5*s@!qY6AEc{sIQU%(?;-_*2-X3Ewq#M>q zb;En7Vff;@xv`RsUOZ$C^{*b(~F28u4tiDU6$D$eic$Wz0n_bt=x?BYNh^%uAQ;zU-OY#GWN1V7X zUQum%VdWGE%4gp?e`GFfW?HWbn&bse8C7)S+#aGm1*I|mawz0kkDDoOG}o* zx4&`z5yQE#qpzL4TCRxjBTIb75)ZM&-|RDG%A&zHW>JNSQ!O~@9eSM*#}z7Zeb2kT5$uWvCVY2)a7@5vJ+47kAWOhQMyK zrj(yMaemK~v;K>Vufnz7%*jyM3*JX{6CYldB7ED1bM~KlRLTW^^Qv}bHwVH4E%8%( zjqSGEQ{hGQx5SGrwDk#iY^5ZcNj~Sa>p>;q`Q{ezE*4V83oPTo+p&0ht9OPblsKN0Zj?y0}J9VSiRc2VmX-md|$o^DK-|^&DEbzzP ztefLcJ=}JR@E=S3ww}C|8=~preCTGrUVK~>_>(8D&9lBsc#S2zWxazkquyZzi}}%S@A#rEji(mI3vc&VtHr8<1htCkEiE%`?0ton1};BE-62Wf3e{YH3vITcgJr5Gj>UST=esE+)Kl5}q{wO^?0mxG%$*V|ePFf};fZFK#ox$EmI=?CGH=4?Nh_IBu+xLx~vxz&%s**!YAcC#!59e5e` zJq4Z%qf}N@4MXS=b$7y*W8e=g^!pvvN%)$%0WP$e)m;!IZJ;j{$G1ZA)OR@10-@-` zbNPwle#yAIo>4+4{L8$g8+Mv|BL3&!-Vm-cn(~eCLvx+ChnubwzvlRm!xi2TJZgzw zS;8yluF?uv^YI}BM-1jGR;c{H;?6uC>hJygM3fS#P|`<|J_SL8H2G_R3b~s zmiCmWsFadQ5-n0%v=EXK*;+|TNehVGz~#X? zjnfmu`Ja;<-;Ih-BzoPvLY|Lly1>h7yjoRx%O#JQ&Yiok)Lm2 z{1;$0Yak@@9)Zb?>h0S^UVx?AoPq6@{CoVoZf57$tpJt| zZ|^nF1@jK`W1Mv!gbR#(VGEl6rLgh0fU3~oRh7FMjLaKG=UhAm=5KmF9oVZ4uwu~n zpG(sS4;VST)W^5%n8)G>Z`aD5y2h@5JXr3L)6~0^NO-!)Ge$jYOFNy1WuLA9tN;D) z*Y@{;)gwls`{xsmF?86j`0zy*n7_9JbF2u^u356R*}n+Knd<8>?jR!_AotSas2%OV zJa#44xVw#Trs3gJ4$R-hHw$kLV{e z759kErT;@X(zF_>)-@CLfVEe=w`na8OvD$-pY)sxlwS`dkKWY)D-DS^yG7=J#oG5` zH)Q#Fx$z{U_v&U~oHMv$^x6toJUcfV=aT@&+0khi$ALxC7RtQroj^4gPrv2u1{RBt z>dd*CNI209k0{Olfjz*wwy84N=)+&0w16WFUOA&pS~*}c?$g#?liG=1IU_IqPMoPJ z7+<>a#C~ z>RsaeeW=j4-DC_j=05d|j6Fd2JeS9$-v_WLcX`A7^PGsy!lavrf#ta~u~=Ucs8838 zW5sZ&_pD`(R2IhoW8|GBEfnndsuUj1Q!Cbm^n>?*3Atkd|Ol7+R0-%@`Q)0xw)*S!zmOrZ>c$V@n0W}-jvVq z(>?WJCs5HLU3%WXBrq6E)74c-3{iKr}{LsE(60Ubrbf^&IbNx zKew8lzX>mS*1NaI&%fOSx{ZqcmHS!=x7Va&%OS+wRBT&|i z^t%%Klkl9WpBA=^I8F!MW=Xp}m-wG=4mXbSXrA(y8-4NE=j3O3U|<`x@K$9U(B`Gq z=l0MDx7c8p@lWOD#-OGBVSI9Y6HrG6YZljm$4w1 zaHWwyXezxeCjR>pFfB@cPnm20njs_1E^z6DdyTrxX3;VReja1NlybMn>v_I_t1SYC zPA*rurZ>U(SUt$3#sQUKt>gJX4s={^@2NH3MYzOt(~bTYp7y}39X~QHn|6VrWB=28 zQ|MswLZ-vfvIuCS4;fi*kOm{~j@R*YetqjewxYE&m|VE5x%QOY-@1TvZE$H#SoiD| zKw0H9A#|}C=-w}ktelob{(f!RAW>at#6YednC?21zwk#r7|vF9OBWpkturCF8Z3Lk z@Nmy+i`|Ps=lyoI@gn6wn|LF4Oh6qN1x$|WYWW1z)5ljvYkdL>dr{EW_{+aTF1Mcj zt-T2r5`<%ooMhxEBX=1&**d9ulOHA905#}9-PaH0pw1EhlEeSpO1Wb-bJtKBm@yV^ zNje_@+I{H({ZlnT>-LTpqYC|jYITl&e5NG-eNDG^!>H%ry6)@D{P<{!6u3;&F8DO%47kHlS;_t%;BvyLCGnUX@G5sEyUe)?F3;|K z4YV2suB*T3P2co^=tw)$w;X@N%_sADlE)?AWikHNLv!orPCP_(o7u-*x+9v#f!nC7 z;p5qN!6jtpDuV-efYLi$RF9=+{e|4+f*a19^`#*ALR1uwRr-4)xnVp^BDqU&4sk8-LgPRMP z6&n0|Hp}_5&J>a-Zdiumowfbo^6OiNW@R$C-ttRKw7Uv!H9ompm+64}G4&3&=-uFw zcqO=ZvKu&`@hljaqz&v+>Gda`^6yd04w>oOo&=XQR_eLay1^}^k~u*+3%HSoWoe4* z!MXH!OLi)Mons0n)b%0Yx=k`i%=#SgT(dT-t%dJSD`;@`hxpF}=B0Pgem^Tdni0#8fHVvK7b|MQ@4+QYI!aB6Eh z`EtR;OSH|jDWxmGEsm|UX+Z&r%UxRS>!IGQ;GUD}(DLgA zxGESQj(L8Gf1f>HepAgKTokUl`lWk=qktB3`BJ}f1JJ*v+h^AC?d=?M_C@>vSk_-Ymvi?4Ksaw~t+FGS zMvSgME?xn2>!krRs(Zjrv3A^hO9!x;HT$VAuLBsDj8BbMaR&2(W%e&GjQ|Uchy}|G ze}dJzH<yWREj1~8(Us}hwNVEeLd*Qb(g0BtkJ zmaEWD}cmozPs+80CALxYVRJff|KHs4<3NUr`fNp2aCXt>!9PwyaucqzoT2ZqF}Uo zy2E*&5x{&!U+1$l1Z>3>ywonLfrYX2%$<}JfSUuOpT2Yk#!{^jA0BD}E%1Si%JC^g zpBgM5zrBBDKF}KOQX4zQfoVqUpy3^Lu*+H}sn*?pdWPdK`>#B?Qx_`^{CJcoTh4q!s9x^LrkV2!`&Fki#~m`Ove&$Wwy z-gz~4Q*9eCy|+|FYBB(zsf97S4Xk~9&z?Rs0J@J;Pk)OW07L4CUWt?1pf+a4>bA^% zKzH5H)pzm?Smq9N)m_%+=l@rn|20`Kbbg=qT%{SHA*#gh;tEikGf#EPF&kjXn@dUV z=YSO20v7Efav6mJ5fyL*neM>hiP;Aye8AuYo3(?7)Vo~f+{+W(}Tv0XR-CUJv<&lLEd zM-(0{_tr=Qt2UL)g4?k`3F$bztDpf)oHw^cOe_M*w`10`O{9SKwS47Kv1LGCY7woI z(+MWss+Rf<+rj)Dn|@4YG??W+7>u<%38wn5&o{h!0A?NQR2KIi1V+LaI?ZA<@!vEr z+?N%;4k#ZE2407dLmV9|vhFt6BLe{pXK%*dX_lu9cg<18{=Mn@l31>^JM4m;Jm zfyu(%7bN(vrcPs`Px%(h2I$ppUGH+Wi63UJuaEoZ zHxj-dEq&uh>-c=2%IrxJSAGc;S54VDm(oFh`4gq($F6~~#PzuDTmE4B?VjO@^GRT? zWK`g~;|@@^9M`QX;``gGs+(EE{~X(JASAN54@|X-PJ8J%gK4$KU^<1L#|4Jf6|=6B z`zQRH;wMVVIc5l!Yr*7!) z=>&UC@5lFhf(R!UIl~Uh1u|z9UxI1cTd~ zqrNgYN$2|BcypaO*dJK^Zf!mAj_&na>Fr85(oT&(TCVTl-(QQDv8&n_5neNLfsxB= zS*b3*`Qm)wZ94B9KYu=0#af6qi)(`u{lN8vR{p(sZ;SV>1N^*ZmxM)mDDyvmJP!T+ zqZYVLu9*>G>O?QuQk+^L>03?s&Gt=q!Z(aPNjS;Y1ur}G9|RH3vgyk8(@iTH%f;;C z^G6En_YTpuwtkm(t8S7V ziOZr&-dHig1e^|R%u*iGCR||TDMpW*hKVN7C3bBrX1yTXW#l|NI&78UF}=ZNTS-|5i`!*_( z8Wwqx@Wf$PbI78;7+_zYdNJQ5h488EQ<4a6M=<3-0<}%m({Sd&4`<&jlNu%Fb|qQJ~$H9MHLvU#?Ox)O}5xi(KMz z?V!eEgKx9TRgyP}ZhkeEaBwZuHCl>?I)Qa$`i^G9nV?s;nJz6`1={L8wmpSvM0XlF z#E~npHmO z%7K@9pT2_&{h)^0^FpAvzqpsFF#_zCWr}vo#1S6ytkGR}Rt<=k6(?k!w%sHGtd7ox z?t(aQ94smuy{Z&!qH}ZWznufeimroN>l=~dOE}gX*9fn-bC&>DFKYLx#8-q*?Xvvg z?)kOLz*XDphtZoZobX6M>kp5|JC*!!nfZhqu}V;4=r zLiQZ6bf^BlVHbzoX5?9P%M2M~g=TX%cPiuP; z{y;U$bJs+o>y4anmi}}0F5_BIuZh2L>tQxnd8oY7 z^GE{Qp`4soaa!O&q3kO@S4z0d)+O?LcAFXzoo0JZeX59rBY;@)>72M3Ae$9$aM<=c z`FpADQ+M~$wiW>Cvbmz4%E0_t=8?qcZeT`6u%EnVfc2&^m)GkYB0Of=nRRgAXV+hj zuYmJw=qN6ykP!qXD^*O(+3NqEA@_hskhj92FA6Q1$p>*@>Y!py*U-sH^*H_n54mTvt9xqG0Nq15$! z7yt8D@#t%#uSqa_dM--)IJFY4G@ZV_uKi*-;Yr(G+8Sy1>n)fL_y;|l5d^k{!Sb_~ zj{&hXuSYvNK7-+z=u4heMaXY1H;m8AD|%%GX7?|Q5_i=DgQoj^P4^C$eUNRs-m2%BAjdFYuoyc`)oOX0>~zbM;$EuPVT)*qqg7l8S}lIIwR|e+rl@%`E_}x zvDaHL57WG_m>v!@`&TCgc4Yvt%vXl>=mTxBXrKO(Zo=obmRh~^n(2K|Tz0ShLdExT zodVCtl1n^5-t9+pmUS^qSM7Rjn>PSPy(elov~I!&7jU%84b9d{PJEFLQzmM8wVqo8 z?BvtuHeR}0Zt~(?6^GVP))~;ya!nra+?A`2-{AT^P#0uHleyc2o62=dEq;}{sR1kL z*C^Y>55W2nJ6M(W4OB7*xDw{Mz;3b*3U?DDTh;s(h zz-e~FqW+?VgeQkQG3)x$w2fm7fHQH~O_pOW;g%u)&VJ&I3io>r;2N0F`D*@SaHLAu zt2|u{E*DO`i@9kGcA<5OjbXjOWsE*ntvm;~em(bllQ_VgSTfUX`(ZG=IB&e9h6(UM z#;qid0?wxf-~RlTOE_=H-9zr2TWk93591dAciZlnw!5bRM{TrKrimiq%@J;!fN#R; z9Mg3x>^nHhDJyW7N(R7E7`yE394^>DufLHo!I|(=+zzzL=D*>;Zoq|D?HjiUM~^o_ zaj z_JHzU3Bp5U#f&(!dArF_pWr2xXGv)4TKQdR0YxWwco(vC0)U(fNz z*hI1O#bBMhsNnl36~g!9oOm0Scgz9ot3pJA^^-wW>(te?XPbd5aiXPXr98OGeB|w- zgn(_ln&Kz_UcwV(uTq{{*cSepvipThIpMUD{;VxK9BrP)kR1ePE9`u{8QUgvH zW$ACqDsVpAizg@R&hh>#0qT zE}TgC&9;v!C0&9ffKcO_53HaDc| zW&dcPy$WS!*@b|mO+yd!&+{hN=KMUaX9uPft+w4!O1iObcZHdnspe5~Z zk6*q5ge2lfT30N0Sn{;f+ZNgzgo*sS2jy1HPJ3udJjl1g_MR?T6{bLn8v$?RT z5?G_6_Eaf~5>6oay9FiIN&|}}VRLPRHCQ(~N(Ovz1*SpD6dN^fpx@Tb*%&89xO7a) zZ}~bd6%2n)hkMt^FW(Q9()oL!6DV`svu~QbzVp}Ss zWBbA0+wawl+Bm{9M1CG}`4~0b_DkB=fyILGL1tekn9I>B#!9~dv(wLhDGbyQPPd7F zYh?a83gPuZz{|Y)!L|I){gQ7LROSM+Hat|$eHU1tPF32Pa26;}zcIB!nhF1rYI*kb zhRf+->*iE5BK;xQDcDRJWIrH$Mau8yR@&w^^6!$!Yt%k%p;2h<0c@F`8nYcfgg;66 zkpdnYEi%bkA+7@G?gvFOR+$sNu0wJDMV`_Jpno@5T(aLAKvw&$UiorRU3%epR_G(b z)nmErT$SK?8Em#!{R*4y1ZMvvX-a=<1FP#E6W%48fE`cuX}sKKfLT3Dwl0$fcF7b* zsOAj9RYSf9w{rhG`{0p;@8{4SoG~kQ58;T|E(`zV?(YP&!l6>_w^@V-h@3#=(J@wk zcy@4BKH;z-SI<85a7B~lGNP+uH8wB0;L3QgQlzb{%g`r$IGd=w#T&M60P2l}yC}Kg zV7+8#<9W*;U~@rgbE!oR|Mghwy^E|1SR6=e@Klu&Jm;_t=oOOr+}S;Z%f=dNC^%TW z5^PQ#QqjNaLpW~8VME@aLzVfNB}1c;0|H#t3t3*Ce zm^n9(gXuTqiyr0-5Wbu38LdPOO=;jRiCLBC&wpL&dwAzTnOM14)`Pmw70HC3=OnRe zd!Nl7V2@qsc)0%o;Q%5x&rV^t`p$DKus?h3>4F(z;MnGQ{eFBfSWcZd`p$WOpup5I zBeea&x4!F{j6uJYT{HHu=u(TETJBF+Nq<@xWndGcQ`?Q`$#*Ly~I;PyWa zT}5rQ!11nHbW7nu!s)XKzj%~tb_nQ-+=GiWwZVLImtOOi5Mb_={r15^6NC4vfUQ?t^tbFuz|;zxDf`QgaGh@t0}XvpgmULbWXtWzG73NGn2LC+UP z6J7-2UkJDn$cI3l2lhK}*LRLz=KYuZA>f^$&I;<}p#BYVO;8^M?W4Xh>cnv6bgGl) z%pl{CuR=H?0=@;AC*YZ29mgTB1vwVz7wYv84hZ%OxFgfM7<(B zKe%tmO(FX#7)RPM@93`}|HA%|b0dhKoI`;f5~sjVG7kL^#6$KS^C4&_^YOe0{KXRe z!t;vb(9XZ|5Z|NN9{!W$3;jo41aeSN*F%_Ff;{m62j&5JC1@Y> zLAWmh-Ur5wTp9Eq^NQ<|{0Qs_`-Azwb%|aK=D*A{*?UlXju{vv-wz)2zdBjBE3 z-ms4Aq2Jh#exhA$Cw>X~aUHU*ATQ__*0Dr?2zN&i2c9czM|+qToF{x9&~My7^b>hN z7$^FP;|X^KIW_`+asSa@a&86l$-W8J7d{_k-v#q<|B*|9oDt)gjfL6#djsK?2>Ov1 zf!{wvz68!gt_9w^upN0B$f-d7hHxFZ6Uga6js|imXrT!=_iHi1*v!9$w~0>1BR2)d z6Tbu;7o3OwpgkOq_K?GYJQw7fp#NwO^MZbo{0aK;`*b)DON3@ynJBFyHc1 z<;|~TVvjmQ_v(>+N3ssu!+3EX>W8D>Sd#bz{-Dkc@?kLV$j!lg;W)xc5$q>fM^IwE z(H_|!LEbP!>gx4ExUxfV@&X;h$|EK5gzn#P3+J}o5>!?41?~_EgM4&r^C62>7>c9xM3)>Oy zA8wrRI%pqxWy1Z!_OXuh2p>&o9@-P`Cwer3{^9KXxAlgL7fa!Igy&)ZaQlMo!u`X= zDLj6-eHFGNyzX%M#P;F*7%mQByTjQN&adz~!{uLiUBbN+Duv@3?)>~WzlX~w^6Z35 zeE%cg9}{rsu#Wo5*pBnCUw9tc8*Uu76W*OriT${)@OWW={$JMtF;GHBP$y8}!z&6P}LbkZ}Ue1am0dg_&T@Bb*83 zgWx>WkwIPyayb+vX1+>nGA6nwt`pfJE=&cOb|}2lH~JA--#kN(cXrK8!f`=f3vw?| zuLkX49sNYVFka-Y2)E-rjNdKRF7KQ2ZS=G3x5W?1Y0U(m|r{}xE_ud&L7Uhyx=;x z-)Ill#r?)}igxk5W4oI~&-5h^lbCrad6gDyk-zs*!Fj?GIUC3+L46zKlL+hGAcq1u zBB=j?^O4sfY**Mm*3ll$Lrw|Kx037MQA<5Rcof)=91@&oU-8i`G%pa?rrtS#o^w!lZYKIE zmi(16-Hn z0rv&hMGhd^M;;#Tqp%-1UPE-_%DVh)l7AeJ{vpRlnCpY*1jpey!u`g$a2?_O!8{4p zC+8OZ=FN<_KC8Ei*vI`6>L)xg9g#96@BO;KIVBS#-tg(KK8t`qp+TLJ`q`Qbb}vGH zq{k_Nm5Q>*r1ZP^Jwn2j`-gRWswvZqj1v`07K=I+Nq85?%|IRru46MYB9&8lnT$ss z1@bbmj`NY%hIIjdqkPiCdD9P?Zv%x~?+N~g(#U+maS_-dd=-HX3UV^Y{XxKq5z0gP z*!Aj$+h-+{_%U9zi{Gnc7Y5DiWJHs7Ft0O~u9A!YvYv2Cg#E&H!TKZ~j1%n(&qF_K zJ8v{?>^e^3!Fd=b#)E$0z6kPFu00V{SGH%6bukZuypZ^X_65%oIR}`3+$Y>$$MoVO z{{#nvtipJyq;E|mUgX*cpA(Zwr&8m(8KjQq6zySLxF6(uvj53LxjOsM;V~&yn76W@ z$2FN{_l^=jFn_r3m`BVn?iY^3^)Y{hnj0^oBI@1E3YW6mZy=GVDk#^J<#`ize zn?^ll)CWd=J=7aU9b%%pENDl4Vb{T_?>0^jCw5VvnCM6g{6Ra|kMo89{RY>;I_mPF z|7aKe#FFSD3rh48$K(3w56;6p;CR$W#yYM$Tpja_{-RxBzj^y*d)L+dUC+9GOr^%o zso*?EO623n43dBJAMFZ{pV<)iPCIkmzw&_VV2O5dp78z=9cY0aEQS5X@u-JR^vwl% z6t1JbImUx|(W>qKx@lAiu-|%VV>rL6A!EP|jBynN8 z>%^G-9aj^`_~G^&OY{@t#JrdJo4{#f_1T7ddVZElJ{pa9{YvoW1i4oj2G*uLykJm!g|wIlWi$1FH7P# z*3oaAkLw8PAKz(56gfS}L*DoR56x3x#y~ngTG$TuqpmToi+b5;AII6XtKGFYxPz>RcF`W%!G7UV zSoe8av__7STocI$u7`18JC?Y<{cDkN<5$f6tH&&8w_?;YMC>P%@xpQ8eTC>XqJFk_ z=w{FPOG!J<1J>kXk3G@<${X$%`hoqpKE^SeuDI~N>cuVGDCwe0?4w`8{$gA>AMN9K z+$S85=Kyukh3Db-Edw}DiQjx__2=Ta31CZ?VJMoX{SfCnn@*Oco(JBDPVbPEhvfMH)GOh|21VpG-3A^taMk1ewnR^c z_#-Ht+rhZ+KqrYC{X)GMUZ&55^XXdP^n8gmcZ@&LeIfcXg6B5S9{1HU#nO$dh)xV| z^Wo`h(!LNqAYSEn@u5RQ;L>#KSO4*Zzj{E{HkM!ZzXIM21+LyiA8^@`?CNo(ndr9Q zb0eJDF%RCi9tQR*8mE3(rW3s&wo6Vcc*p~fmZ_QP8TL1BL0&nQH>@wU_>*|?ITV)#Thdl3 z|9#%Yk;0KG=o}>aKlr=}r>Z^NC9n>h`qdw78kC$19s*5R-?J8M5hStawqpnrT6juFuM|NwUob) z-}^q6%#;FlMr&f*>8uFJOwDvFMJJg&nJ2nugy6FnEy zlcC&ypzGo;2bK+iv5TA9z^p^rK`wIy(C*!||9)x&Se*JfuH||NY;C9k-=p3Yabu z?Rl4YhCE+^`Yy&@^B}!OPK&~(#-C;8M8^en713{e4g+;@a2)F1 zSXL)oacZ&x!<<@&Hro+IN6FY$x@1AX9WYzw;PB6ZO(ZVrC*7XDcx_P@bG2=hwny=D4maQ%JnbTb_;a zpYzGNhaJ(9sv=Hc`nvE+e=`3Z@Hje*nnchl&RP~WZz`C%mF%pfEdY~UFRJ?$YQQ+h zs77||-;(Hf6thh?QY1*bcIX3-w*k38+nQF)dzJjaxAE!4%iW$ z656YR)1$b~VB+I{I&qRSn5&N4x!Yv{(c96cd6`A~)4^2vNt=as5tvlWY4e{#1@j1d zQ$u$N&^@k{v}5B=Fwd%R&-7dcCVdYF>!zM0`io`>Ca3i+>WH2T>cr@7pFiXo!~LsM zBKt#0MOz-|V^pT>2}%WnM%goCUU~uLx~iFU-!7tKqBYHMs+Pw+GG4#A*2D2+F3~li zcFwE5ugL)O*HcZ^<|KgGN1ZlFC<2QEj#Cc%$&=@JY3FG>GuSV|?8sNsKuZarJZY)1 z?yn*GE;N;sgUhYeiCvR%T7&P#|JB(+-5}akMfb~`RYWgFKWX3T(^&(5zo#eIC&SwZ zmyLbjP3+MX24Cd{>w)?DnS)&SlSFsNaQ(uXkT-VZd2+KW7po63802{vUDe>44Qu)S z`-!~zX-6gPsKa9nmPuxkFTsR$Ldj#IJkac|-K%W+!QzYmPM^R9L{Erz%)2^{&G+NP zo`}YVA2R%k_bl0y#%E%D_^U)^_-_0eyOY^_&U{LYiODUt7!mVS9j^lyyj>`ihVcu907QBMf- zOii}+kee|G=6WC9&$#ph#WFl{=u1@lBi#7BsThz^N}h{*DP zMvI8^e?&wi-6KN%qV(JZRq@$N!UOPkkHD}c|DU0u=8^wt7entx2xdtI z_^t5MTjA#)8u)*-1V#CU1^#D__@6oQf}cUb&;Qp5|9J3!xGMsqmZRT)l7Qhw_=f~8T7g{>5i3_ju3YgSb0fz6iRFKI zBE$q1M*SxaUqhifMW}A{e{mUYj9b3gFETW6t?w$o(3OGc+o&bs{2;>pLIw4)kx_vG kzJY5ZL;aS74|4)W{;?E=afdEh{=Y-}U%o~&|K70)0BmUcGynhq literal 98555 zcmbTdc~nwu`!<}Zky(;iIVEUT)?G%XW~P8cW@SlbcV>fBR$30^kOLq%TUlX~v*M7M zrI~4(so;=9Ie=PfPG~A%4j_Zf@bWyrf8KX}-yh%mu`bvPF7{q~U;7-6<2cU^PFcI^ zzc1B=MnKN_w*Et~o2k{?ZEc@hy7dNBcI~h4TAh7-&B4`=KB{S3l)qiO=I8-{LtD;) z{A)MPoIii&{L!|AYiqXX+*l=V4T477Qif^z6Bw2a%}y~v>_~ zplobp^~=N9-L<1~criy-?|lW=9R33Kh1trWj33w=Hs+T5{?@qA?d^16?g%M3Se=VW zc4OQxwR-3KRxC)rLPq@s%;PJBCtKWrPb@@3-Tom1{VC5=*zZ4&Iu~<&5ugx7C|$tO z938|KjabeDA$LQ#<+Z4j;_`k`Pu5G@jcZ@-*OxaQ%@3PA?se-Q)RkYgLT z@H4z>mpe3?{%xQY;{P}FI8lKOB;35rS)2UwLRmpu%!iXxWxKYXTCYHj2p^8P?R;>?MCa+!e!6M6RV9c0s1nEOEb;lDJ+W|m*p5BF>sx2)2Ga5tmK1C(p} zc5moUvYQc~Rhku=i6@(wKF}Rl<9g)lx9jHbl6LKd*W_QL^D3vGo&FV6v*5E#+0UpUynA(g~?@XnLJFKv`qG<;{~k>y@&&QXOB}eA}1Gst&{< z$Vp1pVQv2L!=Zn^#TBX*A&9V0UXJ~atb_hx&2?2~2;v*aKkjf$c=PWnS4!4FAoc=! zrA|GGu?s=8y_NSc`iizoQOVQX1gEavypX|{cV0Lwf2;H9pd6dIqdeH*@Ri?|gk4d8 z#^OqSN{q=N1IH+NqKa#`p1{9e)N9VJI;Oh?)BDoPcs`-Z_jJyIEQ3X4fcLpA+x7me zRb3A|cSR_&mtwaql^%$H`F4vu;$pihrWNsm?O`X)F~HFih>TVWaOyDBI_UE~p@eN| zBV|3BDnScr>etJ_?Yb?L8a6jXD6*C=9rqeat~{#;*YqhlfGdrv)quyhAo4<}E|=s< zY@G|KJ1>E!ve=;*VU(5hN@*lYSgL~?OeVgWVyrEJUOweB*?8~ky{t`prb@horDb)_O;pAFy)aHSZ*IGLbz;{{>>`J!S-2U;>+J*J-^aP?-+oF!%MjXxbv8*K$8$6nJ z*m2avlWX5k|7A_fVWTwK0xvpMpTIT(OlSXyB-l=VQe@C2_`$)e1 zkI5BRJn92W`@@I1WfE7Xjb*qo`a!aEBY5^uA@tKyY!EI&BitOw49$RdvpTDDT& zI#hn>UJLh%y#d{lw&;M)KW?VR;nPZtzPsb$n=0@^{i3<2%sOoY#qqI^-s{%)3F58C zpM836J+5tUE9GgxqgC6)J6#8+X?IRuz6e%FClVKm{0#MR?tMH}>)vM(t*UKb!xQ@N z@322Le{aY5nI1+bx#OQF@r1%+ayzB($hK17cW(?|SFhMVYQHXKUC&}Y6P_@Dd(IP! zs@D%nL#xNUU5lY!19@*|XYSVJn<(Dm><+dY=?^`9tiOfVT)$4i1}XMO{H!+({_)qY z0fPC7>MZF#OX<7QwT;i>xE4bMz&l-FzTD3sH3<)Ktu~TvyDIOq3bl0|5)u7u#kOC2 zp5l6NF4Ge{z`rG6bZcb;WaTPs!|s zKJ?FZQva>k85;ld{@LoXAL0+s+us`rhjui+?jLrTwmLsTy=~_ARjs(P`K;A0Kg09C z8r*-<2;bh9%z_Jwp2F^1Q=VU{_?v~#E&7WTy^Z`;J)vPx`@H{Rqp;SrO7c8eb%H;2 zzm4T~eGtFit))L%Rnfqa2z2-4C3fPk^@KjSJ>YujPMA>iF7kHSE|teIR`Eyv>Cs-q z9JK=;`D=tGNzby3d#v}B;W9}yqhX#6K z{(rjnOe@MK@kPyNq6R*@LKTbhJ&EeeKP#tqxwrlKeC1hNXW6a2M36Tqd1%_htk-rE z1NkZOnTg)+!L*&91t$RwMSx=&rdj;X-Dgh>7(Hu#7mL5sYdW%Uob)SY_U!{2!EfGl zWb?@KgF*Yksi%H@rdh(H<_fhoQ_-5$ii1Vl0`Kn87y5d*%{jcbeY2x@&xyH{=SH3@ zQb{}7ASagH&PmVlFnh#}VNLHTC(r1+lK0Ahtiyq&_y?YU!GD75PR;kR4ueX}U05dp z+oKr735ACg|ARr~_>#)Xga~_0oR*rr4ekoxS%f|5B6=xLX80Xx@{n#5fN}ED$ELTy z&-$*B!_&8d?xemRdeq^D#4ZR6$qHYKAL#sv*c(RoU&H@N=-{*}{9?jcWA%7}kCcP8rPW_zE+A)rE+CR%CC zqP;R;kqW~CvvaR(UfN~(=w2_Mg85TnX!mI?OSmHagRQ`S-hH(~M%$Wb))2Lpr<vk_~)D54gQgL&q`0a8R)hl!A(y#Fx%U?=SOZH4!K*MHS*!+*STyHA2(3E%FPN7ULtT9E5Xbldz_ zf?Eq|$n-MP<@kTW@4a~v8vN$wMq1?cC)=?rX*MYntS`L0!mwf@Sxuyys7ge7Y=(rj zU3OWP+b_2lvdtDdwj=@r8}%1GHp`>LdtJz6k-*$#3JTPnMM}P{OLSq;N^3e^;2ZZ+ z_O(1hepa6U=R5aPMn$#ANBwyG6GIQ4h5;%eK(kh~9aV%qGEbjK62_jCpPhE^M>z}qpMl!+7js_jIuhDgthb-0EN7h&ti+Pg?pe5W0o) z#e3G`#DB*el9O>J_PbTW>#t^>YAkSNb;z7;;CJKtJsJ+9g|du7O~ z^dh)-{|~bFkjKz_(yuT;bwlEbcc>TVX{3+L*@TF{_dnb_ia(vjmcMd|yj9ha!Y}s#idUm3l%kj!Tt+3uEBrc|0skExXa-hvJWv%iV+3d zUq+LqgwImNce2{ft?OURK8(%CIuCV&ycKLRS{>e6y_}Hs?}6Y3ua}RT;7QY9_WVET zHkZi-Oz3O@MwH<{oa)`3#G$um9;m(ZKOvh9=-ioqbfDnDdGZbD7i!D5B9@HaU)MX zZc%LnSFQ}-da#3dNjy$~NxaSlDgKJP-VMD}nRSNHDrc=qJQq%pyM4#N#nKyRflZRjoE6+ABR!r?r-*8&;@4+-hZe*_!@_YWe(T*!a>_htY z_X3MxbtWggk)bQ60UbYL&JuHk3l9noGG9$!{%{3TyuM+9F@iiLu`D#|?|*ai*Ij$Z zbM*Ux;w7CaG31KGpZwb9lpPPXL*o_jlM19JaH`H!D$&v1@7;X?iPkdeI64ZPsHp$Dxg}cJ%vb4Le%Erz5i)E9yfr5V^(5IKJOWL>8?<`*Y5=#8b`TBbB zJ+?!?1ZpnRwW$l?+`9bQw=Ns`h4;I$UncQP_r6k^#>162GiZ67s@E4T_2F){UO6GL z42{HHdj2}sx(2yajh*BD%?9uCzHsU5_^;}=)1$B#A5uaTB+^{)^G`l4y1;6*^H=lZ z2yG~2gJ-lZr0dCOD$ z4m)=M%^Ch}bSxtOp6j{@G1+fHL^vmf__9pt-|DWfyAST>`m`|nw8OV8r0==o@}t(t z;)S)$Eh+iYt7p#1S_KX&W^q;O7%aSItYzHL{W>hXP-8SNybmn!h}lNUKp2#T!8H+vw?+U;wo5$}=^ z12kXrJ;$o2ZJaEo~r}a z<8zOytf7yM2Q(Y`u@*O<_Xpo)5~rWI)`>~iKKED5=Hq?+ah7~RTzT7CQ^FK-PrIcR zIrEbI<|CVbyK)P{HZxgFe6`2dBnnkH*=3OhdF*0YgC02D&ncN_MI}z~@>OL3bhGbU zo0)EQU_p8i&u&CT`Uo8l>ogIrm8#-agY#)rBopvbvrZM9fAtLVCzu0>av&FarxFKt z8;xj^b^Y|PYh|i+F=M@FtQO1G;*#uRSte$aKCQr$HbSH2CeLH;8A0aB{0%%!UfPt$ zX&@;U76VFvsng;V1!iZogd0OtWDn5}r2LL%Jk@g&H3N_*lM>~6B|HP!hqa<)QuARI zXik~lPXX0=H(+|TaI1K=$Qkc6Q2=*@v;!WSO(Lpw#3ja)J-XOcur*{SSd*(CvKlVb z3sDt0D-3Zz4~*za)y2(3KR8?EucoaEIX^n?LB*_t_gM&ATL?g};&e}M73+iq@!qFt ziqy$^&>~S>g)w;2v(retLEPHe^#lI~AlBk1N*&-%AB-uf9&D%>EZ&3$qSZNCauv7} zaH>%s&WFwnv2*E~wz2l{-~xmRAk~?v!-n$KiVZoc(d%qgoD`YMZ>g72)buiz30cqg z3%JRKT9FUrs6{6%w>*x>BHjU*>vA^!jGQ#(88X$71+Zg5ya;w?CPlr0zb2OnuT~Ws z&Bmen5UCKJ&IlO$Kpf}J)L^PtYmVrnSBckPSKB5_xnBS<0L=;1#7G76fMT#HroyDc zz9J45FJBF>k{`n|Z7j8RZ8jAGWO-$?G5C%lJlT{MuRawH#^Ps=aSJcB4C&KfEgqOZGXS#o!SKl-ta z9$~%WFQytWK`6o+!zTf3Q!yCZGi^tyZ=#I3PvSdOg&VOc=vYYne=c}KC_aut4WgP& zsu}kZ6T{f zPH3if=bjnukPXqQvNesXqgA8V*s94U5ihgLMBP+DDxRt$Qio^X2mO5*nWeSpGxIOk zRpA741oPJN_VJ8oM#>^|Qk1(xwO|Rjwl6p7+>@RMCe70sp`ECtG(eOJJf?y=;pgcC zr_%axlZKYG0a`P#LGBdYvB${XyNG-S%(fVXJm1piemiIAfYNg`8n4p>#UM^nxV88y zH+d|Z|2fIT_ZZ5r&Ym(8Wh2z!Xvq@9&fY!fi*rvhfcZ+o>mAeJp!HX89j0Du*L;{=$X8J)##gapaED63UkPN+~6_XS)8WXs0w|w zl4$Qlxo&Tk9RG1y`w0 zQ;|On`Igh4NesS*f zZIBk91rlpX0k&$<)Rf!XsGNMW+YgegNts~(BbG~ka;hEGEY*{(sq_)f5`7QFNr|9=b$iC0%ZT2dR}qiwmfwo|GkD|FAdl)}kB9}uP9$!7IuO~u zR6J)A5g@oJF{LOhg4jn|%DC3+>n86*glgEw;c7%S&T2$^v5mWjXD8I+tcR^ZW{OB@ z$+*NTMbX0_)JgH6Rq!>|u$e8gRdoj>TQ2RN87L!s#-(a@T8OnnY~81wL60XU-d#NP zU<&A5krXxFxng4p^gvT74TNOu@KU$bXQfmb_xAEO@jmGLTEnYARB7ax721^>yN!!m z#Z%#Z$b{dmqXJSRI#qaUc>CuOH3~=6M{ie!10@b;iSIu!Gul0xwz=qc#4mv!I1#=DTeCDN~pu54j%bBc)`x)j3ufp$|K*xc2s(*bK<_v&XKvc|?BH4Ok z?8L7ucWv=%S+^u0wIYA}h>Eylq4lolw&Kv+xd`<9t(9NZ_G}}bme7c^iWGN+EjQq4 zQ&NUW8egM`AnY~X$2ZeB^RwY#>lp;|!pYX<6QZ*JwF}Cp|2PaM_lL%W^s2idonvUMuxrGTJ>h6wX<%64i znE-0rG&wVUtMBGYQcPYfHWotJu11U_8Z)Sd?Vx;-BY7FU3at?mFTYJT=>+p0=~EnP z(=_W=A)Uzi_MNZv&1%tIu{rs9)FLW|ikNg}YqYCmg8{s9FUFl{i-{Oo{BBn~LuAWq zTm}zdn`xCRvUDdcvJOPD*0jD46n7*{kD@ofJn+BmnkCVQ*lJ3Pza|Z_4v;ojLy3Y|M z7Hj~-wflASitVH)rjj+u2;riEqAxXle>G70erhP-Z*kbxduSKoXx6qU1`CQubQMR(Vsp1^Zk=s37JWsF-$c7`=6Cfz!9xMoDgYPhp| zk4(h?j0KQfFd5-%#vf_R6$XbG&#jDTKB;AMCM8sGswcBKU#?Y`1d1DT^3G2dPHbZD z6}FDG7Kj{Bg}DW+d}ThM0#ognfz|Ml4dTw67dogYENaKhW7dT8x!0~tb-r#Ql~jD^~iRfB-j#4 z$XwY+dQN`-ttHDrY(BBuR;wqO<#>Rrv*#G|1REe+b)96h5vv^xFG}hWLCpb+abja7 zl_y0-YWXCJ2!+T6W8Q^p`o;84HG9463 zWZ!#Rem-AR!AtAnsFITG^`IY?MH7~=p$>sjp^`^LUM?^lk z07=Dnqv*IB8{+XMwSIWIC5+W2=yCiY#0Dkg4G1PZityI7{OvQkGN61qxMghg{q<1L zWo?eCZM=O9vgb&^DT^%0k`+{$^Q%h9{pzyS&?LD9!{YNcrcEAz)2M^()kFUtBcx6i z8-{F<`SgBIYVccFbvZ>FJv!#L(;H2N?FM62aTbCLyU=rM;92*RwhNobhCW=cR;`Hd zwne|It)sb5bD_^t;i2TmBpYlgZ#nvTYUoVziX;5-0FMf>UvgR!;t-*T29gc>s5Vwt zP4+%T8Ees+*jHuB`--)KRkTLtJ_=8g#vp_fX6({B!ueKZtV_XGG}Z|&(zwyH0iLU9 zP80c*vxrdSTe_-D4Z2pgu2H42TkzHyYwMCjhVLwlPJL1 zY)PSYH_hXKKz)vd#pl-vyrzrbR3aTqrrSBwimr-4H$rJu?EpnK26q-$P@9)($u=6% z5XX`CUK5^GVir#HwMj4=K0mbDg>8r@G?l@55zP1bH$Jt;W3!{4(ObpItP?7<!85uj|1 z?G&c5N7mhG##H*@@*x4;bQ^C_hjX)C>3h;^OWZ+p9IF|w3{2T|Hpd3CaX)!XI0?Tt zqpOykAP||NDhc> zN&glT6tx6P*vZr7eW@d$N^D?1)R6_`s9egte|1Tp@8y&}Y{cCX8|cgiPCz?qrXnmx z(HAsr1)5QjJr?WN=h9V4stPmz;WC<)5zp~Vm$M{G^jWSYO4wEeZic7&Sbiv9=?6C6 zSlRN@+nW(r(etG+EJIRX4LU~I1D!M-g}Stp${xrMNmLzrhQ{_b_Fvx5Q}054iwLxW z%`~%%1`VY>(}rS7cd`|psqz>w>Dx){A$83oNwl@tr^~TJ=JfiV>X%^5i{<>Ib&sg= zN)U-Cxo%leBBaard>ayAQI^6EEO`HnGA9Y* zEw&4!Y=H?iFJK4&?xoU9d?)vkTn$3H1b&V{mjyR}EI0R{`4E>hCL9kX=m@qD|8ksBlv2U^>pc*c&Q_3IB0#;!SLZ+C4e)tgaw%& zlWQ3Xp9_o%%(`Xl<{LA7ZJs*MK&UM~@b)?rNU9hYR`}^j{Z}epYE7Ft^XaVA<*ypz zmN6jdn;}r#J^adQy~s+^k_Dcj4x>I#G`Pp*-6mUDA|SkWCFPp|ge39W^WI-4nGG)J z1ezb409fE2n3Sg{iR|p#70#`;Ewahjh}et|mGV*;rLh6IM0)n>?|7qMUEZwe10mTd}^E z`W7PmNvVKNucLT>m@@6oXo**aG|~L6r+;6Fu2_zg_pV?EU8(i-JmeE#U6TC3yz!Id zm4h_QKo}FjOuzZEcEAn5BHoi^NSfl?9)$n7zh83t6Vc@FtragFYrHuCyY7ey5Q}^# z+W)Fum8jqN`nor{5ZWW~wI)5YahdjgzgBJ|ft;*;W@+A023C?huI*0rUG3sx&?EYsZ|b*4*hoCNX=d57_k_YSR8y9K~^$%ota z6MxGInT$Kq;FD%}qRwJ7?R$c~f#fR*fM3IpSTR#oaG?q%Ou9v~tm?lE?1Tz8a9U{? zXNdvk?_G0Oyv@o1mnuY|$bfuhLp-p+Mp*AXsmlW^X{|45`t_WsJ~dS{wBpNld`Swq zHAsr)K_zpXFKUfH!f$j|detuR-Y{f0I#uu$>(QIA{)5(+8~N(sO0e0Cx>yhWgsjs| z(|6SqZ{^$|`4?Yjo>k_HjvF~~AZuD>`VA{dlbs?HG>s(xx(uTvZ(s6qjWRfdYkzo> zoRq0(VmP`?3kpR_k}Wop-EQ|U2MQm^#!S*vEqTPs>|K#G=cmKK9-;2tVXW(^=>pjk zS`vwPblHobueg62h_jHqF`#o@sJ^KPxz^5^*jXaEW3}8meEaDRd3ihQ+6fCzlrj5i z^hpXsPiVghk23aZEd%Bg@@q|qR0`FVicsck#iR{0un1v|WI~zdHK@*iMab2={<|nqp=Y4Pp%CY{w@7R0&e}? zy0YZqC7;2oVi0zl zPe3)r;vUN2jwO|5$1So#w`2h&U?+GM->tv~BO-Eo_gM$K+&iO$;bG5NZe&sU&ZG z>-QX+CKUUv1X{!M%<^f*wf1C2sNSTVkD@P9ntN^9rj*S6sxSR9e|SYR9%d!^e#!mQ zcHWEM#C`$QOnP;1=)`eua$ZaWx32C1OZO~pp~8=3R~&XdXOeXwlY3F=3lTYK{tK25 zDn!?=C@DPl=P=w!%jk#{b-j$Gxc6V~C%_;6f6}}5|NqSJ|I@C)ux*StJrPhowAVjd za>OZ%^ifYlT1%oCGTsHt4F#*asaQ>31UDKcGhz&j?CyLauVM`K$ad!=y4pmMT&R}0 z!s-cycBjb}#f?T5$FriFqXA#=tN7n+!{r~EcCVY3LYFoi5SZMBP4l35g$BQ+4n5X- zZRz*!-N(krF&JGT%#{oM@oRz;3}5}X&x^(tRK~3ZSQE=n66o-&cm|972c{BAE+%!z zfL{o)WF0Gyxo;xO81359mY*RaJMtILSXS30COjCgMuXp2(gdEBi|v-I4+wVd-sKPb zf@m2_PZ4Oeb;^2Z+DGf8vV$Zt7@HU#JLd4zI6|rZ0Yg;kT=5y=IM8W|U`$^`#rDXm zl(yPS`))0`eb;s$vWBIRC81x?HN~6#z?z-X4gq{M5zy`IF6D{5KPDAa2)#|&);ukI zGAe0MSL(YIl7I2`W@C|4*GElC=*^7pSws;@Hh4pg_#amKN-2=~ExjK^ zJK&vy3IJ3Rmbilk@grG&8F7Q)lXb-FWxz)D=rz!U;8o}mCOKCL{YhA`wiw8ZK{)D) zP4(Dmt+aXoGRB?TsDB#n{*13R172Kjn_<${NmI2H9K9o-yj-nHsKQdV(h%z!W5O-5 z=koa)QS;ZA%EvA}mgeeq>dXgnjbP^KES)%M94wTT`NmRk>F)4Y_Nz&m5vNUn)R(=! z&NSkVYs{4JK29X(EX$^;@o!7&;QRY7!@1*I%z^06F-qxdY(+stKCz(V0E{h2%2yQN z55SbT0c>1LuXhwrjG2BQJ3}0`Uht!1+YL*uv(0G(zV)beA_KddO>Q!j(3xwBv; zKpFur0&F$!X7F`{An6lvri8NjiTyl_K5@+)xVT0XhnvK7D;06bqz|Z~k3ygDRg!++ zVzRT`Bz@9fuBFYKW(~(sMBc}^Mgde8GFLEU>`Hy%r_0V3$>Ro9#gF)_X__6hO3Ue* zqyl(1^u60l?;Zl#cU5!?ZLbR13Fr)5Zv2)S%G4yQ^( znFu*3$;&gLVKxq79Knp}EcU`DH1J}O)DM1U+{T<=S!5-3iAD7YG`BP}QXzS|nXILq zevyyqI-J251g<$V= z#1qt#<&~?C=@S9Px>5j)fe9)AckGFSo6ek@-w^G))cT84fD*}%$tNNTg^!vRn%(F#ALsjMMb zOJ6Ig@72!qIstNSAN2qpn9K+9)M<)t8gL4;u_wCjt!vzyAzCx|_SNz^Wsb%51s_$) z8tC1be>cDqats?2(X8`FHunflSb>>f9()EURe=Iz?JFi}zBQI?fsYBx9ycY(mp@e! zF^+gWdaLrCL)K}d1zHOprlf1N(hQQM1`;Lg!lb8y<-PAk6OBndUypMwLf*_e;WJnR zDd`|m2RMu^KsW2s?fOjq@qJ&5OEo3=ZdxRu2?LRSuGKbp$jGpgN&5)gc!QKOR<%8k zEb1-qN0CC`@e^~L_ZRpE&^%o0w=!8&PigK=rdg-$%+9y0C*%GP`%B2#nCI3Yp}ts+ zAGa-&<+e8~*b$%Hz?Eetp{&;1&R~LjpnZ*Vs&piqErLVI4&^T7cLQbe((Tq59K-Y)9}&XBy$Mz0YZrZZMM)+^zX;2qJ7``?CB`p*xH)AAK7KB#78;Zt--YBLzkC>Uh#Ov1-O-581aq`e&07adcKW@yJ#B_pZ)TBw+e4r4A_6BA}-*u^? zxbZSX&yt?VklM1R@?#3NOl)6~h&vEo6?Y?HVk%gT(@EQ#WbcglD0{)WZWDf@xC>kB zJfM#$CE3uXj>!#@@+OzJh@o#;N*<1A*D71?jwrCo^QztLL~{UV+>dEbws#7OB(`JW zXRWqzl!#%w7=&)ZD)v|Eb=<+4B2SX%kS~?d6FQ>72awqjkA(G+%m_=A=M2j&BYMZ_ z4$1PQnNRxFxgLP5L-KdhtkVQPL}6;Ucq`Zu^F4CVZ2ZbGyKGhjlQq3ArEeI;i>M-g zx-@XdHWfL@O~td-c_yRp^8rFkkaXOj)0X37_wl#le8M(IRA%(KXbSCga*iWm*WN4^ z@{T<>TD#l^4}3DaO>F;mt+Mj?J=}z;!`!=qza~k@ByT~_C$HFuk5^-hhp;x`k8MB` z@!oF$O65vTvD3ef39NqKCpizSLORV|^p4DHmip0q-ugOO#3}kJq{_QatnBi)x1{t% zP9i!tRJ1nvwv(N^5*spE?{~*3Oe${ET;>kYH2y{Rpigz#a3hthY8B@e2~*K2Nub+( zyab#79DEWye}b($O3<|GmaL|N?e}L#A2+99kzNCa_4$R%UBh!O%m}8VoV0Ofa|ke6 z6?#KDSdC5V&@bd)zWO)-mALH_TyGTRvq)zBSBRGh{;SJ>R*?R0W%~bjFlNPA)O=*& z)ygK`R9qC+8Yrj^7A?S^!aFJL9W1*PZFxC+FI|#3IdsH*dRexHK9-WEioYg|;xyV} zKa7l3TwoS=jX~n2*4=_#>}U)dL+7G=P2i_dy{GS>h1?c|F0PI3nuxTP-gyH4Di2yR zJ+b?ka8I_xRar#s^BUla%t8@Q`+@Kap)^9j#nsk@q4neukIx`>a^9)sspM|Kxh#p% zOOSBL0KcRx$&l{}0j9J8t43QuA-T1}_N`y9;-9U`>g^%HuRGCw_ywgBTG))x!;!Hc zRIq`<^V+iXD@>(=3!cKHIM@h(QcE9%uYo%T^+auYk}N+cczs8d3S_^pBOKSpe#0$I z?hS>xwN92Oowvj`z3Q{x6J#~re<`J3z(j@y9cp%i^MFeE*v5h7fN-Fhz;)pNk$Kjl z+j0P&39v~_Ns}42H;1C@(AykA_qKHDG?`Ib&QEV5V?kXx7<1mBCTDe{Pp{iuEHktd z$lK7aTCF=XoHO*3)>D^Oev(LHV8(@5!*mmW5Sc~(F%CQq{Tv*5fJw#0X$B4SfTClK9{ zQ#&M}kF8}=56l>#J9Fx(2b9G3W^Yy5Acq$bs_-~N^T&p2d25HXG6wT2x}zeWP^Ljb zAZLxOh2Y;cjbY0AfS&7tB?mC45mbgZuAutd#tt1Q?`XmQyE^s_{=|!Hf^>X4fAi?> zKhe4FE_k{izrQb>`;2T(7aS|mm7T!I8Y`3D?+rh{AUzr^9n1pbT(L9poXdBFJIqTo z`T%GL0Ow9VIsNB7!$-6$+9E6CQ&gJW&>pS${V(ICmpn)sNAa4`$Y&$kv$e+Jv#=4} zT6Q@hbec(s}R;Lu_r#q7pZvRl6GOEh*zbkkA z0c2?d!;BT59(7h|ydrSUAQH0A)z=n>P-&4w<)a8A{oWhiDg`vYBYD>uSia$P>S$bl zEJd4qB=PKiB@0Cw{f$VdGcq^>^#a9~A(|@6P{zL9o~eqJmk{m-=1p5?yt85wDrD?< zhg2=>dSjCcQXbO7agm_!Ov&k8x;FO zzw`g_?6pEAY@r5Jt+5@g@*uq2HSD)AZ?3{w8Ye!03?YBq=1BatgLI1&@t=+_Eic-U zFeV$GoPj+2pDiH(-z3dm+-6T<@YlCw3~|L-j8Q#!6ts)$TT{hGf3fasT_LQz)Z)+b z|EbW~NE|9^Sn`qVrBHr*$A+YWM+c}{0RTr?)CBl7+HBL+2Cdoq>qnzA_Sb-8+(*AY zlw>Y?U+gde4SJ4E1StOS*9%-znN`25hH>%e3snsr;*3Ry062mwt?V^-3u&D{OZT5? zT?tw8rF-TP4i$z_-QR*oUd<9(8+sA>_jG=wFRBLET&vgMY6y)MlU8oq8FTgLGq?Wq z?oRFo2AH|ZsDyo}8otdCrG^qKKfdEAE&w_et*!2 z`uscd@)_vwr|ZzlI|?W022>>EEaS9C68VQmf1h>tFC_2{=go~r)MrN){tX~H9eIg- zF%vTiWO;!y6&G1tVTQw82GX`W1Zex=1h#3#JP+Z3YXWqqkHO0jvW4^j)J<7yxa|k{ z=zT=ty~}s;bOcBd$l3gw6G__mTG~X5q)1}RN`~FPOJWZ-Hif1AQg+HrZyeHDY~tU5 zed6zB;gxM=kU`cMDW6hICp-Wol_|)t0sX9)%sZiHSK5D7Jh}mr=_; zSNjRB{Wj74*XU*J>g58n;XEz*pQwLWy4=VP*@FZ9@rXXT{nBJa8dBOT5!nNsp^?PQ zS=u25Biio`?GVJr4nA-C&G*Qc=qQ?sr~rNuybOC32yU-|=MKzjRDHa5Mf{c-Nd z1aU@AzrRkxU>|-MLPglSD?@qhp~kN1jq|qI+kW%%duZ`|H9=JmL4{u}+G7D`Iz^Hzd_qWA% z?%kCa-0X^v*jQR*9%cR_{c_EGA=bSk#Pj*z=9MG81X136D=zH{zL&^wvnKRpb6cC(_4dT`geeeL15@K!S^=*%bwBM5R-dNm;2 z$2)nL2cP#@@%-FV6d3OIGoFDj!#{>^mi3CWXCKYRcDU3i4uC7YCq-s6Rb|C8V@S>Y z9i!>_B~f`l(9b35vX2?80PgN3hH;x~1|!*?_(!y7W)rq~alNcNJQ_p}#HHrRAG%Xjk3rOWc{_}S zAC|V+BC}-=MLP!NUjNeu0q^>6FN4I_R;hhG;HwZZH!v2&T zDgZng8eJm;%(QZG@^N}?a(I(;f^Or(rB#)`NF@hGkG>q~s;TIhi$4k<+}i+b33sb$ ztt4))O$j7_uc5WBRDJrUyTIs}KRCgfl>gyI2M|8xs-C9ua4XR@+~u#Y=B(vw5s^cv z0P;GUbM=+EiE}>qLp45C$aSnP z2XJNXFrC&e$1Oetjmp>jsge=7pBGD(MYmQUlfmo5eoLE%@fiY-Kn6CD@h}RRF0++N z=~2k88dkG(&5?jX}g2=>PoNw#1U6rCjS(8>A#aE>r{5HU>};g{AIXsz`@CQ~4osWF z5UDe|LVoa!a|6i+oF)md6A;FQ5l<`fK@GIz6}9n0&>v_51-WeBN+(2K|_ zg)Xa#9i>hstn78;({Xf>pU0opH9zHt>H-k_nmM0p!@nK#K`T1fqm+^P`ikrIsF~%a zL!?pZRv~r`YhXFDO?fp{ll&bL8W$Zu1Y8ib;QqBoPA(@i>}tY4j=yg~w}kJH5v7Sz zhcp)8%^``rEu~6;2qNlyET7NU9fl-|(imn~qUKC6fSs4Y4>sSZ6U4Lgz#yR8lmKnUDjz@C2?;*SGp?1w+eHQ{88=zjodcN z-y``qxG@mhsf=&sA&N@abok8js>K%0545g`dn9kD0=v{y^Rx}KVz>%ig*X1V;}>D} zg-pc@QQ0s;Z?nh6!)gW!w`D8T<~>(TYejXR6sA9X;r4ly<*&q9S~%GFZ%?>drv`24 z_5h$p(v^V_N!M|~qa}3{3%YCMH|k>p<&_X&RE0kqWkzwms5Ca*StJRiBYwsx=>*8sWX4M%3Q>C#jR23 zTWnq*%X_yLR~EcL>|~@4!xLn~o2&x3qdtmtunIpe<)&imip?L%l))L&hJAB&q%mYS zvXj8t84und`PGb%XBka%M|KlsPlsunmg}Hjl!UE5pG<{MUZ!JUL+v5{-1JZ5x)hw% zLWfViZVdUw58S7P8m+PqfPMO$zj6M4CwyLGrb}QsEX%1P>`13+0D zZm7FtY)RuNxQo~Wd^x)w{Ue<9=yYBH&39F98LOGKkenjG!aCalSVh8Vgrj0q`tY)L zV<%9S5Iz+OE`y|kW`ENkuB}q|q%!|-&!!?r1?PmgsKM+7%6A4*8PlSSh?hU*5>-A) zt8i1?2gkHFi(udt2Ax~H&j#DOHSE<+`L)JYmLr@PI*qv$mDj}x8V07#K43Xcia@n5 z7O&V4Lb3aemIE2#UI;*`{U8~u6*pwN&=GW*IJ^`)yWGmcoUvB`8nLu>%vnBYUK{56 zU7#uyK|<>bjfD2)i{2XE6|17;9n91ENg9Lyp6hIVMen%p4!2yA1JrK6+Jt8z=6uzNOP+U<$S3Vk(7qD z9LuU&#Wl%1G(R593rX#FzD*qKt-Y|4&Z_=|UH*_1M@G|I4SC=1B*MB#*ECLSNlXHU z#@>oonU|{z*PvO123{sp^;Y#0+AR$TL+{yfdV@3DCq{zd5dC3@q~m`!Fw>ayD@sG- z54_|#HJ_s2#hsKuYX{`@$9vP58@tT!Bxny_0_?Wbrx7M1uCAceH`UX|JZh7@^<-zs zzs_Q7ORCAkGw)+~VZPa0RGyr3{nkb>SH9$^^=%L;D6omh=+({FkBqDZ>p00($D1QW z6BlN4cwkV)NvUdteI^eBXPj*PFcgJvK+2-!uc^{_6au_&>6|LpR24iBxnX9@#r=2RIdzg$UyD-4!#DEOQ&MekOa!68}_%hg1B7i?vQC z4b>@3$a(pW-P#P1%vgp0PDD_J2kg|+Pg+klb&58`08eI^*Y%qSGkIOox8_csV_5y? z1TZtJRuK=uDu&trW^K^&u042R+ahsA*YyG|-AFQ!XZgOq$%RVB%;t5yHC{C3%Zhf9 zIf=3u(Pe|ldF-qhj&{42P-#f@&n5!1c8tg0BIB;J$K!}Ib!=l=OYJ#FV|N0B##*Ii zMS!*J_qFjT@01ggNUQUCrQr;k*-UzqaP}Srn_>ucQ&s2KZDwu~u&gi1v~+gPXzw9K z{SFv5hSw^LpH-{npL@9eHrvtzG?Rgw?2Zv(Y#)4+hQzAuPj?bS_yXP|mVu0V08UqFR+3xR2a$OWd2IeN z_OiQ7KZq#J_?xRyKel!HOatZm5au)H3kFSjW9c!oRGVpa!@>}KfuT#tJKMmXEA29- zQ6R@>*k@Iy>;%*}aq~cyR;aB>5#H6l2cqt+oLPq>AsWeJL0YYcAqv? zkP)jm$w_O%&@VqFo^FVoKUEKp5uH3rJI1&P<#mOb?A_TF=H7-EV}CJF_*uNswh$qu zkF5iP22Ts1JMtGr*_fuwHQ;75c$Zk4Z?%x_YwRm3Vx`f8mJhIQWH)6E)Z8XhkPto6?j9Y+}b3~~(q0_3gMA7dCoadSTA za;{3RZi2Yy4XJ90P`Ze(xW>6IdgR^kZC69A<*lfDM>n}M!Ce^L4$bJ>fA^>!CVL{8|L2Ibzbh9 zyNT77t-g{+--50rvqt|Px4D(kwoU(MZv8(e#3xf^g$(F>StG9(_+^G3rBX#={z6B_ zm}s*pm@DjD1p{rW7-4WaH4(POT1gsafeBk_TS=i`W#Zcb*O`hi^NVenapUk4Pt$mb zJ;UrpOir(2gt2kp;zTvi(R8MY=|0e^I0#pPtx^S+7k*H4bc_g$OtZ|#9kiHJq!`hn zzYiHUVP-JzfM##XdM67Rcaa^WOk8&NtbB#8S{nN8WR?k3K1*$3 z{+2=QivO?w#8b8(w5}&88HJ^)hR9C|P|r?*>24C7ZaJ){?S!QnU_lHj)l#g-xo9!t zrmEoz#9oacxpRcjDa3xfC_edm*<+M`LnYkK6nu_sJ$qGZjhf6jKSr4eYStCU`Ho{| zlk_kogT7Sb*YL(R7x*c5Gk-2G{HpOSXa=rtf!#AykoB;_X7Wy{I00maW2WKXmLCi$ zfqx>kvhqFW|ME4PV`F)?1>gEUh7RRg)*BcEFtHH9K!8nY`kCN%WixPi#tm%#BhK); zmF?EUoAPQ+KJS9!qt0h z)x4Fa+5SMRF8BrAQ}SDlBgO5Kp=P}XVX~`!@E0)VF$3w=kzb(X+dJZVbW5t48>w|O z$Vin)D5Djj7_xj;xHe?cwCWg)_&}t%#dJ(PZ!TE>VVUK$%4v^pjP6D}GvT3m1o3ad zeaoYfAUfOmB4&p(kJC%aVuuWW>E9IngemozjiOAL{9;w#(R4e&9^eruNF4F5RMl2| zC5_tocNtLIZwu$%xBfu9+N!u%Uv#oN=j58_hHnOREkEHHR+<}EelUyvbUbWz?{4er z-a+%VABB8hW$>Ei@@uMH)N5&%4=jNe>64(OgMht@c+KC6v@_Gxb?cAq}Vu_ij6>xyWbNz^V08zf!vOFiL!s}*C`jot&Fq4a`*8g%%b)sR`9<`4c$(O>W=Sd{2QHrL zT*|x2WFXCuo$vM`M}G)zxrR7|FSe6L7$ISSYA^9_^Z0T&d7*WSbg8nq->z`6;&Eu< zc;3Z2^j@mc#TMmQLXk82Og=j3Qe&DR%Do9`h6Y%6A*YLES&a8v^s~)Nny#DUcICBs zNuL;2H$7IY#a<(%b3>PSfmEemT@F?uwA(Qrx8KK+G=&W7fsz*+gZzHsBD&b62bAW$=l{sOfHem`MJ(tv{eE)((?^1g_i6)D6PhIk?-d-62vlt{^({VWn( zeUG?WIkcs1nO9Ih?=9jP>n@_(>^-?ZjZ{5W&F}~I9C*x#z!gVLhN}F0E<%$S-+9U= z)C;0fA9(HX+tI?`z}lSLxFGHtDHTd=yga5PEi)Wtow?;$O#0P#o$$6xr<B~zgBg#pMM%am+1y4$V7Kc*kK5FQaUuz{UQC6Pt2()TUtK>EZ0^=H?PuTBJZE4j zl@IP3c8lo)m(KQuPafq9W^IGhFqiQC_|L9i5Q9O_65mp>wv{HYc z`wDxF0|Ds9q(@Hv?3pk2;x8AMk=M;2-Gdqx!yfOH;lhr9ihj&$Z^FvA()?U z9n$qVUXva2=noenZ$vQmtBXEm(grKb>AzThf~lHv2*oYkY1?SW9L32n>Z^ida5?!s z_yL}VtTyjD(4FKM_m3Dryz|cUdc1!%gc=D&khpCMP!V2;VqBwia_gkJCiUAB>M-l@6)SX*ZL}lD$h8Atv8vU z5R;o(YOujX`R8EH{cLIN7_2eq>CpC7S@$LrTT9H>-a{4DOy z96MqGd>rY5dmZ;vj6U^!JZ2SR&(R#IFal#QSZBML2g8Z{>AQGx^t}xP% zCG+Yh>qsmQk z&J}qT_mk1>b5>gAD(r6D>w_NpemSvyA6(||>O7%9*A;<9O=s>#-yM4$<)wBh;G$B7 zx}WCQYmWS6qD?%4nBN))hIxnZokME7_vd^a26=$7ER0 zFHBeTZ5IFac=)8FvXpPQTD3SDl@Eu>B&&gW1$t-AcLcz}X3;05=M?6a#D>SY=; za%URS8U;%8HOtndvH8qG=S=GdeP4J~B8^&&s)mgdmy2trE({R%Vhxp6Z?m(!G`y*k zk7g$?!OYr5%kfVkOdfHE^*b(b5aUQDs}OqL zT}hs$@iaNVS^5#8K7=0mBU=$NkTkYu#t2(+$oHUJZnS-O=^jNqdxDC6z-qcA35qbu*!sO z-&b~w=YIdftx^bHZoDFj-Qgb8|DdJsuY@;F-lUC_oAZV$#GD!Op}4EzyKC@RP@76TK3ILu0)QY*}p0TDO7f2*BUeb!|s(R}@L&}4|7 zE#L@`ML1uJ+kpR&HiSV{oK9Y3;@wqVe;xzE2+xb0&KIp&;$$i;u1cKOsOa9lRM{qq zpN*n#GZukItvJwD!W-dsTRQkJa~A)N;QZi1h(Yj4@s#_-J#RAhV8Dh%q%iSTkYE=h zR`ShRS=7+gJwR)|NAZJMw@dDZh*Jnccsez1X%MBZp!&1I(d;;$7Qj@Q=St7^V&^rs ztG4#N1!5av7rE^Y1a#YhlBu5hE&C(Q%eFlzQ@ENHyWrdm$9`&rufL+7+J?qzPB+D9 zQ_^u>@P1zW;wc>%99+X}b2haGJ_rs#yC9m{fD)!Z2x?_8kSfX~f@{7@?MFnQFX|^Y zQ!OlFQ<^#LFquOhu4QZ?!;F!nq~j4nn+xK2t>N4i+mmZ=^PUkhZAEQe_DKUORGx0f z(TW$`aRv7ST#$DPYhUn7 z%AK$L(cL=i*g!E8`yjQSr&`zp+-z%Ud@$r!zqiaFJcHtj+LEhbgIhTMyQo!ehe*$C znK-}K7aikw)qz;$e097vz;U`u;u>z7Z+TpnB+1fjkVUQ}U8(E~LBFs5bY169cILZVBy7lm6YvOf~mW+UN^48_Xi(T4#O72Z&*V@JA(pQSvQw+qZEuTTNbf?>(~;_OYp-d3 zM5rU;zShp!9X{oNnS7Mdeh&ljLiVNz(|A!dp`4QU)tS6{^$T?eBd*ICc1FD9wN zC<|+3Yk!82x|1rxxD}alsvpBhv&{X)XDtovc(vE~0WJi?GZ_*64w#E#k6Xe9Xji$$ z7ok;LFUr--;)k9O8F^6YbG7# zLY8EkFuI!IceGKKg?YBlgoz{J-0l)z2)iT+wBS8p_{eDUQlSEI2o}lK^G~^3#{63D zUMaC4zuv8T8jpBldHI^+Yds`C@YSud&xto2y=VjT<{iAahc*02o$`*fcfhIX;+ESj zDoxCXpq4hu>M2drj$r@u@}2Vp3d{E~%vKb)Tj$R`Ka%BGNNadItm3w&L{nMiZCas#H;>F$NZuPkluWqqw|du2h_u**Sc3cLzm zsEE5Fc2_e*DX#6w&)dS2m+KO*SOR#QnZxPubHE?G$P#j332zS9Ji=`jX^vs4KCM*5 z@P<5rdAFG3i7{QI76<1aIk#{SF!JCs&p;rhv=uZXL2gQg5F*a zL8LmfG%d6e{;yi_X*R)2@pEvbOq3*9ja0qtciWwAK71=AK zO>^#Zhu^Lsjv>hvf)}6I!>N81)?Vw*2oypsOeMXb*y|Q6 zJxxN;!m{8i#aQ5mkedQ-qW5R=@s+r)0bUk&52-IpeLvemPJ*>2jHRoT?s;77%+MKQ zI`I;Sc}ubwvwSDA*vdDg9Vh9?$sV|6MHS-tR3<+BO$ep0CC<4D`sl8+Uc@7!JB{8D zL)38QvRm95A8s^CPQ3^J_5~0~jG#c(E}(yydh6zG=p0b?6Gmo(cZakHphN~55I+@e zXe?O;-R8@dxwc^%%Sc->D#KPSCIE8@n#ovi)Q9?VIl_4np}SMu@vfpbH<9S(QcU_; zF*F~Zx{CSaLAvGI%{rJnRC-#y@e%bV9%L}xD!@vqE?w5+`N>FQZPq$^ncl7L-K@UD zHdTT|R;O{Pr9~2SHpmNikn|x>aG#wLj~aaX3zl{#QorqU3YDx!uXyKgir^=LB0L@Z ztx5rLiQ1luehu({JG>2>U;U@+h9JzdjJA&_t!KX%i&D1m;STaP zY}2r;Ss!?GxmZ-O6C^cZ(hBI_fPZ=Q)%fSs>V@gBGqGJ3W2&o*ZTxV7EE9GO+*IcOsM zmw?BA@9h6rL~fY_()w>=+=TJ_M{Y#mnUyPhfa;U>&0xMI5WO0%{k~cD_&qNRLu*St zzDDhjw|6rd)|BpGE&`Wyi!7~@{_t4vQcEM0FpU?t##o#!%_f#`>{gN_RZEqZY*aIl zrrEQ*k|)zh(ZjX$llnjS_e}di73U(R=&Jj(bYQpdaK&{?gPs<~4GLqf(E4}IJ01X+ zJ^c&yfuqM9^mR4gn8Vez@$9Fb&>E>H^+#L8gc`@ut1^za?rvJ+)Dq0R#wnMy!XdGP z;(d=Pr_b>h_~bHXHDe+rM%xgM$qgmZU2&%v+sI3mgL#6>Cb;y3dg;eJkblUn1bWMK zp+UDC6~4bOQZ)sj4y*!INRZCPR{hi>m;Mgj1$liW1CnXknTfIIrZsA+4TtWUmyfUq zW=uuqi#lH!b{*b&z=4iI@?+nG;J;vnksc6czT%d0o9W{OcyDx_-ly4W@!<0MpGSng zlNDke%!^XOov3k#?5CZTrK!M4%$(|=eN)5u@1*mMN11Y6#;|OehJViege8JKboADwb_oe+~rln zeK;=qF(=MO{TNi((D?k_tC;2^h{(J(Ss)NT8S&0j6%1#qlKy& zxBM)g9hY?9_$w(qtq+8v(TQ&)KDSy#xT*u=s`?0Dyf}p#=ZBy;ejLW!#7v*bz{-f9 z3LKS#UC-kEsBK8yz77m4(zHT+XqAx9GJ>H9?)V=+5I8a zQtuKeT=Pnpkr45^J0*2BUFyDvy8+#mm9uO~34C4e5?9!?|M|;^gV0-DqRVWLZlY=V`1wzHHy;?YHF?OQ@x-k%)`SLf}h zd#tFZ^kZU>Ui>G6R9P~FDfn^s^KReC)rbjn#?3tRVML!R?zM6^m`5a218Upqrfdt6 zeQt;M<`=Gc*kZcqc+BG-JjS&C7bvymF@)`Ul(Of+vJGDy+op))b4V*(dtIZqPxzF8 zQ9>j0jCynPY*}(`^<~T(rrC1%jwxMrWc7ToV`Gne!)-z@XTxgCa(Np+{^;Yp`n=sO z-MU%@&EVn)rpmG!zayzUO_z78*ZDRdv6rlfXFq39S4KM2_I2??ub_`iD#qG_+V?@& zgjKFHZOgqySD!G<&cBQ8stKULOUi25un)og&n`KCt#>!UcirS{#d23|;%&yvtp2O!gLo2Kvb3aZ1rgV!cIBm?10{lJ zEN5Jv!Z+YE1P8eY9w&2r3xoIyGf%$1-HA=W_jV_5gYhDB)AXx_7jE7o6p{N@CFazi=o6W&x9?CJ1iAK zUeTXC(F2v95MDY0rLii>t^X@RQ~eX6t^Ci@OU?FYv?+@-`Ux1XlguNkaaGmGRq!-} zEipYAi5&dPUceSbuQRV(5x<+O%;EiYgT7?vLEch9YMi{`nrgQi*D@o!wNDes7%?_f z*)F3?7aP{5ToeadeuCF{bt2EN!+b!<*_y4ucdHS>{4k7N*i+1Mt}CXKZYr?s|Hk(* zwml=1fX=(2&5&c?o2&gmAu$_Gx9S>r@l{mfbDx6BhCPWFKqu`EKfj96Pk!aQ-!{L| zphTA|>`KqixV1`8GBS$VO&$)`c#v2B6=)24rxt!kk}PImt!?;URO6QKaO`!?lk?1k zQ6~kMJisrLzqd2K#g@X=zFnu^F;;xzE6 zl3ZVa`MxhznFH-)$!>^|clK3Nsb;VvyNs72Yo}WF6C1-AyLW1Xwu$r`Fx<#(rgx!0 zkuFgi9cH_co?L3jH46VkkD=Rwuskn}Ytsng2cvQqvU6aIsYnSt?e`C;xR(gAt}=vf z?piGNl=@F4F_GB*nfyP|eQsh_y6i^O&X&j<5h>3V-NXeSa>bKzuI9Ldu-0(vHtUz! zgdK&f2W4%^Sx{oZc^H@Ct@3#|v_-wmbjTH+3EhK8YgGIEgU|nW;bdjB z>Bj%L|3?K{MEmhKCfMB)nW6FTDo048LO*tZ)|S?UgbFq|w_K;iDDF6(d+sy2IgQD= zhYe%swz^GjW;~Ny#ot!7CU6B4(lUpHG$^*qc z_r0@hUhU2EU*h0=BnZu9nUbQ0P(MfZ*01J&weV~*~q}v%3iS_XtV9G$Wu(9HOtMsij3kdKDnDI$#Twv^fUYN^%R17zS zKD>?>gIRm}I=V@eyeiYY%(rlvL2hOAFq>ysMWKP#-oJOG1&ezS*hbkgxRUtGi7Q;Y zCQw>c?1r}Wh+Y!$onjX-fHHaMX|v-G{LU+})`wyq;O-FDw$N!W9%kx+4_xW>Je|xPjc(*8?ic}1Ci9tzBr8Rqt zaklh+26;tK)3>YVGpq29T~HZ4|J=dGsL8bV`PKo@D$x_<#x|ts>1qTvM~3jUq?7&1 zKv{whNuUTr?g$j2e&1#K5*k#E$m01`lvZb9b}aWcUm-gLO>F_rUcH6>yq~Qq4<)g! z`%u{vP4$Sy=QlV>fH6ZPf){ip}?GXMSdKL&ySS=23l4z3%aK8f4g0#2deMaH87 zt-$4+$ah0qc(P`|SMKy#_DJ;SUCZ(p3Yu~}`B0|Kp>v^Gm5i=n1E+-zpNzoD_t*1q zR{MFvB_qq(>WsE@rlCI4Zfe_u@^)ZByPMl&3R``br)iQhW;61>rvq4Y z8}%E*vZia$cTQ}*-wIM!IK{hnBOAe+5)!u`hJAWRVoU;bi8*P6%%g+2$bVz}R|q19IOV zg(f7ZU--t#8F`F<;{-il3|u2TK?@sJOgwV3bdc#G;w35_GLwRTWAf>$&k0^q%@rkV zF@7yIN*u*@x568knNt(84{}{)Cc5Z+#Mly|Bz!b&+U~XTC-msXW`vXC zvs{>$p#&R-oj~|ym7Q-XW4Sk+W>%NSy+qnj; zy3kqwJ5>CS27}6;GRg6`cNI?I-#^}dqSd(E{>R^S*I6Zs$e`eD;cmzKk8HHS{ul7y%r7E%8AtS)S{b z&rnMooeBWeqL7B+$;+zK##n=?C)qOS)8G3vR=xGOcZ#5lWoh$a0;fpX7ic};w<3$0 z7W+UQf{a6lX7gTe{R5Ei6XntICR4|~a%ZzxA#ucj&%-MGp&*NAQGcp>o@iEw*Qm%$ z;*0W6vFE)kwdB}1LbMz6TxORp-*(QVk^w5H2X8&4)^INiU|t~BSiY0$JJkBDivH&f zJ7(&7H3ND5&p8%hsy9(SVDh#smF^r4qRgApMG00;y$Z!x*2G!?$t)*c6(G+&T*_u2 zm>9BWy$1h`)F>$$AZ`D{lvZvHW#ETpP5Y?<(UeMo2#HZhkWRLMjjRXsSoHF8T6V(m zsbFS!L7ms0r)9;*p{9NbGN@WXtdV3D3YvJRegZ>^v=87^^lQuZAFv2F0}}syZkXY7 z(yn||U^KLni|N1Sg4Y7#1e>Pa^>t3%Q0DWHa<&LAw|C6}8y*ulz@g+?o23(8(rrN7Rjzx6ef4 zMP~Ehs@eRHO;hzz(rSQob*fUD8sLMkY0~Ap4I4YWZSpQw8?QFu zr8Ifo!dUZZe`d;hX39FI>U%)t#sst+_QF3VoF(YA*fpXgZ$|A@NtECX0*^^?mYTPZ z66<(L({*1aNO}d8&d5kWpACt0mJl~FEeNKjXupS9eFYBpvH->cK1Yj;HLlyMC>FRe z4b{9IPQ7eGncMs^fNsD) zJ@J|7RIxMCEc^(lm{Baxe1<&Vw$)fZP<)&j;DdpT3JdysO{vSNEwz9$nNY$b9Oom? z4vRJXdi7;G(<&~zpm%h?_^U;|VhOp+;!0H`ccqI0#RKp$JRVhOnT_QPub z8j{x^7Qqmn)rsiuT^1w3o~SYH0#wUOH|}L}`hsMJk=bUU>n~|p9wAo1dXM!wo0`D= z9E=tbazi-e?W2m`J;6683>|(o{1?2}BS95`KIpFy%~vc65&qB1g;PXTKE!0m4cN%; zA9Y-PXqe#qcFHp2253+AvMWGH8DN^qy)1)#Z&K`eepAo$lOeo44QNF*{v3GX>FPG~ zqNJ^WWinFqvQ-pk*0vVEY#14ge?aGvMk=`87zi`rh1AirDU`rWc?>SlQ-sK=+!@>= zX3Qr?xg@BN-ZX|tsY&p>Vo~SNn>vCJqZ6i=`8-B09B&#qQ}U6|dR-BLH5S2CSSk1EaCi}lX%Vh1q91=Sz|jv3_V#D% zx|slpD(TXU^GZGiT~FYpO{FK8>lAc4Eo<*rNojxuE)L&C(Brl02A9FYt^W7 z;TTI76D~<{^hVbyj)9XB5@8)w^m8hmQpO|NKTpGh+qhT7NmJzW0y)q7wHf=VhK}5F zn??K4GFSqrO&V&JeK!1iwNu$$G}C$`f!lsQ@M&F)A<*XlTtez0SWe`#0({^vZp)Ai z&gj+tLHe60c7?v<9&h{fkj&e9V-Uti2I(ZMwHBC~C_~ybA#Nk;8?nx7$}uNvREY;< zZgl{#z}o^Y2S`KwQ=u+SdOi~Gou_+ ze0v#&ISV{%3*1f`@7iOMOUqL%#*PU3_CeG9y8tr<62jyd*>~_Y3G10!#egGVyxLVY zk{F|2BS~_Q0#7$H=qZ_9fx{ITbDuZEAWhc4T&CL0)RiFrusBF9c0d@WUgMNz(SI1k z0jgyfqPBtc=6431r=PM#v7q@3B?nt+`GO3}&=}dEEq|>n(og(j&f986Jk45NtmGJm zIhz^h)Suj&Hl?Wc8J!4hsE{FhXI z#QBzJsPYg3?5XY6W*YtYzq?e`EPYloAlVO|#d@z%ji-pE)*D{xo9Zp^d{bVo44<>?=ydwnMV9mZ)LZ5Tf#Env9^E^8qeHwtqS)K6ZqAg z+0Xw625O-s(qc12BJ6k_TIU0us_V^6_~cmgkWV_-X#0?I1(2QzNgJ8wC))nrO!45c z;a-0vKZMhVXWVKvj2_@L_@k7QAr#Zd!jhNadm6ZPic~t;SRQQ=t0eIJ&|&>B;S*bJ zGKjVu2NH-OwqY?C%Y;kaN(b1un35rx6%1^KysheL_^_H>19bHpcNjn?_L8nQ>>ts$ zBH-XDQyo6i?4A6GXT3$Y3T*hNToO3mIxv#nrf)g&^0nTAcMV&nyUWTg@6sL`o2aW8e%@6 z^|QGrt9gHsn8}M{)ked-bLO>0<@8suHM~0&@Z;W$apiVACmCZ%AEZr0rYTieE&pkh zp@)5TY6w#c=&JdKDc#zl{ZufV~7Cn2&x!1vSnz;Qqb|kr8^dwzqqmg$Jo36 zD-2r_zM1zwAI(ku>Iy2tYOJ-H{l<^Rkxx6CVwqe1NN(hz*Rc4yeq%Cc!ZcD6D=>^0 zF4ZQ7#t7C((5oj5pL8d>*g{?m2XgAQMH?F-=CNJ#%LyZmQGzR z5`!s-(zRODWpF%4eMj2VgL%8BZa-E35|ajAPlOA-&zm~`dGsx?E&sUu)op(;{^t}} z_;o{wg^>9;BNv{t(6)j%decGMzJ{@F<%cJB>-@w-{`p~ z*>;7F|E&fnWRdVWJ=B)LFMw`|-q0{&4ysrYp)4Z0YnFG}QDkZ&5^*beh}=V$p*)ClO?2 ztR-Pih&HTvX3Cx05jf}T-Ey93Pby5zwYDiWdmy;LsW23 zPwuL9YM9cscOt*0?=p zcoC})CyrG6s9aUfOD%JD>^6kLMA3@s7h23TIPe9gPTPO>kZo?DI>?PgB^5XBxubu^ z%(1tuEZj1h%365B5!8lCw+8t3;oK329HbrQPNRdOA6B?nP=wZO$Rt$)dr*`4g$sZ= z%yr<9zShS2noN!I?>tV;|_E{7sH1L_dgEUnaR= zJ~)wA$nS)|S8Ts%{EKqQUbu_~sip~(%a-56JN3)l9R<6fg~wlk9gml}q-y0YwE#=*y(_KVHV)WglX%U(WOiTfF<$z$K7g7Q3hycU~gvindHccD}*S zHZ~zz{cV>HfZ7S?Yt6k9cNmLkxn!N|yYR*)o%2GFm7%9X4|+^@X(kNzRDNOFl)q0A zJ_(&^?!z>4C(r%p=OAT~GtEipS;RR_g^SIL&_#y8cjRRPPk5YOUug8luiQ2-WOS zyYp3y-B!OqwWByNxhOQh>7v0=$}(;}bjUF90WNJf_p0naaJ=!KFU;%OQ4tJI1BmQf z$oN@ZYS-kzcbjbW&Q4hWQ1izXlozj>8`<>!3fBt*{^Q}PK}Wyz$)XTn@U&o8dO)Dq z;SL;z8Gio82-AF4q#Hny7cpegE`_DC&h3O7hTB|gz!{TMjyQtffj(Y$WTOY9fSe66 zsJ6e;F1eMV1@#NahnN@FNsu&5aZ^3+`jsdGO}3TJ_w9^ioJw9TNu=4_ensI#^QKaW zH=vB4A0~Czb>qc(b2}l5qz7}HkGnfhoN35Un6L(-QS@=mA`ZQeFuM~%eycqt_WHMM zL9z$O^AKi`j|y6wOuk}mPNqRzGL^e9Vj<8Bj!NpRH~?~cw^)b!9$6wrFG;s8TuztH z?*`|a3_?EddmrxrDsEh-tW$58?jT)em3XLO;3$(D(vLBiiF1G3S+b2qm=VTc{`)HM z_xDAH!hlF4NaK;dcYi^?WZ#~1$I%nIhcb7AuXuX8HJ#|9gz(n+s<(@UnmODO7z!>h ztPw$8kH9YJV<=cF2*mTej{E%$RR&_J(6RpG_G*~2*$9<3n^uZ3g6ecd+E7^I*^@h6 zSdD~s?cBk#?w|s3;+-<|EqlxLxG3HaC!KR1x08@L6K?Lx#%FFWT`Odq&%PDm2kC|D zI8W{YU|Nv;4XB^J@fmW2HrJTMNGHF+f95OIKJ3J!L2_WtM3Jv~W=&zPD8!q1s;NVp zh$ARaS4>XQC59K}vb#aCrqI}Q7|vF0cA;?dPS^8OQb(6lhXgT{@Z@cy3&{hQ#1TZH z;Rh84C_9H1|#i+~A6@^)G7jbCbXaOFmAeT%3rv9K(CsN@$;x)lh1~Ch9IO1QZ09BdGgOgfn}> zXnE&M#g-fdn?=Ounii^6jZo=Z?P)GNYzKCwx`;=F_42pN5S5f~B*`CgMNYGSX7L@% zDXwiBC%d$(xn+|ndufzZc+_!_;cQVQ-cc2<(=U|vnmhQ1*EL0=7aW~%q2Q=0)7+m~ z2?ueaB06blF}{Ay7eWnXPLn7hGTBXrnY#gVYoB$igVt}5zCdN!;GU<8cCmRgYmB$D zE$4>0XE>~rHiy0yYbOocZw}dF%EEj$vxgMu>mV9qKn0Ck=4)GaB`Z)16vMQ4>VDMs zC!H?=r!Pdb6izOZyU)v(c5RYx0n^j!w|&Q*p=+c(^JOl8wI8lmchIIZyHn-Jhi$|VEM zLK((}aGb~&N#W?;grEBgc4@+F-__!)n6S}&>F>{M!|Z%Z@QAfl*{+4uIzg7F z-XV_wt)!*r2hgXkz}-fj;;xwwdAwJlSD1>{qGh73yz1ju1ldwxQ}7J@nwH?N*aT2Y zkAvdRs*QUK)!m54kg`Y&43_BUXxcd8JNn4$5#L&6@Tn=%N0s50BX)rrot3url7+R2 z)eNlfK?FLu(}aoP9a#H%#8!iBg%pUPu(T1|C7q^^S%}!HC`?SE=LsILrI+k$5hcej zFNbPQ)K6Lvu%KfUjuzrWYH={FYKM~ly=y8)L|D29?5|rm-9ox#iGBU6dF{uIIb4qU z-aYiKuDG|R^cm)C(!sNiH`2`c2T_CkXGjOAxs(458=Or6Mi-!jfny{6E#DhNS+*}9 zcZ(g#yHQE4PFXD|!mkZ_#ym*iM(#bR&fN%u4%6uxH%ZU;H+TijVk|AMlD>7+H3xtm zo$#Vp*^UwyskT$KyGbzCD`1A6cK$Jx?)A%B(umDripXGFOEN*lhqM{lEXHihGr}wG zXDkg-iSd-_cH62NOK8tT{qTiHpfzw_#jKs;HNVfLYZWKok)i5sE~kj@K~qF-v+B?w zs}bi%QS8hT>1Kj11CvAy+w}|v)y!O=m~$jZyD@@tLFjXzj(rwBV!JJcUSAHkT-NTk zkPe|yfV?q7leDf?WI(cWho3i_v$SE!^Vx2fZ`8)uHv*z9?^UlJ>}6I1e1qS`X^`VM z8U%V-TtG_hf@3@d>7H~4D8gj{YRlx?+ks{7aN`o`iI8ArQb)o9Zm{rNEeaGc%3~wG zKX?~x`6^5y0)fDcgT%Fu#dlVDb!|3%JW{5PaU4&9U>cT6mcV$gC`k`QL{C$^^7YLj z7ZfzYhRCwh%dU7u|E*$`Z=2-&VEhbr*}-pqMKxk~j6ILh z&Fq~TvA=GtvfPrke|FNA2^HU}6~uqxbX5=J^{Z<6ipEb7?8uZhk#xl4V$v^pwb*w= zFBmTg_;+Eu)iA@lp-f^p$=j%RgDL@`#)B>KbEE4nGEUfh(0SbnM|@cI-8d-?E)EtGV zRk`4C!Rx5OvopecmT>UH^d-_( z)8#102Z(y!b@W8tg5;eXC&PneEQxLDZ~r$&vSMuo0hBkoI5!Xt9nEj{3lw_wu_eHj ze&A;G=0^xRznP!-Dere={$R85(!UL-SB zrsP?+UIarG^iLqadguI$q)UlF=YahO5b92Yp-x@6dm6y*K;b7WVIKyBvS!l()Y(gvVd{Kov(aJ7?iN#dRYTh$Um{b< zld{Rn+%tJ^2`IY1PZfTa%mld(%Lhd@w!H_N!5B&KY#BjFgfzFO>3T-sS;n{5ttd@4G;al*n88Urn0^5`*hPS$5x@$ zwh<9<01*(dK}5!=v_gV_f`E+C7DQx-%tI!XMp_Y(FhrT+03tF3nZl4kMa6&+3`1l} zm_rCjfJ|h5bIyJDse12v>#4Wusps4CX;a0;Udg8R+WWuO_5WR#{NJd?KRdTU(Suq? zm~w@#f#I0;-JaCG^yYuM%qD6(X`dxH`Z$TYHyOTRzz&S)aL&SZzab6qhkiICijHwz zd)I>}eH72CNhKNIyURXoN9=LR`ws9%scwj6!$^|v*gvlRC~H0bEJ@vCpXG$S0{BA& z@lac=ZuM*{b}gjv<3;FMxD&nlcjOz=4u;2Ph3-?alh#`2LveaK29L8t`~YZl{_~Rs zTVWi-m`?r$E4yGt#1zopoifwmrH8&_AH_3eUZ-?6eh~f+Xu=$&1nk5M&Q3D#t&d?d zB}EGK7$Apf=cL`#Ul3^3gw$mNKDgN*K`xkvp5LB<>6!Z>!|>_Gzt$9FeQNV49zbCjU@eS8x4&w!!VRy&`cFW;)m+yEs>bAKE z$1S|RH&X=^VUvClEe8+2r~E^<2}#*5|1)F1^J1d<$}%seA^)Oet+|+DRed|38>R!k zm+*<-(W6zrm$6UDRuv6jFrV`%bK?VU>yn-G-OOu08*;vgj~_+83C-f1f>Eq6nrGn} z7cG}_rH#n%mLfZ@x-6Z2>@Hc8?j>a!(Cs2*2D7P^3>N*#Ux_!C43!4k*lsP_ORgCX zq`hnU9>s~n*&O_F0F;i4MCuO$nb3ouHWzkF))YG@Dc{{Uy!box8xe_eXT>PbsZm2( zMZ%wXJJr+>jPI2$Grlgy_gcq{@_hQeRg>xXTVlKK@53;5mLdOm*sBt*l^{->c7Z z&U0;p{y(DBU#IFrN7A-T?+uzY?~6F)=BI770B%q1t{I zak&fX_S%p)x8`D2zVokDx7IRB3q7Du7JJ>WWy{hcd^-`HGiT!C{PQ9ljCbpR8QfJo zQLo7lXHyvOxG|1QjZSr4&r7{R|DjV-c83Eyz~A2c9RWsn$fxp&rbx{_YD~%|k;$}- zase`2ps*~t;N*fE%^ythdaPI;Lzap+r!%rBS?EcJ*y{&F21WuV41KeDehZ8F&?5@9r&Y+rB=)q&xy(AT4mp9pNsS z->o>hW+XEIhu7Lel(}Y3Mbv2DcV=jwm72+&_F4LnB5rj0&9F(OgT$G-OKy9)RQJ!> z^=Vhn$$r@gNq_#l&Gm!x+9V(e1N~rcSV7x|6yelmGcWcO;+0OG-VvRDYW`(uK>2C~ zLz*n9*B7+Z^hM1t-cDL?Le|y%^c#G`%l1D^)lt4twhAT&7){9ij8YE<*iPtvzH-gz z58`*7m*^Vzmm-G?STpHXeZR4jCnPsSZr_I@nBzYiCaIr|3gUU}53hA7krISSOZ0({ zb26`!CYZ!CE}Q8aqx|`{#2Q#b32loLWj3*J`s$$W#rfo4FzC5-jg2f?gwsHC#q;Fg z9{}spFCs$TKfb<`=BaBDEn~!AyGfGC1B~cf;x<`bx^wAC;Y?yXtf4?s)Dz3qslYZe z%-I$#8tb**S3WR#h_O*1zTqm#w!*EcOmoSZ*(d#FZ4A6yvL;Cw&K7Q6Ux?45=pSTU zD||=_crUo6P9j#{BnFrs`-;5Vsty+?+mDOO!iOaKcZYnd699Nam&Re`_Bx%!*eGBQ>eW-gO8ixkH$nEltDh=F%;YZ z+eL@ys&h{nJMS6L0rQHRZISy7uxK@cHTpUv43g&!ZV(@lMW&$@cA-b zR;>Vj)F5{T%$Q;>-G_@>$oo9f$SH zGat62briiKJ8mSAiBbU0yX58I85*76z-AY=3l|kuaaM!<63xG~MtjY zVlN{#1G+e}mxr?z8R?8-G3At|*am}}?8|Lx?nTk^rV)Vb(h!Li-hY`;Yuusi)|CP827WP_Q4JG8Pw<`zxj-cT&=b`~_+CaNOcFCEk9Lv1BKjxST#0|40G2gg6OU?q(D$ z@C^BBB~L#ykDN5@)1fybv{CEKLKDy!b{d)a@PFFX{=3oP|4%&a zfB&PuE;4qUSKn!4j6W3(8+6*!0~jO|dSuT9rxo5+WEsz625Q41ZXx!3+}MBY1*0o% z4tQ(HyHX6pe2-wtF2o|jSCBwN$#!wzO~*#CmNbiG_g4Hek>J-AIA|ye z{>WP~{46Fl8eTXE>OmBpT;04r!~5|m;Uqu?TvO~=G90#1laAo$zk9EK3$6YGu#c#t zsm_=aJq>01;`b4%W#EJJTLk>nBZC7l#txb08-|vQvL^OES?vj!NiFO~oX$P`MOgq74IVS;|%~@&})XiNrq=)TAsKcoSj4ZPg77%2q}KPOnBjQh)0gkF|)^ z4e~;8&y;L*%x9s(QWIz0UwnY4YWQ%{xyl(zI{K(Yb zpK{yZf8aax_wd6Bf6H3`Bh&wnjP@T{;@>jie`Fee%Z3L3mX$62J^URv=YJ#njr$o$ z7C*HGv+}Qfxc}On{J%f^*RJIM?$uEBwOgGR^z2sF?p5z#nm;g}N=-XU_) z^*LHKci)-jzMf;-*5cw6ELDZ2@RvSFP#Lm?K=Wo&LBlhigKC3{qqahdYOv_2!}g^} zWkdH=-|0|DE$vD;-|yKne_2~`74lxnQ$t6RIr4JUgn*XEyAbT+B*S^_;P%{k*CTSuU$RkginuOWP z=O4{mt=#70U@ch0i{M0eF>POcuH(2jTFQEB4jBPXVK`mbR%y;mkNj%Ur%)r5G6c z=|Q=uqb%)ODX^4jS-3L9JwjR)C5B(7Su!SD+lX7g4T-7%J5iNWQ0Iq$g_Z5rNg(#98|;-Mhp!1MZ66~Avv)O-~bejmwhaPRtc|a2bl6V zKvBn-?URxpZH*-_M?6WjtJU*}klIz@draln#KMr3q$M}pC6#}-hQfKI+^JI*|E^$* zv8`lioDyqb$r-pYw#FJa?0aP6f>^A@4V^*BwA-&;F(-#PAWn^#p+Vwp;Ig17-amjH z`_}5R^mZ7x4$vW+Eb9-st_OL=G{#qN<*u=2bRC!P*DcwYrZTQlam?A5j4#gM@i0t_ zsLjMGKZp|2_-d`hJ7W3)`z3=Q2-Kat!gy`BBifyLpJ#zBzHm5n=dYnIX%}yA{YI@5 z++TQMJB!bay_#8O?_6PF9h13Yl|wv76XO$4kD0b&5vo~A%R%Zuq|-%${0 zTYvO?QM#-3wGs0n@tXu{bkF(+{8?H(g9QChd|p^YU3lQ4GXTwK6@(^!>}FKJ>ciz> z9c#eU^26nn<*|){Va+O*v?drm+2PvB;7?^KdSi;iibxicRSLnC{jcPe56XNj;fv3sD}%3P>Xkfn@LjiLw65GM4{#@u z*oX2!h|?LVLC|;Ob3vbP(R_)u$nisDKzx6IVFb)Pa1Jt=dWEHdLJmCgMwXrkzAFr& zzK)<+8v(`81A_nL>` zwCKjl$>7h85^}<+r7nCjbUDit3qh6nBA(d44!$#g=!fImR2{`z zi3?~l`KotOofyzAC@9eUbDUwZv(x#Jg+`zLWbxxs(A{DlX%TnlRyfJ_MAQ{hc2xk) zHrJ)ArgdI~{7pEt=2^-A(?B{`6szen)j*t}hNG9cNM|A5DU(C4^F;6z&a@5^(gS-Z8u0r@mn%o5JM#;e{)t z4j!hyGWzMVryX2czSSivjdZ`7R#g0BIrw$b*SrHz18sQ<^Dqm%Ou-^LB~UWh$t@1S z3u5`HD!TPLDaE&4MU|5+TqiPU{L=Zjizj`wE0V?UO)@~FNswLKa>q$)^Kx3a7g-;O zbQu?q@+g~uVPl4rDQePfK`i)>Sbs*fQF0RcigCcjVoTbHVyQQ~B7X&oXkWqZ$Tm_G z=4xmoHlA-SbBF`2xBRXv4Zs=tZsDQ!M2@6!nv{m_j3Ld4i;5LfU3vPDG?eHZCM|b< zt_Z&B?=j9~AQ|!p-?IoW1b55>cm?uZj(jttfkLm+XqCWEl1p9amW|WV@aOaDZa)Q< zcMLVdEMEG$hBv12-u_f0@UvmvQq+0Gbo^_ zvK!7A6AXT+r%tcE$%!+?U);ncY~&8t^D8G55?f`=#v7yh<Pie{|Cms<1G@l&DWW%AX?dhQ+z``9=`a7~Oec`0A{*;_A|{Iqu$ z!->T5L-Cgz_`KImo_8mu)D0IKA{rqM*FN#Bvw9vD(m`!&?g29PD_%3!XW<93G7<2@ zTSKEQ8eA$Vr)$t5#1D7PX`nyKCE`QOWbMWXycQjH33)`e*dTvW9`P9k z57mr=fiu8evgP_Gu|}*HXLxq!-3@W5J5^o49~)V&#{;z*;_+(_^d6E?T@jqDu-u z4}0Ye%5f-8*W|&!Ti*M%EQ_w`js7W6hA9FR-pJ=FuRKvI1>#tX#z;`0LHIs{pc;nO*|5w^%bP&XuT9fu{-JU4v- zf0H%kO}NwlB&xS8WVJ~*(ncY)di4WTpqKF#l1xEQYUw0tg*k-W^$HQqbd*;Em2JC> zDX|?Mol0fEDMDyO#O0ZK(l2F4fvCIi;<97x?^vqoy8GnY8Yto$psd2K0o9U|a%4Ge z)m&FF2DjHX5f>J&-~j2hfk0qa!rG!aR_^0t02P1q@(6HOC31Je(>#)+3f8aj-L#E8 z^6J{2Y;oy4MMdhLfPT#@GQOHH$H3OeqAm?MgsrZOHXA#tjz^6}-4@8De-1ege9qrr zO$Qil1l#I1uGB*Uuow##1<*=b)YUW+*6h*IAvy*p1al6TRv_Mlx1~3n7NdQCAGI2n z&vx9izAk(a?10QD3Xg;x#mSVZRTHCe+5>?nesAh37p4q!R2h-ROrh9}#)g)0-%ds& ze-G$J-@4wNtBW4~Lr)m`$PwKG%t%FG`uPam@ymQGG_2M2ZWRMROAUSxOORLU6r^G- zT@e`3XG!&4W_tD^1gtx;$T<4O6UXt94ofF2cS86C4)9nu^^S9@ic3QT;~K|#QBY&y z>U2w)Kc{l)TUNO^=CMf>r3h9NeDi_8KtAmpfOHP@X)wr`B+jG)898TTt?VM3!c{jT z`dSU`3d$@AUhU9;G&%Q}vSEv%<34+D9==_|8ZnOkpuG1a&**N?M>29aCIo2h=)7?< zJ98o8Qg*t;C3@u|}L(=%yo~6TzDZu&>hrS}sq3F{}livO{ye z;)?uDoCLJj;DGzbNUMB16c$~fleaOGV}OM3R#*uvwTOd^5X|jT5K7-bL*b4RmH<<3VJ@!JQa;41xh``Fo*?kcID8+ z2Ohpb7%NjxUK(q)Hap^Tp=7G~czLr@F(;)H2v<&K5KxR0V#QfhGJDZpub6^9l{(xz zmX_KMXnu|VdR4NurchmL<}xNtLTQU~;!?>fo~QsCd)PwEGp}v!gQs>cpsZhg`jhF! zwjcxiy$EItT}SnOvHg$bxUK23dZ@uAW#{~gL+Zo}4FvksK~Y6>M{g2qJ^dB*-Ro7@ zg2-1iCFFlkjyf7KJDRKwq?Ym+Yl^@6QDyS?Ytb0J{RGS1qWQ%)^+xsmrM1jqH8n*8 z;&h_wX3cyqM|FdGCl_^$_sOv@HfUcirOPO}-(s$k(peS#67a@zzQc-*e!PmHzLP+e zk44Zw+8KF{tt;wKJrQJi^-}}-_omn92z++5>@O#!IClXXYoed(SElgDIilMnZ*m6X zf2p8tgVy&f?DQ^L*`8ws5J=e8OE2^zNr^%TYV41>cbKj(1*anW&6>p{*Jgyi_W)ct zkFqLfUa4)I{@tvnIgH*&(`Efg(6~ImAkwNMXosO*eg?NckQy(= ziyKtMiO#YLYip?*Gx1ker2Pszr@H<$v_ zq@zz0-BPl!VQB~S?>f7{>#Z>&yMAwM^;r>E5=$qlq)pmDerBdJNKAGiw@X*o_2@?| zn$j-hLiPyI-^m!kbg1kFwKhpa&e1{~eB$^ksnwMA=$L$(_5_VgE0~Ws-p@^x!&oic zUP`cC=n;jRpWfQ%bxZ0BC4UaAjH)V(OOS2b_G{atFTq`Ydiknq0en5HVEl{xtaM&} z;)b_>RbvG(*gs`@KUwOC94R0X%*qX+mnY?MenvHM{fntE=K$*ptK{gz_%QSbKN=~> z?C`qc^9^l9zB#9OmjTU@vo#7nzLN(F6bD4L9qPI=vN(YfAsgd9zBBla<$IM~@+5K> z=nooAY-K6w98Sv^=rJLbS!yW5;$8XWaO33uJ7ED9*AFLC(wm3e_;;wPJgk?QV&(OD zwp+37iE7_FEttmX*2y5O2WBw9vl?R!vWAR9MLHe>MPC$C^ECw?9@VvmvV`=WRVU@( z+X*kp%dl4?G6Eebc~(VTXlQ2BkFu|_5)!KOvmArngYv+cwgz>^`g_X2mqINI9)@a# zwZ0mrJi8kz6YZIb{8PXPQ?|*VEd?TN3+G4W2@Qgn(3ea}U#~|q|Atlj^UFoUE*$oP zK6|gujr5rZn3rv3hoZp8O-tj`J)>5=az9kAIvr?*E26n%_@QCgmm#oG1>G+^gLAt& z)$oW$7(vJvqadiZ2_Ce4Jf|z%eYJsW)s}I79Q-DwI~X@oxTu5H+jV5OWevm=aEU)8 ztNN-*dBAm<(Y8Tyn~~mVJMS;W$^c=8yf%tcIsO^^$&N7dsItN-cJ=lR28egLUcX~R ztE1B{-WsALl?5{M0UuAN1t{Iv+IiN|73KO@~F`j+6Q zhlIFcN0K{eZaTF-1#qwkF%DSGU1oYL>jl)usm^pBi)&vhNM#@2?AL$2NjCn`pX2yxObNm3$2z^;>O5 zYgZRy$Lpr*_aFIQ|6~_nOu}8P`hQ)?b(ZCvd?hJ!wP*`*yp-`p|H3tKnOo&Vm3Msw z+BQIXE?qLh_E1^GE>~9&yQm&31TPQd=Sk?3B_`5*#rmBg&{!|P5sMIt%Y9qBn2bw)@ z!Xe)nhBnPl!P@_*ZOD$e)KO&U{N@?q^E`#LcTjzmlQ>HGYLzTvkgcOH=LlU<)Yo5Y zBikS*nQ;Ji|7Iqns4ho}wVHb6l~%Uf7cw#X1m!HQX*kGJhEO5BQelrc02DTRw-*vd z1#j|?-T0jxxXqYdOXWitE693HDH zPw01hNhg3d71>|B=_y26CtVpG*TcCSq4L*Fb-c%|YEoN6Cc{MsG*z6$LhV-p`J!BzP7lyYI+u|Y}0f}YZD{@E!&qicHY34+S4{Q_neD1 zcQxSQsw8&U-nYJ1hJgLT7;=5OCkc&3UTUh{X4rvO>Z00A6}N>|qacyKi2~KQFSH39 zl(5=~)$|y}cJa>1R({dFIU_>?0EFC1fc1R+$$Ps{Lu)0QBbh6kDHKvj!rT`1T+{ea z*w%_YVjpc61A3hNN1F5a)7j-7`Xl@)&C`Bi+bD?!B^B-QJys|?ap^PmS=)mB={j^` zC%phwVQzSF@?w||)XC=AlwZe8x=-IwXJj6Fe=C+)w^ohmePl&cnMJF%p`3}`H4;0- z0aw)Pt&VSI(AFF8Q9tIz!EBu{<+e#DpDbHfUL-GyK}VfPF<(>WIHg9l0#D&th$L_m za#d-^VdD3t1DqV@7k};X;6@-h@RUU}U6?1KDsM_!8SZ&P_%Nb=+?{J1UBQqE5ah1u zJ7+B@p1aZ$hFy0xhviS!f)F-h`OZpsPAsENxoiM@@@>7ctu~WNptO0bl*VpS+pq$o zYKwxFLsg|ojx$l@OUQTHxG$wf&RfFLqE|k}U9suZMb`W3O>rec*dUW+%# ze&?3ZJvVHeSe$(QkZB^xF`ergC(psk9A8y)K~EuI`WY~A8$aH zP}jNZ^DPh>27YuR&;b%W6g}*iY_!lk{j%Jm2c-ImK$p(VQ!1IUdR9-sUA2O~&W(mX zVwq*r^6iiBv|j>;%5s^>CoG)uqA$Ty-vyhZ1a8&Y)&VQ12dBEYvR5=OR_f)&SvEv^ ziYf|qj2Vjvt?EH#RY$;|n3PwvOJ*qJ^g{}(Ef4B^o|gzZ>pna_o)=djxE9(M5O$EN zteJC|N;x{22Q~m?q@b&O)^gvBIrFRv3#*x0(#pltEHJkgnA{M(-#S{k`JST9qj$!| z*rAG>-_jd=JREIqWgAQ%B7V4~L=lbSk^X27Dn%vkcL3y@>T2twM>svXs8KvWkO99G zj55C#;`;#J+!U?H*Nz&m&?biruWlSz8@1 znKBV*x;EHrgOLW79790Qt=4u}ua1JeF*h6Q!YfFXu?sqO?yCJ@Cn9r@MP0frefLZw zp^7mU&Gd9q><6l%pt3Hv#hhcs+-JLRr$JS!h%yK+t>;3 z?`9hl-Zu_ai-_hsWCi97h~`A@@T`-*G3QcZZ9Im$Nju@LFOexZqfNZ;yV} zsnhG70dZS;-+Gmcjm~{L;_Tgi?R=GXSKoBJ)dH@4{wHz?F3x=hZKvMZY+uOi>&vFC zWvA53SA2o&6pH+=FgOSAUrR~UZbRSB{q@|Wiwn@ltgvfi9Mil9(dj@agvqE)fE|le8yv;cbo;u2|rcbrnKrA+|_5*Q+8l zqN|`@iXTIp*dD!4d^Yol~v>StPej4O3tJd={&;dA_lPq)wS~VG2h-RP%(HYbd^A%wjB+dw7LSh5C?q z2-P&R);<83|bL$BY9)r~f4D zSBr{o>-O1clV%#X?%r4qH2;J#s==uyo8wxK0Rgh}qx1J-D<`txj@Lqt1!v&Wjt?Jz z7a2h?43aS0)2K?IXjbmch=0uR4u$!1Mo=kdx%H+N+Q0-QG}^8_#M1`?g#%kF$58my z4|AK4(voohkjGEtQF^-VH=<{QQ@7>2RJTavthjpPh2Aw!E4`a{E91)i-kjy`11e@q z3duus^r@^D%FoxO&6T2#rMu<2=-#(Xno-Cx&aI?x{AIt9IJ_GQ+&-K6UJC;}D|-7C zE$TSiB=fF!nH8@2yqWCbfB*@YN@ObeM@NP>``!LjWc<~8jeC;_O^eyS13%k$#oenh zcPS?3sVYRX%g2CW0`ce-W3OMw)-OG|!?){uJ3(n*VUOmVp)=No@=T*EA=tI_(rEu} zl*}-Dam9MDar(!l$PAUBwDLi{>Z8@JF!Yxk*IEb*(LB$SC54lILxTDu-8d^pRkteb z9;flPCwtFyza;SdYUzi zP3~#7QU#CKZ>-6{>es4TRymtAICBc9oW_A{iGVZX4>(Ot^hmM$1khAxO1iu|iqIvX zXR+IW;_i`NfTI)$oRUsObrYZLE7x-Agojk=RHZII(J*N^vCq_yx6zrfP!2>Ea*^G7 z$(bnoj@Rp^5Btkv`GI>=!?80ccMc5iF7x^@+vO%tB-NL+xI^_x}2@d5KRifT`8Nz%J$r&!EJpv!=q0C87DKpH%i zKf9naX*AZVckWVrUq4E@5bfz7Q?_@x@OUhvj1721#43b>N!>gTQl#q(x_4)Q14+1K z>*~Gx`iiIPok)zT`&n02V&BVBb7th{=`|ZEjC2&wb!nKz(rm*H--~FFCh={tAk`O6 zBnf}$)Oudm>1Hpza{Hkj$o+`FlDc7y&nQXo}Z1Lo*DgsQ5 z*qF3~6yUQVc#haM(-`}%KumiTuzSEHaqRZ6F_koH<6+sQJjB}gU}Xp)rM;Z@1TKRU z!r4xu&1r9&9G;6IvySp+7xbXy zTV>W!kyEQRTd%{_eEr&akm!{U8-WaeC?G{GJ=cfar8#f8wgQhBL!)d~KYTSdz#b}J zH>>NKf1*?QsUBN*g2N@F=oYns{6FJSVb{KyJMuBM>n{|4$=^l3gnzAA(iQ;JZPWiq zcZEJJ|JpFEv1+{Wo$w#vr-ol4>O`R$dEAB;CtLJqnXA=P%>IDu0iW$RevogmKkssU zU4wYO!#3jw&O^i|z-i1$$W!FAfVY~{Cab#Qg7vN$@QBUXfoDAzy>~0_AhIV<59}8Y zdJLKj+Vw&PJ9SArQNXIRV3%Ou{ND9#&M&0jmP|*Y&tgtn)xh?^ zwe3H(Kg;;G6m1jtDrC9+vf!8bpEC64avz#s+k27L;(u zqeoyR%PKo28S868VMzB-H1g)x=kdD}U zN%a*e!alSxOcjtbKpRGexBift`xq(TCagjzKe9`NKe;dJg8P>cDNRYv^+;}s)W#Ta zu(58O9ztgLM2@c&ROElh3wgstVZW!=Po@r`JxdQxxyTzn-Wkg_COr)Vsd_1(Y$m`U z{zUQ}bkNfo@+%yLzW$AGgny`km363eAG^f1c&$d*5 zAr_4{yOMXkObPQ}up-mf2IHX!Q*%i@4ra$KcQb-S_C9*kOhjASdV%0kJr{xUNL>z zX}q>IuysG1#hj?#3+qV#G0LCWzbiLPi$WpR(hjI5Oe%S^zg7bftLx_{>LJ8qU9Rb@ zU7(tDDIvm$pS4U2A#9kiQYB>(S+^&Q=Q>PnXpkifXMc;buGY0*S?g0BO%da+C_hm_ zrar0M*kr0Dbp|?wEyzD8BD97N>7jxp`PP|vUGCNmkKyk-A{x+K4V*2K-Fze;{gVw> zy8Z_c&PMCFdCI*KPUj-Pt-MI`06g}+2QNGPZKzeO41Rg1uG8H8#GnS58LRq?4xZGO z@=OpmE_R_(w@`l7Q`sl+ zF}8UooHrE%X|&P224&Od=}meDlajE2s7XGLs6z}oJcc~3#xA%q+zDm@x!2bxy?`#J zc8$@VmoVIAyOo!cYLA*G7T||s+#|emo<)V68ftyhqo;-!(0*E41ine}4ebIgPW~!x ztL+L}Pq49R>z7}+8y3c@!9>=hskg6miJX46gou~HVX9VCcw}l?rv#YiA@b#MIe;2r-aLdjf=s5i4%e7VE4f7t z5`D99tgpx798AZMB`Q13}-;GjbswfOe=u^~QPzwDNlTF(5@{DCVXNSJ%RP zPNe}q$-xh1hZ?Xa;3gxm72?sE_MWu+ik3q`G6Cyo6cQtU8*nS zqU5rvU2$=W$|Q-j%u}xuS4fXoMq^q4bvhJB;@O-JeB-rG69J)3F?Cy!)(fqAX3W1} zf}0b~=CK8Mc+I_lYQMNtnP0Y_R%<5@qG!Q$RL08#d6t21fX zH^&O_k5VvXRVcD{EY_mc=UjbDl=j3fOdtBz;$YCkDx zOe4nxo{0I}hw~1*G<%h`_5|N~ndwfR5-hF^Gm-i8fh=ZT#pt;N+Dh8m%qdM{l5$Pc zJI=x_Kr>l#b*4NCG=0Ilrdah{T}+6PR??>NT7!;dYSDu zIr3&;j=Ii1PQw$}X1a}#)3lD*PrcKbdU~Y906*4*Q29v@0Y8N2YAxit#1{$(*C8() z#o+zUNTl_~yE$$5ahuj+bqe_f-HiUqat{$^KYUM!P0G~EZO;*`h?ho)#xxY4c%#o7NPCn;iK!T83!eOcNy5Ouprxwlu_p~ zUsq?MN`#hb6oe1H+;0)~4F^g%TNsRp?fTvR&E9AzT1{sS9UhG3A&^;CCuaAMHMd!P&{xlUa-O+ z;%Y~Otunn|DY^Z5BGgaOogou#Bd5s*E%W^tcAQpn7gjvT1VkTZY20-x%0KFUH)JSk z<(=CA+ET+HWO4@g1QpoYPfL`__e=U50M-_Sy6_MMzfaL=1jJ=P^xI#i7?Kriaj6Hs z{bFT=x_S00#Y>IAY)xt;=W8Q<-4c$|IbJ9r{mA>{?1_5nm7k$Yj zWM&(!(T5x@SbD|Pj)3x@#mZe&E2d)4Jt)WnqZudN7^|Zgle$ZHR`BSdpd))F!|GBP zScOJpq=oT3eU?W+$m8;Zr%>uBj6lT3&*ZKspT>_gG)UUQ2MHbddssFzbL$%PFoV}4 zs@B#jNIyy*&!NNTA2v~Oiv;cRjqpnk9dWW%md>w0S|ybvit-IW84}lL%+X+TQ|&tE z+U0}0jH2g<9ds1(_R0#u#H+h@4M+Knhb(aYyzy4jR-y{KJtu6pg(<1JB9#X;H?C#s zz8Hey57?vd&iiFB@<#2%>smJ#^H{#2jCHbnb)##U=v8FU;kEvHg^aJd+Kzkb2_8CF?wB>LT3G>F~XSn@ISmGv=%j>FeBT|BiE=Aw|PCQfCja z(%1(*DNq|HO1k+A6;opzNV14t2gP<>bl_|;4sE+uQF$?_tyy%H={~CPb0ZR5yd6~W z*Rp5;qRBAlwjGwhnZ+7Mu1{@FL|RzX;FPd6eavuCg>DU}7wqIo4W3#R+`o|rQcZHb zkDTauUYWEPj2vwcqB@rAGxQ?4#Vci88eDi?b(1gvW%Dc}dj|*5+n}q1XY;MNuZu>K z30p(fK5A@S@x7Emf*p=8=1ql@A5q zibFH{1uuQ(CfMfwF;n)1KNrtryFk6H8vsP{7c2nPGE-gN67g*lnV1f)CON8%O`Qk! z*eCR8S}&b1-^p~Qo((eWd~E zoVi;J?pkVgIMDrxcoY$j*iw@^NiN#+C2qenZEr~mXB*ZduJ(e71u+5pxdZvd;5U(D zzGD}c(IK-T>t~!{{%8j~I2N!Kh6^73C)tJh=~rHh{Mc~%aKi)7f?%NZRjyrYdTrHK zi>Y~bWP{4@E^)}_1!F3^vgiHR+YeLy@`ry7aG^ojM|B<6dbJ|yis!>!u$ZwbWQtZ1 zSLX9RO2^<)8HO}A1$hr5%kYe1J+uJ*fi7EjDWCKWa>lI|7nHQ*mrbSqB5GfKa-QZ# zgH6RuoMa_3`ZEKD%?~=8w3)$Kw)(%HHja~D@0VFO&fT}m-~^k*7W-$ko$3fSI#D+R zEijb&NwGH=#EY%8%5E#~LM01@Gv+ttC8Cjo_V}CSieZ^~%ICKxE^^{@ULa}$+o&4l zfPt7kP36X-ZBAv})A`#qHm`H)v|zAFpMfQD*sNP!ORV3oZVMakE z5!^{q0t16ee&4A%P}_Ajh{Tr^9F+Q_>P*Z?VD8!&RoYtEoZ|S#a-Rm8 z7KOYr(oby`7;>V^w#QLinA?^vod8)kEvo{Xf)kauZ&p z&A$e!MuAhy16u31jtTe*G-9JL+!J}-;}zowD{U>-s*qK-KMDXxj=xgq8xxi_$FQX2 zJVA6Agq5fPC@id7IsT*fkH(5(2U{;G?D0If<>kd7R5vF`01~E@k%AYydq&AV zzO814ID&nGy{uAa+OD8*u)zAk5!Rv{lp=b(mg&9suxrXifT|06$V1fr;QkH+$WXHu ze7Ji3m@ZzlR_)#3@10N)j7+B|FZ8EB5s4>DhyvOnlr;$?>*pPKLY z-yBW~rdVnH$Z5&&egMIk)jg4k5Ju2G%pY%0(w-V0a{Otu+-Rsd-urDW*x~;H zO+d20c=BlptoEH|%6>Bk?dKj?hd-R2p}i9xR!u3nW}^M_@sjK&M>4#&CYBxZ z90!MV-fYFlJK{MRG6ZdnESf04-B#84VA_C2(xYT)l%<7o1<5_Gi< zfhX+pzznfbWlebkrwu)8ZoQNR+xS<}TqA8bPWhR3vat-L=50RX9i1S>_r6c@(*h~s z#HHM2SHOu{dui*MePF5Bj~iLO03~u;#q!TSa5BA}5xFWFg8nW^t+pBP2pxT3YI6v- zov~k4*0MzN{DV|R)e$h%xx5%#b}@mvliK5yTh%1NNLzWQ!m z{Skuao-GG1^~1G1%vyiPDp5R{ZL4HE3h$0T2B&B3C!W*c&uO}K=uit}W@PuC{7yV~<6#>YH|Yi+cJngsM7(_kN}x>T)x=j|%ICi>FpwjjKhV}n zJAH750mvD5kDjZL0_`v3qyHgU*fc)alv*1AU3#+q-_kv>yYcsep+MKoI zBkcTVpLY$41WQ_Yy#4k`I80R!IN$FJHwNeN2%ir2J*f@dm)yY_SI8q>s{!}^X>ZHv zePArf`74|t1*Wyhcv|W>c((0FF9`2}>L@+kD?bFh(gF8Kiz0A%4SOQfnQ*!;enW z*F$f-FY(>qeo*u$d(LUM1B48LDGgZ z@M6{WwNXX!0BW#Pd#;th$v)Ke_^kLq766?}M6KSy@Tf25)zFr~9u(SYY~X`3`OqXq#%o z-c9%*%Ih~D(g-^N_nKqhKe5xnN{X*9y5|8cr3&-K>q-h&K5QLRzQpOvL4ByaM{k#_WF7j)X=z1*B$9@fA{RuTWF>TM~C1Go8zAd;FE1qS9bQQyiwBBi(b3Lf10v_0J z6^(;NFY7xY6F_})jQ`j77A#&lY4hK`h1E~HXZbamFkcqR?v^To%Q4HjrK0z?2E{(t zudf65^S7@(%WG@ZHP2J-xckNR3=;rPcVSpVJv&~KJl zS3WIp>(n^cs{9(zD*F0T(ytBf8cyrGj$Q}fbcJkZX(32mw*$9%dV)L{J8)A=5u}X3 z#n!JmunYJnKUg_YIBD~fr#H()dB^5mM+>U@p`$TH=TtxkY_&?h8~V)!?ZXP{wrd}W z--SBHC+uk%3Wv4vm)9k8Zh?OE^fHg%NE~`{qOgpzmD43uXch<#A|QqE`WQoLv??v z3FwBmc=ZOKfKxHj`uqsE$))^^vJHWmY;MHKeHEBKctfSEtrNCO+tZoCAmP;R)_E^h z1b|{zxr1dPns0ZdYWFRf3hD-fi&FodfVtQ&Ke49;?zW%lKR3Jq^V_b}--G7hOR3L| zy`2ii_HK0_l^t;JHN#%0Hs0#^kB8fy=#WRm2q3{pgag>O?O(BcLNy35f1c(7~;8S{$8aA9=f^U zleQ)Kuu~wIofc$!Q?!nJsgk5v9Drx~SEYN0hQW%-{ijwf3C^`LYukWy@cIM4%#&A# z>+C}l_Kh0D%O-bqr=KWJbqI2pwa^!=mp+l^H@1r6L8XO-Sy7-WDO(Qve1*&S{;bGI zMX-(5md;KM0wahn{Y>*8xX-^UO@C+t@8Cu04W>TetD3Le;=KfXO{ew?YeeN7XQgKg ze~R{}9pA5AtN`O(YQ)vIec(4$t=w;H1g@7?=Z5?uF!dLtk_|e*t9_=Bvgi-k?Pg{- zCwv5_{`+Brvj8Xk>)gHLyTQp^^MG%*0D{`~*o1@I!JXG~%;$g^*sZFqnIY|>@jB*X zbVUjRJwNm|tS6qwbu{p?>s%&^W7khT(j03q+SgRw$Sz+&_Ze%B9Atsp7WGDIil(SM zc5^J0%i%HV_jqdXF>nGxpND-G)tehP)2+E2$i?cFU zly6rsUMNS4;*H=btfg*!5ZJ!nxb1BQsAIvdEf}i0 zZ}S)Ko;>ON_z)oByuy_hd(hsyXI;$B1T&j*eWTnI;M0obvong|=q;1-T%lML58K^u z%)1B5VfW*S_92+N`pnHOj6rbC$~6Wb7J;gBJn5?22Qci+uX`?C1Jcd&iN9sz;NCf| zrFpdg?sopq##XKeDi^iZUG4-!Ue?sdu}hR+1nr;yRT(6UU-S2VEra_4x9k|IIv9O_ z3yVHv!gX!jNyg)~pww)ee{2>9B;$X(3SS%qb&*cfV=q5Yvg)SwUUC7M`^lp4+bK|T zU2dL#-3#i}X@bn=QqW(h`;oe(;CeM@Yc4|y^lFvXP5S>p$q0Ng)%OP2jslAdPddS@ zW>9fc5gsqE9e-dtD#|x4ySEG5iRX-+rNRT%d)8sWxx>aJs%Tu?J}ogg^)j5NRg8c0 zb%1-=bLZ+GMR1r9a!TUMU%>F>;farCgC8n9_*2FLq@P}ii%)!nqfIO8%uF6k6n+0L zIV%B*7yrF-a3pLuZHzASum*io^d}s91=`c>#tDslkjqbWtDhbMsl#LBQ2$#{8gK1P z@*e@iizMu~3j%9>TKD4EUg)mub6Bvi3wE!E`{vd7g5H~Z$m66USY=aBmWGD|CvR-& zp0rC8&%M}VY${s!Uin@K|KkVuN1ucvY6oD+HHayk5(N4`qdO6*JW<^Ga`sN&r=U|P zHH=fwK=L86>PY~vE$Y4zfo^#aZBp6ng zWRgv8gXNJJy#Tpj>}{MV$LfTGf8Fxo@iaKwWgnjPU^D1$p7zSkO(4gv`4$^l1zwa~ zlVVsn7*u+W@ZejpMvceGF@azwZ0-$ey#)IOin`^s8TKIkKzddcu7==!f~ zUAjf}3sV}gZ@&h*#iAMg+AO#}Zok>;z8EI1OIp%y+k&=n{p5QWo`}YejC@LS2sr%f zXHV$8hbzOScCK6rtQ9v6x&_vQbHw%5%B#P@dT*~g=5`j$m08IqwOheb4qm^VQ3B@O zNA%cKHdx!HzKu%}%~KaMR{xRnaLp@Nzcx^mx2|X%iFFWww!VvH-Qo?_-b2a!ag%_9=xYa?yZOW_?$Uf zG!F6mJ<2hP{4t*k;Aw|N74C=y>xU)F;FAehPqoO06>MOmR9dPw$qLL=omExqkAr^u z;Ph|b%0>CyuVeSOn}M<8Qfj$v8JKCY+j}xZ@kHY>73_Km_o1I^1J7$kaX^dg)ur!% z>Kko$RTIG}^eKMWy9Sgm&#GRXSPOw``%LMtui>tAe_CjFB}h-tKYu-E2bk|{sJj;z z!u?_I`TD|WI9*$~SMQQ2k90Vnr5hv-^5m{QoyXB|Zyucb>W~lIwevH+#Yu?v+p*In z2eaT7bAFl5##f@aE4g%il`L5Kb9klAN}#Iw$6nJ+0DGO!td#}bFto|oeSWoQz1nT9 zJ-`V7?FT8+TiF(*`f01!c5~pqh`I1@Z~>T`_ItW+RUw{7rb`p$ zxAO{S%I=0MiGDp+Z~!#Yz$UGzIIxyXUU>Q0UC=fUoLLsS3RGVDs>Mrc;J#1r(UTcY zJg-g3xt~`nn-7oHywj$;!oi)fYt=E6^WY7hvF?6)4%F|ihhA8ift#(qH(uWe?Bp*- z-I)R4INFdeRX+w>|M~&i-vV&HMvtxj9t;%eRk5`th~HhZ%0?hK(qypF- zoSdWS2h0X- za`T;$li}dR(H%~m(*|dWee3r1qH+9?aonJN23U`aQW{?E2Y1i5nV-m_JfMadwqi>e z=x6_Rb!?9UB?dd2^F(<^!t77?wg14KX>#Rl@32tilgZ@o!2v?c4Oi~$)hz*~+TeR? zRJkaQ|6z2md_Tea;He#0-(T$mS8Lcr$BV}AS@lYz9Bq(hracoZ)~p*k;&%73uO`8} z`HwRqoNm9}m|1iMdR^?|zlOsDK_nFr@e}Y592`JLKx;7o;Bb>{TUv1&Agk+PpSyjyC5t2@B`e9g_3qjkx z(+9(oKwp(s?Ls~V?~?lSN92?UZjYF|Ln+lgJo)zqIGKoq|2?W1HPCiwGl=qR~%ZR_9Wb0Q<$!c9e@Mc_Mxx-(|3&eaIg5yICz3Q?sC6(Z` z%v1ex?Ol<&C~jkUj34>~kGv0EO;CaC8bR>|lMzsd@}Hg?m4c4&dv}bRIl-+Fb6dRb z6xGY8iP~w}B@Z=ofAHxYxtT-P3C@gV^*~VVSS-P(QB25qVCQZC+Nz!ic@Hm`tdUIb zeJCV2MsS{dugd$I+h^N#HNgWr2#$=-16S(w^JL8LebA&fwTIxrh`BGcc{(y9{fY!% z#@(fLUdR46cp820|FSC-=94Fuc|3ChC;E7N_}wN5&fMEkcl-rxj-P)&tyl#Dx5tkT zF8@pLlW2}_TFy@r)yw`w{QmG0Li4CSCvS$n1H<@_$9msY;J!F9u}-j26le4_-5nhi zk^&Q&r!5rCublNGyZ*d^_3sUBY_oQ-{ono2`#lxx1;ruQ93ti}2~A?x+|q+9JZ$IJ zZ%&>CTEgDkDYKM7VV{@FE3$*8_b$6_wG8kJo~BHeb%uNHt|=#feSoz5*&13-3hY{> z8InOQpuKV4_k4#L!588%2Aca;(wFZ$w61ikH(&Q2Id#l zv>J@GAlUiH)H=Eh{8Fh)kG_o%92JX-f``=`--9lR{glG_5R6(cTg6;VaA%mkRQ1z0 ze1RGMYN78r@LjC4HqgHU=5nnn-*@>5op(m}&K|FYRbceb#A_qqE|qzZYi|cnFI$h! zrCkIshQC9_dAg@)ey6W^->p?b@OKz3>uY{G+{dDl%|-Jqv3 z$vOjOLeJieqkPzm$4+~ms|>GY`Z)A$8|EFTvQCg`!^EzaCl>NH!}{M}=0&FfINcg} zkhIgA;QffXG1^Z8z8qk;6MPwuJIf2bRoY;Z-`^E6EXqGO^A`PUlH?IlqRT8k%(Re_kz2O zMdPM$*d4a=ug7p4X=D79aK!fV8->y$QM?>_pzhQ!6Ogsu#U9;}@;{Exe>@rX zv@W|wN+7{UVy9F-Q2bXa)Zr;}WsTZk`zY@0LE~!Tdu4uI@o(xS7Cg?CvG-4nfY(bw zSxu)j!CPYH7jU>2B-~!V|Cgz(CjqZr`e94!=7So&wzcwEwou=D!+|5kqWFw9Iyu%b zQWSSyI1{??E|~XoKc5{r0_PB;cbuP@ppM8{$!BhaUOVZ75-lA9;h`z)I`{o^-B<9Bm)z8Xp(~BJed#V}# z*oIvod#aYpYDfxa$MT^%*(l~dH(@irF!-|-}Z-bhljJgWf{yKn_Fj?Mi3kv zj{M?yjwMqlQ>52k@-S0qw{7Oyf{**b95k5waR+F-Mysy%cly0Yh?Gjf9@S)(R|x^ zexl`?e*_n3mgDghsY`r@9 zLYm;ZavvBAVkbE6nE{LR(|2AhOowjj9EB%WB!u>ko4dM?*T5#xqw8c01D?W|-`2xx z;F+={F64R$*k}Kl%C!uE`nFhm=uR9+JDgiG?Mgw;ZTh{awjM6572%2 zf^~PCi%zYBP#IJ19W-(lDz16=JfhzOv&+X4m$=V@{cy;U9bE!ww=U{@u~`yOeH7Mb zr4HNJ`~Eo|KE(ZC_vybvRQ0cboqvCd$DT}rOGsXMLitT`8MwK-QvNvGVlKW|-P0I? zc1xLwL3$B95;`862Wu1Mby?M`B(swWPZp#4b=5z(>|`&FlOKkOyy5n)X8`q2u9NHH zMev>eC!usp44CvgQ+V-ZpuY6kw&Uan&^rwFytfw3)776d%sw6mwXxBB-?S|K3eH*OO0@z9N=9nWHT9jEo1ZFwo)N*BCuvPa@IB?+*ye?~~dF*=&%XECAKW7Mz8!>q05?f>(=G64Z2i~K_7SST zil<6x7Jxm|d5KEOPpCW^d=rx-im&BVqffkD0#`%91gr}aTK`$?H-A?S>|@PSMn4Lm zGk!C6TIfA6uVio^+xEkNocKFxZxr~MKk^soEQgWhGrxLCQJicS;SrG`2iI?#64p$Y z06Alu=ev9}&`q_wwI6y4)uVSE`ZK^6s?YeoQ>$7uk363)8kuwnzCkO^>lY-5>OWgO zr{@g345uXK_K^vmp9}Zd*IM~tct~084bWKvW`BCwMAf7370+u6?)T+XKl6X0>9QWMbrEi!L4)qFw*AUO9ITMMcHMr`))#}Fr znqd8BiS#$UK3Gp{)n0JwI&fys$iug@;B58A{-^mGP}f_hz`(Fg3!5`JklmTsR*>|~$ZD1fJxlOmHQ0Sg8t^2Ay-c$4cr zr4y||^UkIi+06p^;_+vbvR11s$E zUSj3{ND+c_pMGRmJb_0_yD=aROKfqXLj8rw?-?0ITa!dF(o zQtHHS(oGBS@4EOGhVsE~(70@J*AQ%nQ8VqPFkOnufYFxaP1_G z26)INn6{IDfzjJ>dR3n(JdXcd?74g~kU7b`XuBpju9f|6&0j!1rvG}Y@iA~T*O?}$ zY=yVvQMtQihX98stG&EugV~XH-XGLByFyv;OkHc^*`E%a%P9L$Z%S||Z9eW& z-j=!!%vMh6J$p91iUMXETgL&b&uoAHFn2lD1ygQA?J8L66H+;X#rJpMeR}BVixlW_WZLI z1!2DMSsymCr^Fu|s}ILrkGsGtu&1JFl@ZuEI!&AaH&CT2q_`Q&ptM$tX)+oF+uM#u zXv~)cXV7DOzh>#cbmDi3-U-|OZ83NO(!tXP8F68t3~w;ozP2CklOIvr^}|6v=y&rj zs~3VJHG(&Bli~9*!{%8}3wZH0v5BG?swJnqDeB!jaG$bI9hFD|wm64vUwQz(&*3{1 zLk2HT%7LutE{f~!Uey)ti*Ei}QInp(0Xa*n(kF8@xZ8slMU*PScG7d%Q@PrEU>$QLf^Z_AfX zi2+OdL{rYd5%4e8gR1uBU2_Z(>FxiUqWLgHS)aX5O{t% zFyCeFAQ%Jk>x+)=0#9$X#DXdD1h>z!gJf(mZ68=>9sLWfzrrnShN6>QIqYxVUCaJv z3R{_r%O`x=2y)Z#Z8`V1Apa6hek5I8=35H>xaMOcK_|=(En*}x zjX;UpFq(YR3wB>77TV1Sfo=Z#^EoS4z;Y_Z>r9*@1V7(OYwwGNtBqM@l=NhwzEy8q z#;Ze6l238+yqgY=+LY6e6LY{}cV9^|SB9s))$F~bLGZmV-feA8hka{MjkS3&tX9l> z?(nKgsCl*JfnFH}^x@fOXTFXBy)B;lMj;gZ5t&<@@-otTKKHD){~#ZGu!@OK|~7JZKW0c zSM}j3;rol8G6{l(@2Y}(_25a4kC;wwgxBow#GI&Y;GYe4)O=G6L9|K2nClIA-VOft z7wg-s3s&KK{o}=EysEN);p@7#FqgqJ+fdXT~A8 zxI3n5oDP0uVEk>P9T1c#ulDkr3SM%f$!xzh;LjUsiQOjJ_pBxPGP5&9araf#Cc7bm zJH!3%e0FkH8NANC?|3%a0rt^Li$e?+!9zu@*6e5zI3p5{5QiGnTg=-5wlbqj!ZvsSdjYH9F<%AXOcKX4a^JX1diPCyj5Cb$dSw~JECBd&vEk*i>7B>{nc z?ESlQ)I{;DjQ>5+KJ9s!HBnQ-MYNyKd*FOT6bHU7ih8)|9{8NHpQ`eAz!mhq8+1|x zKa8?s&(=rqR6Lp-kgyGc%q!gU+x#G~XkU0=l)s31FoFx#=HVu#1XqXuCU2~6HwE1E z3=h5gqW0UbEgjnA3V}kY{Pu6o1Xqa9+}=BX=&&fhm%Wr=auS@zsSz?ct>EYP^xrnFo&$BAmQ z?}U@B1ZXnk*ACfpt@&Yt?Uo#380 zR<3-JxmA>h%l>oV_g;b9@aE}{8;*@-Y@uA)jOmSJA8w!zTj1Ho4$-3qY|-fuBF%>kgngnXA$rbd>__T1rWw?L+dvD`gQ9SzBrFl(#2oUl7^AwFPkTm_5-BCROhrO(> z9i!H;rxo&e&VNCg?3s4hD;Z9YWh9!uYk=H!`YFHrHRwUriKk{L5L_S9@lfTB5~8@^ z*e#cH@F>Ky;R?lBlsmYdV2*n%wi zaM{rp+Q4+9oLb8rAcqIuOf2jJ{cA*4Sb!9$YseWVmQMt>J^l0~?-l5$V)dPzE8(gr zU+}e{9j^0=D;8Fffny~%u6`MY`yM?d`}t&8x7yk{Dj$UYro`~)v**KprcUna%ong* zd6a#tSPBkPFKjQ+SP!$fO{-^2D~4t9JqyPrM`8c9&YH!MhxOeSlU)y!Vfouhvv-~f zjAe#ycIrsL(b;%!8v7NLGnT=^zg`#QfwL)i89*m6JP969oOK|NhN$0M}WbX&bKj5!^$^ zw9B7=4P1oX=#nte+6t@Is<)fTw$RJC_v?sr4{QPspP$tH5Y|5DV_&}Ofqh@BhKzIy zY_xT=`GtOPGqimbXaWvSB+CB|#HOoLR=}oxTdi;f z2ilj9Tgcta&)R+(QS>+6^e|tskeJMBgv>zNUzfvgMe*$)OB{DA#6oG8nx%+jA0xTbO za8zGN!ZGs+J8elKbdC-mTN`@-*5ww41rchnxuWO2bk!u-?ATkD+t>+Bo5OV!m(9?K zEWEr~ZxD{F|Ly5n`T`0nXDa48%8J3|MGh22iH%2o$EyF zoW*JM%A?@-sGbdMgP2Erl|KPW>U#1Dx8NG@wYFteFYIs0$epd$ zhP6{#eAmZ7824PAuyIj4>{h2G{=E|fhw|8@vf2J{o2M9DfN0q5za05ud=M^llJ4~a zRiHe{K=D%@?2bs^F6TDDYUwhYTgg+gzT)2_R|z zXt=!mBs`q`C)d6Xf$LX^Jm15Q!9Q7Z{d~qLFuu9mZGANY_n7>_3CAr7ezTa{%vF?` zb&J{$?#P?G!-{4E|Jt+AHUGyb2%dzPpTS*TVt7%_o8V51In4a$@mIdiI|spx%MouR zXTkVa!J!8CB5L4R?sI!I;`IL6-G~ zEasQ^?2-FzPkKdgk6o91ZJhNo0kW?5&m}yFBDf;_m+O`U=DdP-kdLdE!QcP!tvSV~ z6{i1$`kBm?w|=$|++@DfQ(M-`0)ijyV*2M|?N%*O9$>e|zh4f_ttWQ9ymbJ2dD=>4 z6_Es&!!y3%+jjLu1oxR6R5*EEiWht$KPT9<9ETO}(vH;c_eA?s(&(s6py>Se{2rqU zaQya5&q@sd=Zp1h)@VDyA-D96UPt+ zQM;7^#*Or8JNn?dJx%t)l3Aesth!N+H}GEK%C$SRhTwsVdDM=Zulsi1v4-IDwF_CL zm)!mxZu+LbTa(~@Gfw5z6wC@EIOmjD^WT+Qyx}3dT_azuMeta>WiY99;tYb%O%1%nfF(66m%59CBM>eTGR)D(#WZpm{nlbs$aNdlSc5X#e8*|^T7`} zLsoEdyrEH;7bWI@yA3sNtz8l!+6TWU&J0y|1S|bE_v?w11h-wxb!YObTU0sQz_it0 z_4l(m*xQ4Znfk4w_;9+sg=#w_fAm^z%q<0HIXy4nwrIWCm;5N>%{GGfOS{x4dFV+J z!L4@Rk{n?zmkW;X4MT^Qa|n*Gn4{vESE2dCY!Nu=Y|qOpR>4X4!>WgOwm|J&A}V$d zf^}M|My|jTOhI!?(9;YsjO+)bK52qJFF8o~xIq;6Y>+TeNF=y33mhMBS1Tw5*1WTw zeqRrOZ2!UD14JAq=5~vD&F-PwE7#X+!%A?@g-p5zckOg#%C$b2pBK=7-|hnE?os(I zE=sT-(!VQrxl%NbDwpm|_6JkSa&pCjeFPs`%)fEs_QwtM(Fu;!e_U*#-saX6g{!u( zEloG^TxSM4`A_wxp;@r`6S7qPmcLNT=!fs!k4xdcW5%4rdXaECvup34>DDl`sRKVvElj@BI`tBW!OPhGI#Q}p-P4{&awTC~*6AUND&9yz5! zH8*%$2AJQ~rtC_eN$|AATyC<0l-#rK5ztA?g6!wLs{3@0b**-30odCf-0F}8Jog?u zJ$QY#aC*~K%|oPOkO~qvg(~X_wMY&*!84=9oNa=;?qQy388!U`+&PB|d?%I?ylR2Q zXS2Ys$zbs=zRE7E7EWADo95Fp2(!}80{JVV{iyc%Dv84(qIKo9cXGHVm<{(h7LVV- zWuZda(&B?KREX;@c=Jf8Teyj}%&Zc$rDt+yOe!Wg-j4Jucdqv>0&~rk#nx4e2u`?| z+fEIbbp65;XUOhcd+glrRnXxtse|X=amq1u(v%iB{tn!Fb5{l&12V6f`>rFn#bTcH?4^r-@6{QCi)W!h z!qNF~PFeR_hW=S-JN(d=KXe?V2{)GDi9J z%;3s1?$kKApZ@1AU)TfMnHDLZDKp@v^RC(^cQe7IcDIqdjgv<}i=VhAH$wFJ4uRzI zz-dC8mmlj{4v*X(uU;%UQ8XWP$Ksn37J7;~;X+x5^P0{-?+JA(j28aTEP-P~nr_F3 zb}(l?Fl2Y<*JWSR$UNmO0eAjqzG9L$Y+$cf6_UyjthOkVj665&iatYdzEz%{m~}05k^6M2k+4N6eUzU0F@Ar$kvLH`w&EvqAn&x_p^KF_@Y+Tlk1 z^?|k!EPiY37heI77s9l)p~qmO`?KS>&P(uh!i-;NcEc|Bx}WptGI*y2uN=Br25OqM zWd5`OcuCH5dJtR%*E?Iwmh}CFUexV`8_Sd6@xXP;2=}{ae~6a7@<_Bk$u#H8Q?MgA zHvB0+wrweP0C&=a*=J-u!TKR^{KyxA^uUTdUi=7*?9$|Z^K!7>O3Rc-`hk~}Jtko& z0pQGp?1x5d*9VfUqt_@}zy}nc7 zo#(wsea{t`G|zZ?K-U12V<|^MHn8CJg?8V_B?z<=9>*IhKY(*?%5aQv1Oy&afB*fv z6IA=j8$vJ%?ooXor}Wi8XNT1?t<{yV+CSO++>#)WB^H*IsPuv2R|wz8D-bk>R@Cfr zfMwygP0C58;CbFG-C3wWct5Bo4u`$xDS$a9|Hr(u91h0PCvHkmz>iXM-t==N7^Lqe zpN@*+v9Pu)!H#xNo>P*4c$GD%oP70$@8b{@l&xPYin9b2st0CCisHf5hlL>$seID!x3`O(eWZ)GMpdLNsfofPHq zc8>A=#xJ2gRA)DRZVH&2?`A*#pazO^&3e~&zA!N_Okk*YisBIKktJ(Cf-c`Zy!qy=lq;*ST%7<<(YDlVftG z1iu0!r2K`q#ygOD3hxTbkAe1KgQ;Sos2^hg4Ni9!#WRN+d#)a90_~e-WX6ONaJqwp zizmgwVWUaMLhW;Ks;!X92(%$MO>UnpyXBym3lB_R>$?lE(YWlsJy?b0{ZRL>Gzt}fLd^L z;(hZNkgxncHvj!8aBW^qEo|2#d>#~YuhQA84Y45T%Ai+(F1VKuzaTkP*A13Vx}Dc% z4pRAr@T<3Pf*S1gVDvXN9@-X^zG^8z^k> zTJ3a@;npa8(W?4)2jOQS1$1Y=-zout*)->KHUf~AnC`1!#e&CQ9+q+MAXo+JmUSt^aM=1lu&+XtHl2crxUSZ8bVSbzu4?E60#q57M^N@$thppv-%(feYM*9I%4!)N-6590g6Le18RE!53CG516`>tAJ~(X-aoZl)9bZE--)svfim$?aQ4~e;H-EO$gRPlc0 zbf<3Y!tdQx_X9xbbUEqq)(~#AYpaxIXoF$0uRbx~hxoo$dRfNXhv$+&IhR;SFZXOIJgI7Im-nGp2Hv|o%;!kG3e{W zaM=XJ;NJph z9=w*P<`D!+uCi;3BnNhZ12(<(Rd8PKd}zglqPpReH)eIM7PWKHn>S-&sj&S*HE>Fi z7S8z6zrEJg8P=+w)97=;ghrD;C~wK}aF+-8#p9NedBRScMhyzu@VF#|@s zUbn^QS;F#MYy2Md381>)&T0K-1AK7XWb0M|#=J=_%%TRc1A1+x_2LPCh}d5uID6uz z&7*KI8f9(ew!S0$9$dHID;^Iuf!n%5pd8)>+L403EV&(EZO@gh8{JQMR>Zyx_Kw#& zKUW%n?=lo8Uz`NNkLJmm=S2JSyQzx#`TM|#EeYUtatTk1*qg#$QZSZEok#F^-AB_- zKjB&vz7XEmIkg@UAUq@Nk-LXtUPXY}cY5;d?WYLuhuGI)V8#vbr%s%B_l7rI z!rL7lM%u$OEN!C1COdE{)@?SX2|?cV^wz;y_M&yakm~g+fbgtv(-?<#EwO~>tk<=v zdqn$i%t48=QqlTBQLZ|vdmqe4WO`55C&B|Gka$&~eX|L=eupFH^0$GXx^CFy-D7aP zzYgPBHQ_VC=N0v_p{d{~cz*uA-3S7?%yr%}>R{^&-kBJwf^So+7a@!ROVMG+vzQ3N z2f}fld~xkHQNHHUyVg9U9_-d!-uP@eP#Ke4yF$FdU8b;O8ogjCN^B%PD2L}rMFTvZ* zcxLJ%3gLs{3}rQ+{aH?Uaai%Ot#{|D5dIXg*M|G1;#6JdBf?|DdhyGVpX3Kpcwm#? z**g$))lk+kmxBMWsWm#Zlkmsz>?d=+o_PsR;|sQ36Gh|qdAHT(TgMJTEZo5aWxZDhf zhmq~e!!IP@>g4}RQceMo_+8qt;13*a)|F`7NfYITi-%3l3kd&)*jK{%wZ122dM|8e z-yW}jv_xpAH^1T4?sRbHt;%{^Ed^3~nd=(Sdg=V`bc{QrNwh9>e0`_X0E{S9%deRL za^k#Q0cWHM&xgt3(hmFBHZb;FAyNpQojJfy=%d4uo%n;gkI5M6MO#p>aL&@4Ld6<8b>G(o>voLwG&J-jn}4 zDQ*Ly>WBB$YZ4w6i<j|PopR_#_I^?Owi?)|`~Y)6jK3exclbhvs(uI@XSxNd zD_PeH+2mR@%PKhx=hO3&o8!pcOv2Jn4`k;V&Wi?&|9oI1}C+m)RSC zol~R%GwPg@W?vwDHPl-_m#MXD6FwTdd)|I6{%LUS)C;d3uZO!q?Kjtr{UCSFsk?A> zF=$uaeZo{O!zCc2*ZN-@==)8g)%LK=hXKfzOD0f)%fUQud-34MwRIyB3G44CULbrmj=$b= zHe{O;9u=K~8m&(^-h+h=%fak?0Bl1;s;(H0h~g*Bws=!d!k0sx^C$9!*8$=_IVtu| z-HUvGkRvzT?u_vT%7gtc?=2yGAlykMSaM4guP$Hr^TCZVFq3l2t*w7zw%3wp)oY}{ z(zx`__InK6O;>;Hui6AePjh?zz6ctc0kQ#;t^kjd?Xm*qgF@SXX*?$d?C&Zw+g!Wg z{!D{^;5SEYY?Ot^~|+##&FHG+PrGUJh1FDZhxqq zNBA}Vx(>x9$}` z0p>YtrDY;N68;e~&pO#>>14QvP7eBEc#ZIwaIC3u7YCC-?%m?l9dVrSvEaiB8<~<$ zuZz{}eyo@Q*4l!mElDZ_&zUvVjnp3cgz%HN%x(PO>evs;L}rTAt#UB- zgpZvO^^flHV~1(eH-qfi>N(l81T^w~Uff{~V7I}Fmo(I; zXF_nLb@ZC_{OZ8OVTqpb}%<9sW>(wZ5I-R~~boWWZ zYvQ(3HQW8^CD?{BQ-|hv|IcUgpP$BQ$wG~gi*2BWrYz^mr~t1rzmCd|fi-+w@}qSf z*vIWZZdH5?_KL<`qx+OW5&qaxWh@EOs2xw5UqSdz7}`mb=lOpEDj&8TdjArXL%OXB zc8g*8sWIcRrULBc41JpdMe|gxI$_n~a>9o~u35XcgP#tjY4GQd=RU&mq~eZ8M~&eq zw@_-C{vhFbVFzgH^-eG$ye%##k1oo2Ff8`o2$g<5ROY#;z`5^)dcf{pPy*wa&uMpI zqkcKbZg2>Ws~+fbX(ogh$abWA*{j7*VNjduSt(Zq&n233O#}A8>ygTKnGpqod(Aa- zf8Khm1?~eYTjpG{hj-wQj_cA_!S55kvT{%ak9^-aGa?DBMkU|3H+{kS<5(cT!hCD7L0y{*9pU9yRc^PfF4gLb+|mE#k7=5iS|9e z6z$*w1`*jP!vG=b!r*scgy+=1cedmF3uFj~cIuoqk zDSr23B*AaoL%*`R9|C*1!ehI3ft{7b_ME>I9Al{}mZvso*?By}uy%se%)fn$bt-ll zJmwA6?)vNr?hJS84%JuS-kv|Otkn|icE2lS3yQ(dXc(LMl>>I9uwy9S00N3qw%l4p zc+GW+*nX7_m!z=T%w9e?lg4|molOB}r#su;Vkrc-78>6*yA8h1tHV|fhvDTHS@F;H z518*Qn_jnOf}*AGx`nO6$twrod49TAQN=Q_@{WCCM`eSem!tdR zgc8`_)ExN_0zs8H=#VWx1XhrmN&`!s`28W>q2>-VMKlijitS<*E`a~z#HQ*08o}Ru z`JCcsS8%*;ey|{m;`2Ku`CgV&!Tfl#UQr8~Apz{aKaR>IO6uzYkc9o%gW>LHE0w`Y}s*|nEWzt;~>|0;R2 zm&xG0_K8@&wTb*6u-@pJeqsi9v+I}Eq}tw3I86? z@YGiM;1PI4n1<;MjKf(<|G}qwR8ihwKi6)|2<#JEOXqfr;?co*{giZDxJkY~G4Sm) zSiUP3U#l{Ot9;4*m0PqyuAIgmRy_*WVg7w)qBg+|b{})Ec(NiDq}zKEhva|5>55W1 z(?1rLIrF^_E@6RjVRYk&zz8m98;zBp%3;BRgZfsn6p(_>bScZNA-r*xHp`z*VON2& zfZASLIRd89Mg29}8??x9E9~!uk)O zs;qi!uyz7yE2eqxTzwhjWeH}}N-aQfuILY5<^}hN1OIBwZi2K!K|06g7F0J#IR31) zhe^Z*{Zo62LH@cy{_f4EaI}A-ylh$pXqVfrRDN6z`tcQk$41Y>y4dB`spb!`Jkgp| zZMqTmyS`l&guaKPPxf{r)?_fqO>JX;JirdQH4^Oa256wvbz3B}X=#4_FSjqYcx;@5Mpi?T=xp;X9Dd z9S$$jlK>@iOVZ&tC*ZzTl`R=y3fy^aCYdCVG{jezixN1*sAIbo2 z?&U4}o3wzL3uEn8odPwZY11L2L!hwn^2@7VFiq5dQ(9$1d;;h*kH{bVVF$9`;Xn4t>wui8!~SXaMb~{FUZW-f>ad4TxMD6Gja*lfy)9r9 z{j}9ju?U>D?W$Ye3JFgm^!MDU%=!w_LjJQW)VrYmF;ot+1=7ub; zx-A3BmMMF*clCo-x2XJ4^LDrzzP&qh_%$4|?RLG4ZvcJ5{pW4L_0ZE<#HtakcdpuF z?HP$%KyRq9K1#X{*NCpDNT*AnF?J|)H(2qE&7`jnG891X&8+Z)l&)f1)Ar8D*kqX_EJFs~& zV`tT?K+!ytOY=T*g5VFks|D`}(4G(4&ja-Snfiq9&xYk&Y;`~hd{bBR_IESEa(VFg zW6K?=o%W@5TIqt?yK|%4fee`TO_-Bq)&%zafHMu<(_yy1Dp{h&60F=bpBqne3BMo5 z@pqkpO$yxOSJZCLS^=j@XD^v_QC#$TyQ|~i6>v~o0%sjKt+_}JZ5{{xI#qoj*ALu? z{e?qWGvQHeaw_YgsQ+i`3*uy_fb@_%X1AXV?uNRZzmCiU+jVnJd4)0DG6ty^%`b}T z(Y19$`$4eX?Dk7_j)8K6_YR#?{U(ZQ*DzifSmHE{B^+(aIVM}uRIk6_gvpwq1?%E>rq_X@Ngd-uH9Ev z`$>jt;p5eNcGZH)-F;u@`w~$+wz;kD?qt}Wy`%Gc_W;-}O{%8dS3%!P{x^yGOBBy4 zr0b6TB7Al#_Yxkf4LUM?CxG68`EzeC6UFH&M=U9aVH@Ik`hzH* zbHBJp{$revD9rt z9U(a2l;je1n#_4nUh}oy8Hwh9Nx0Xm2$Co+c(&qZMG?568>XzXC4tuc{mm)YiNN0U z1?sY*`I{4GxwWJSOeWo?_og9O`|s;Yu#CVR$hoaEGY7OS>wSKexDcFi=5FH)IS)nS z#rqBaJwp_a4c@|0asjAv^4w-MQC_$F?aS&1pJ8$G%+*?*8E~HxrKZ2k5&T-!eY?L^ zfiW(-M}lnt&(->GhmOq_TA#n=XD>Su>}MPOveFh2J`vkiV_)U!=^$mT*w8v_5yS3^w&5?q12K<6AP8iuu{DAe6({I-q&LkNq0rpFI=phI)MW74(5RDk{Hm} z49Nej{0oPM<>e7=S@2NJ{>7M{053!BkLs&!g|m;&b^PYPl<YtHxWN(X2pjBHBKDGa ztoYtNW1#@(LZRb8&@E>p7&5I+!CXgS&+V+X?(1?90Udj6`?r)VM zydz@Yh}bXVekZreLQ4uJHhZK->(-0?Duf4z)4#?jb@EiOugFV3;D&%vcH3l2Yt!K_JhcP-x8PWVs6 z{*nciE9sPOGMtLu8|?KZ5gr(ukJ=wg-scM4Gfs47Ju)Y}D17A)Z%;V90rgj0d`Mp) z;W?S!@|3^Gryk_osv|Eql!4~`U_-<%Gtf3y7Uuj=2hC>WhRjA5%nj7%-Yz={^F+DF z2BQ|>9y91re|-VkN6cdcuG(O=>A&jOTOgE_-@o#EpeX)}oViJG!B(H_eXwDaxZQ!!9h}0JdzG<0|f6xEl^(&(aRU4{1JB{C9{X z%CBEf)|?%&5LUw%l3tfKfUEmz$~XDl@EGOljAq5dxq8vgX9j7YOMT~2UQh{d%YU90 zp;d;5#0Q&8qJ8|PMnu#da5tAcb@(odBPEWJMy?G&?|rlW5$zX*f6wD&`-#E-i~p`J z-(2CcUT86@{;1(x5%kxmoFZ!_65bNAFT|^@L{{r-CgE=p`#r?>OaJq<38!0mbex&3 z0zR+C_v^hBcsi{5el=W|@N`)0EZ;QTFhl4*CER%MlMF15$C<>oh}M_bhAn3^Lg4u7 zu}p1IAK@GETI*ID)!hWzr)3qTRae2&4%~UC=@~rQRr+F5a-kC1_pzW^MHFY4G`?0m z0gEp;=zgXRga<{SdSpq__b2eYNU37VodH=dM|0!Y0-@Hsy}@p`{u164%9x@-{^@rZngZ1zEHmjVk#C>3@L`(3Lk|m&@ov|fO-vJcC(~vGXQ`mjTJ0Es1 z&~0o}*`lW}H3@GHjqXM0J|3~R$K5pTfkWRKEVO(0JI`=4cwf)- z9b0Eg_*TST84hTdHrpNsC-{O4SrkvYAMc#L`@{I>oZ*pmePJ10egzP0fBnvFXN-^zbJ3)t*w zmiQ@miSS|=JfByar}P3WwY$r{1}y=cZJt)oEmsy(9GXh`_b#NG>6M=S4?5IHcn6N_9K-%q%XDtQc67A!nz9)z zXtDN#;Yx(3gmP_1*wiCggja;{Y5eCq5&KqrOgYT;x#f_smEQg)M-e(%MfU5qZ>xJt z8vF5YCLoCWmX{c}8D#3bchMmi;SoMvdP>n-kmL=I#OsWS^4^oJcV*q-O*4F(CTs_? zte&jD(Fm$+mU{XJDm=?KC-$F~fQz?LuSUu-SkaBXOluVF7eWV_TO)B`>wK4YP}o9v zW$e;*)twjS5%CIJ&1~P4%&V{)obj;mq!E~rHytkI&dF&v8KsAWSiwJI-tKuGvq^lP`CoV%kPmQ!Dh-2D^|LE4mRx?~@4vN-VH zozp_M+isVteurSzX+Qd>*n8k!*jPL3)o!8D-so#_RkOf4bbQ&Hu;-%V{v2|2-3G?| zuB}$ORKmkTnwp*SwCSKwpR2gU?eq|Qe$D(lvd|pnR|_1pSaR?<9J{!qw*z+TpWIm8 zqAf&Fomr;WPWVhaTQtl~0VnY0(InPtIBu)z+OTT?3j-A@Qu5+p{^RV1Wjm?}e~-<{ zkG1C(e1{4zSu^v`jy8knrvKzXs_aHFTl^tlX^!IeLi6E#>sYjMDwF0 z>EZ$x2;P^B53f!jc+|Y%XQUR7w*&`UFzsQ}f>(3kQCcu1^n?Ti6B=oOg9YGhT_`hE zMiSg;$C5v-mkCZZyG7xv{o6y}Jz*w=Q^^nSdr@Z4u?HviiILAyp{0B;#MaUGTIwq@XQ&m~U|ss*>AvpH#| zC|@JSMX@5hQCds z;IUk47i;_`cn8WQxP?;S*f^SBOIst_ueBEEZ}25J;U1q|7yRh$gQuEv{*_yz@idda zbwvIS_?4!$G)^G+#zWI{S2}>-c;(0Qu)W})(R1A5-wVznM$YS&O7I?Vbf3K+0N<&4 zfVV0cd?V}1>+B$Kk2D1=d*%gB;X9r2sGs0I>$Sba?IpP0g2ih*ISGE?rI=ir-Bu1k z_|V?h`SI|Sy&A4@vIX3z>S3$=$>6{Eli;1V6THh#b0IeZ-ozi$5xsjLpnp)m7HkdP z?}b0o;}3$TKOrhZs||vS)BSB{%>@70t1=10FW|gOU?gAd0lzt#Q@3*|SidVHoOVBg z=dRG#R_ofpKdRxSK0^hb>w3=Sd7lNpx-3dz+f;D>4i~;ivIP6IM54lJ3OF}6ybRcS zjNrI)1tv}p(^nDPZMJ&D(_o=G_#Tqm?&cT727y|=Fl_Z#HBdcG^uNFvB-w8&n~KPAlR1@fU!MtV zv9Fr6FADHA;=S;g4|3{3rOt!~kYaMC)b3~oxvgy9@k|+Dhwa>BAM1g|rzMKx+Tc#{ z>e}yanolxiz&El!H!>!5Xw(dlqcj;grF+Dvf6@&3&@Zs-WX!4~ti zDGrsbIcxgh#;uQ>u`mSAPlWH)T+Kil_nnmQ$O1WZCu8m>QQmqkZ{GT4H{gC>;kozW z!2j{Zm)}^bt@{fUpT;LPjMt!8R2SF)tNGL)fSi2zGDBxQ+!Tuc z@W^_gEWPV+r_>rQfupIn^%sH~<9I|lb`Q|t`Q!7lMWE4Bm1cFii}HvA1?jY%pgaGR za*kqwemGgq?AA!Q0{2}TyzD;f5`1#^#uUQ?%PZmd z`Il_7f+k#kS`_|WE8739=DfW$>jkKpjB(PHHc)07UpzhWCn$HmZ>21p38z}_{(Gxm z!p-~U!=j2Rkm=tJRliCCsruTR8N&e}|8gifJmC*0)5`w!v~z%M*H*V)R|9UflXXnX zK{D9!@LAbgxUYPh)zPyHwDA0$ZZi(T?b*0mH4eco`_-vm#yn7z&a7N#RRG%0XQsV> zDnQnKtCL#n3Uc_r-yc*S!S!bH&9F!pxNcqZdDibzke{CZV)DxmbKHHp<(VPI+Q>8P*7aW7@+C5UXTTa7C#lk|9A`hF1)#EpI zoP^{4Ux}Oi-oar+80|Vkln0s_&@?oYfPZltV3`T$npbve|MtR$|HQt?`w*No%+fEM z2!LJdQ$3^ms&Mk>$wXHc!R4@ZmC7#B|yl^0Eqg?=8uNHMB54aFM6_*Y{O2orX*hbNY6Zcqwqe*s)yar|?w6zr0!cuyAXhO74KCc#M|%s)<9+jMpa4wp{ke#(6et1?5&Q(3b> zc9O8GakGX!S4r;DuWVRb1aB2;fBYW@ovHlx_QwmrF)xdoyQ<*wg7;(0!UT@ZO23?< zbm5{n+@4~2o47x18^|$Rd3QhT<$q=jyje^U$UQ9I|c2%I40|dvLg3IAP0}0U)QkTO~UUcGg7~ zSLiWdTN)-+>8t@8x$A-4?%%KzzVMe*h=Oxd=eSd?8EnsotYYLu!;#umuKj@z5;cdJ zeoC}%Y@jq`Fr#2QyvsFLQI_xsIW6R$c(<4btB|Qny>#PYDG}GG9!CXz+4Q{&w(SEm zc)j(Z?mEIx#@(>#7K$=KW!^k_e2N0*g#MsC(%MXT#k_9JU;4Yu1oVYjUuMUIz@=-u zK}1hG;cw%b`hD&A5H#>eDxPIa?IhM=H?mb$g({Tjj{? zP!8PO{~n;*jDzyAv6&L`p798|B4qzK<~5PO`36oE;pJ*YA2)`dg>xS&-dy!zpT$+FVlpo=P zW0pR4dBPV0>8C*5Y!y9~fSBR_74dN$1{wTc1pL_Z%9l@0Y8s0*&-0 zpsl17-ZLW-me$MzV~t>oA4M0mfylGR8j@hKX39oIeFpfUHCOj(*u(q-bLCE|3&E*o zYWVm&t~P>kgUS-&?kdm~ZZa>Axq`DyX!GZB7bY>EUn`%M0_ss;CAmHI1gBi=&lB^r z#lAtYPf=WM@#m>iI&C8h7l3u>z>S@3+dG3>*b4Jewek7)(tgcr_uCFl9kHWB_ZmAzhnNV{twIHj;?JZ6aCIJ;lz zt*;t50O}^=oI5Yg2)`Ruuwvz*d_LG03dj>&_7Z+IvDeMrIPATK>`%DseP>HgXou4- zjZdZ0hX}8nn4fGpQC=$1;wi|k_Wtv>o+P|(Vt*fJhvTnr85hC0(b!eaKMZnrNA!h* zqWINkW5mgoEYJ)W>?o14Cj4*Wax$je8E!Q^0GFY&oqLo^gc62EdmPdO2tVO}d~VS0 zCk0Ve{RvMW%e%QdbkrK2N#>MYUua-9bN{u>%7LL}h{5`W4A3S9Ga?&&iE=S1`@gtY z9)`4#m8CrIPXO3$Ue;XSm>wt2t8kOCc2lV0XpO~Tj6oOko8^iT~XEOg@fg9k!jq`2Hw~ z39)Ax|MM2I*H=7x{J50x7xID+I?fm75}y~hqr2qW?ykGZLgUIW22lk{g#S$JZTs)J zR=Do=KDV$emGHrdJ!edvt4jJj^Z$AF9zE#2rK%0)#K6sR$}ym>a36UmqX3iaZC|v= zqImRlj@88-qVdX$iGP>A9PV#c7;ElZL-@^f4|Ntyc{CNKr4wejP4Xws>rxq0AMGQG zqr-Gu&ad7eoLLkTIehe;c>i`A<97ZVI|`U2<|SU&YpZ)>_uhx}P$IaJ^J$)d_1>bFJktaNB>Z7kF7{{qY`PkMoqwx}i zmrv}^(^J$@*-`dW?6DIX=DvGnqx{$H{^4%*V>2bdq}|>rNQ!lPVYBY=o5w6 zxPKgsU+?#;7UjdMmlYXA*~0e9E6Kp3Y>={+koHtILf_apu*OD_@V%MWHU&psb|w6Y zD0JN8IoAws%F;t>$9st9jsGi0-FG_~rH5q_V(%bPuK#%3LWOfv-won?Wr;DQUcUnou+H)x@m3 zD$rQCGckWj8;lQ(+?yEZ4YyZo$Zz`vpp8(+axYwfW7P$NFMikIz9e5I^;9UF_8y+z zc5#u|ljt_|`r6ZJF^ZskFPzI3OciR!{ZcJNKN#|3``*My!Xb2;=~itOxKhrqo9m`a zcna-o4Pu{e-w2CT&5sd^qlD-1KcA#YX$F>)qhU3vk^ZE8I~eDFUQNGv4AhQ4o|GY5a8yDlf%}(&B|VS4 z{?H|O@Q>y4gssp$<5POdauMt+gbEuyT%e<}7N3W&mEUcB<^-(! z=Oj-V3x?Z*%Vo!xaEQ-Q-g;UXEx$#4e^`7gp2DdZYLxs{91KOji^6)itqidB7eA)a6Y|w z_KfHkaeIq-+qMtaw2nqyf1B{I5D~A_l~VU z;6B1=m0X?*-Fxi?>vo01?AX1y6TaTCFt6CTr(F&1O#zq@D7>ToxC6;P`z4 zNs}9XsmPS5hig}KO|6p=;UQ*Ct(6GY9s%jn&12@ZN5JnL4~pel66c|{Q7k;wzhPcy z#IvD!vP5}kQPZ5R7I(uve4fhLnL@Dc>wnIhsS0K+v%Pmx8a%!JDrpOe|7DG(W%6BvHWfPmP_))^;nLVg&IGv5$(pEab9Qb z6=kAdth%Lh$cF@=^nLrPJ|qqMJO7fGh*D{Be~5Y9cBjv1l=W!A;n3d|ZzfL%c~kVS zlz0Xl`g&h4yl{x{R*U;VTz*Q;-vxo1G@`#OtL9Q@KD&u=BOXsMEoNrQUnlAz=9!Dn zC$2x|QmpA?XKC2fFMPS_ngh{~;_)KxPjS6H7TGQ#`OJoMO0mM7#%yBTx&2!Ly{;^`=jE7gEuWlIu)5ju|+YknJ z%dd_JQ!3z^;{JMn)f4FUGe7=%SWmo?-?d$hS&|5nX|&~^NehYRVksjk*Mb)<0PefF z_#dKzVprZ`vPzEdEYDP_ytb}#6;Teg@(DuPQUg$$w11sRjDnWd$)JPr@8EvYv7nrN z5^nr+E%j$c;W901ifY$Un15ACD;)X+yXv6ZgEB1Qz2lwyWm>DoiQ~k)Zr=JUl52JE z67Q+W2j0AmP9=Q8mQ&V@@ed>u_p3RkCQZ4!8sQPVOlRM9C%CL$l6*K}2AuXxX80}E z2IJNZrw3;y!r5bzMo-^5@%cc$lp25JnuWN&a6a=b-#2xDs5hzZqyHA|8?g3qJU}}e_UY;&A!&-xj%=?J*G6IumRu;oVJBr(xG4yxcMV>F_$GK-p4S5n? zZsPj?^^16%*!OVN`k_RO6LEQn->d$|RTp2+ta)XA{fEEe_9Q+pGpT!-qhShh9j5ko ziwN!6ptsFZyE^;u|N7&#5{!C(bASKf|1e>DBL+983EF|(z{<*q!IT`$;&cUtg2}H-}id| z`HMNL!k3-jxgI3`NoUxbpkG2Es4Qf8*dhX-OpE zsTOx-aQ4i z%lC0&f-Q0X*q!ozjrQCi(2HhJPH*}{c&EklfEG9R8nZhOh~r(?=d=ONY4!mNi$OMj z6t=8s8_ZWuAT#&3)csrQo$z9wCOCaxwr{FT0fza-uW$6g@tNH6$fPv5@Z~>-6pHfo zyQlQK=j0L|Tgx+j%VcYkLG|3eElg#jXy1OiCYpUwG@q3+<70F|Ygbox$SNUx#}xg! zTdIV|KzeMjq+b*-ioL`htd$SEmL-9%X8+}of)n8xrt4K{<+L+kG0A12!URRw9tp3T zSY%K5aswEybWA5a)1;CU$7cm)68>N7r`7x~ zenoYEoduVdiN>YaH*NV%#%h_xJmUT_lNLW?UA+Zd=kdylNB$DNYO%jp?B8`S_R|uo z*%H29#%5QZRm3>q7p8rhnLk{#ow!d*OOey0lrDrzr^OR~;wn()p3L%F=khQD#e9f8!qt&N>27DFeVN4nQs*Vey@o>`mYxz7t zPkMs;+f^XcWGC-8m!Ft)^4fj=u`{6Fq&%M0npB3d3l&Q+=szLVoe7QGC4$K&Z zi>K?8z-S89KX&*wZ0L9GulMv2-evK9bDXzoJ;>w$_nO~N#(lzvZK;<1t)S&8;mH#p zr;;+_9y!AsPIIPjn)ovpF2{^&tCjo-ud>+dE%t0P8_D4j;YUCoPx8-kNG7i1y!~2m z7-cF*eOHf6_UQ%VOH7)uNuKaB(=N)FOp%l>cCc}D5~^NZg#{5E`W zCE>dk_c!gAQNqf{-{7vI8KZ0=4-1=xcW9rI2>&wKtEW9lssT=C1KzCuz$d)e;_<`a z7<;7X*u!ynlI-Q3tzau?#WYK6faEsx$0&j+if3=HdR4iP@Zgf~&uWsrycaC#2d`+o zd%z9~kpE&90sC|6UxoyVga=ssoT+0_MJ_vS4&fbUkgtrs7WJdpmrP#yDJfY>l!vkI z{#s|-M|gEz6#BfJvVA~d&3LLxlLLi!Ip~@7HPGmdOY8rXg0WnAq`&koIJq2M*#`xn zB$jVkJ|tR?+eyWNX9ozMFwLjO&B}Bh;fZs7xhK3lbQ|H_6?>LVUR>TX^~fdAWvpz2 zA9sLbsWj0jcNgtaGksiq@q%=Y+#dGvYY0w^;0l7QcE-$qLx{qk!-)JK4!=GQM_#I$~>ai^2kT zfDh7r8>n)!4i3pDff+e#EXCdvtgFgD)#QG|-P*=PzgrV*b^ApQwns$k$?^TaR|mr- zVsh%)9BINkEcPRFS0DIDpZ^%le!II(gVG?M`V${FJVN-j#eO~U{a<=x=&z&OI*ER# z#s1z`(^p3LwB6ND4NnPw19n6A8_w!Qgm;>)oYAy}{(Q~R%sU5RrO#Ycu;6#g=x zrs_v}+?X!P2bw*ugz1U)3EJ(IQ7^$rW9YrhXc4U^T4eVfKCst(OJaxi!pTXyTjpmV z+^5eMjunf>_n?lA<(G$`HeX!#>8>N;cV^VKyuUH4o9JJ$kD58kJL8}gOO%(Q`}@G* zBvGEQQ0nh8Paep4K6iPOKjGQ4^`skiX4iunJ2Q0eflOlj({+wnM;$kTOX{03EhO~7r8)?6hVf~!I7nGf;T!BwfWHTk9v@_X|gf{Pq*rdn&CqD~^p zD?Uzqe(J`DJy8nIgjbGlapi0=4McfqF3IcX&K&`F%Cz9^8lt%A_sL6FqOX9L+mUdm z@F!7jPg}RFQ|}UpaxzDD3@3Xeg4Ob7VXyffqMYQ247zJs5;%TdTS*>&!A%vcbsO%1 z$MFkya<JfVPbH@lfPYb&JI$(;D7U!Z#r5}4imdJ|sUq4(@KoN} za^?>(Ztj|}|8xOSZ*jYbk7HA}ri|LKz@hj)Zc|hv{?F$&NZFrlg6oy( z9#`V_qK`JMeUx$zQv!in!eqBEV zn)VU}M%qnKPv7jYIrtZpT$h{YU-yDDmh@;*@H^NnpE$>F+Z!w>V?GnS^8;E~#~wy) zBKlYSepczUpM4cU#Cvglh;}vW)@pTqLex)uy!dnCb`!U^_;-!s{w5`#7u=Yh4mZ_r zncCOB{O|Ao^^^EK#JKwZvF2a zb{$vyauCc_bN$ZfS%GwDmRJ2I65%CdgprloS;640v$DOoq5_l|Q{P%iegbW7gu|hI ztzd*dC!7rR?e)rQ6@TJpj z?;R@wbHV88oqif%_Ea3XVfYII<9NN#8~ed0^*r`em4f~9fGNr?7vc7Ps4hl+k|^KY zw@2Tx6z(%E3YHnnfotNnzOgmF@JRfyvUQ;YXvd`27alr7l*jIIqfE$=ad6fz{PBFx z2QXeg=l6OT!g4{Doli(DQ9t&EZ5O4>RKUug!z*o8g2!0=@z+bnh;mz2n>$U)Uq}3( zG`_e(Nj`*l&Q@GLaXZsm4Ro3omk{+QANYDK+jANb=Xu!Ponp-)5%m$5i{ofRzEu4f z?hlVGVKmwk^LAk6Up&iThJL4w$Or zl8S21aDHAj-~Fs7xDJZDla8GrUd81SkJtZ>cN^a(}Y&EDU8H~m2ljoDCCrpF!$us968lQu`ieK z>)NiJv`T(Lhu9Y_BwJj}f0Wulcz?y7T=%+|Wy9AMFh3;8@Z^0-u?JeHBef^QOv4{@ zH&zSV-bRCUgz>AfD}ngEpx6T~_WhDZo=Bf{jv(3r8du+2EPg@U4<_}Wc>DF|EW+a} z_ADE*Lg_uZWTAvbiDrhED8KbD+xA2wRXBmebs5N5M0lFT{%XNkujj{H320X|eXe`) z9ju*Jes|Zbf>LAy?bPdcgtwXeEwE_nuVTWBOuHoCV_gBe# z)xp^^DcD$)=ZNDau?L&d^ySOt$5V-Z<*ueIQO$Tmc%AL@mNfmlwGWkS;FvZoPRrUbnFO6<3*~Wm6 zN5qSzTCzfSBUfi@&Nwk1{_}Q={n#KsR(tC~u@ow|RbD7KG8MF91qIWqMTFOy6Huge zb!|HMx_2!jtJZ?EImhAO#7NOPR)6H#Y7p(m&$zF?_x%h&rlzI0K|-ihCcSt1=<&L7 z>H8f;ErV`HI*zO!43ZGezvs~1S8W2N*J-z@^i1MDC-r5HqFvG!!mlj$91Bhi*h@RC z0`=2+yTn?=B*|z22Xu%FQ1=1HM5^$@q@HpnWWjzIXa0 zymr`}y>8q9TK$Y^$DU*eUDqGdcot(O_6ZXnX0M-tpQeUbgO>>1=@Fkr=Wn#qVfBmR z+-jlb*h#Ri=j5N7Gn4Q#|L1Wgyw2kD&Cgi3Xsoavw5EUxxt~^0nMCb>+&%I?Z}Q0H z-wPIn!Nx@Az$-UD!vE{uuT(}?wS(i;on1WcL%+8 zN}CJM6vm~qEIwZByQW`=NOoaw0HgZ7>Yv~kur62XE+6tC`a}H6yz=68vg&T3 z4wGu|?Oh@qZ*^Zk=X43IqtcEs3>m`HEzS?b9&zHncty4O#nscmFQ0q+!qNG#nr*oz zaEd3`WfbAf^LvT*Ly30< z=OW=#{?CsroZ7YQ{hzE0AX%G99iP_>W9IC`LCi#O^9_DR*u+5R-!|_FT2sMze&Ec8 z1*u|hF5y>p{N?JnDq0P+K3Q6VkO@|KqsPh5E8#hREPn7#B8(+h-&5Fp0L~A7EV#Pt z5fRsT&XM@h{3jh2Nn!8%hei8Sfu~~Jv|8B7MsEGhP{0D(0{YraUFclhV&%S%LU^6U zaRlrBbcL099fY@+qI>Xc;3`ob5;BKzdD(LK3^gu1sy`n#v~_dW$`lcPWU>(EW zo4u!Pn!SA784lBD7d~4YOWdEPf3;lDQgs!Sd2UhzOe%b0mQ)xy)PkMfq0}cl=b<6tEW;{M{LD=8 z9^E1KQ46OkJ2la*6`@l2E%4gdM;NEyS=v#51$>(=>Jq-L#Q8l^&iO4Zz6R%d69;`o zPk0^EPJDDlg79tY&pUAXaVZD9Eo<5pUF--CwAfGWIljkcZ-pn(-(oMez}nmYiG_l2 zHu=26?uV6x=bKZ&y?o41v@SN>3jG@IB5JSCBUWr9;<<30HQIF!?Jo#_G3Q{*=a8Yx zSg<_oHI&l9K6O*sI)4rLPH84De}}`jlb6MR{RZ@x>S;~fEZEJmS-!soNYGOgg@Fk+Z#N&}NW3$5YKR3ZD zjXiDAe7A1whSDtaI8E_55Za!u=|7R&ibcK|+f&b|fq84<=||g76aHhd-`0b>dSf(A zln>p?*NKmd1aIo(b$OQe2(Pi2x6EI*w!7-3fbi+^uMW;=`m+&CuQyKmMyvkkza?kf zx7e#jaE=9&2NwJ7c?iDADno6qsGZy|2@+o@gZFuV-RWXcURI=dHT{GB|2W68T_3YF zrh{j*7d~J739mAToweVTSq)AP{mY5&WKqB8zPRv#Pxx=eUTIF&pMZ~FJPE%s`@+3O zb-HMu9bWUmc)beYQ5JiCS%zwM`|%lqG-2)&OLOq!uaAFgk|aFBf)uX3WSyv-{58K% z9@+!`jX;gfsb2|?FS}yegcSWm!mG@ie!N_I{%P=<7bwS{+z9@$a|1&HCiqL0#vSW! z5#DG);$6?s7a8FGh*8-2a2w&};}u#TidSDq> zC+11>-t>CK#4aQ}&YWqnk_YEX5T0mOS^Ukcg!$lWj?Sw(Z7J&Ct8e^CDgW~d2ehj4 zo4ye~Y4(moX>Uiai`uo{hg1Co>^);Y*KLsozXLBr2UFm&I8td<)hGmRk@qHDJr3UR zV&7kporJHMPPk)D#Ef5GlJeQp;>X(dr8|Wo8!oSQ-x@n`n zH~fG8?TuktV<}$=KQza2N0{+?(QA%3IZW;i!J`)YmBqYr&KeE>sE?1pKdQG-zC!7L zKIMY5&ZSve1lL{c=N5aU#p9N9{P2^d|F5_+kB9nu|2`2>A{9#dNU~=c48xeY#y(>( z){07GDcRDV5*3wFQb~$RN{bdkQX*R`NhxU|(ITmYHtC-3?_8(HJ)hg-`@8?T|L{4^ zcAe|G&iTxo$-H0B)V<*PRn@I++-jVN^>O3V4%oh6l6(xKIX5+>uM~Y2=)$%n&;?NEefAdc9`bR*~mmr9OLbn-%{aKevb3HD(KdmE)VcEpx!4)8Z&+tta6EBVX8( zW^gfl+)bb=HhNd*tpa03rakj$JmKwH zdr()~4~zq=-SS%c7n2B27kS30XKiJ#`=I>eWnc}w`}NA<9oB6V5c<>f};y&jK1^<^_K*R32AD189T3q5*HH02ZhWTw(?u{rdA2uGS$E8VtwfEyOc!`nZGTq9eMquOtypG{ZAmYhZ9Uu&!>b zN-=)_mnSXY2!nU7lxZ6WOvirQvU6ew(JN=XoWBp126h`wfX3Xbap=%) zpnILoXVUKhSXQ{cX8w6j#CAdQjVxe!?MNyykOb4w!u2*S+~Rdae2DP7ne$!3+KR%! z%&%*Lto>e?KF074H>?k|LF~%{N&ddZz7Bu8J^~C?)w;j7nuGDww4B(~xnO$f?$Wh$ zA_(8s%&u)wr;c9IvukCaW1Ff6tF5UdsN8{HO)BSZ0gTXV=K*hduU}1Dv;q-PD zFgPC)*XETDCPhmk&gk@j#ic2}jcrT8Xmb7dJ+pFv|Jl#IcE>NmOP=}m&9QTDHiBN0 z(m>VTHp1;S?c97&scR151)KcTYNq5^f@P~JlgZDY%1SA zlF$s)k%3#^%?<*iV*@FX(!pRUt@z#A>jY3gg!dnspGUaT$R9M5*&3VhZ84Y?r@W&~ zG6b#A5$5N)bi%zxU1swbSwnx%F10(5G^vBeR_kTJ z*r)SV0-ayqGMJ-e;{vAVFKMkgDgU=F;9MJCTpivsYdKI>I*$)qqz-!bilVBfW|O~P zn>9+*6d5y+s|RK~4;C!=-T+3kRNON}hd}#u=*>o}J}}DaU1hmz5$L|#ran%j0%#Mi z=Zy}m2jjp=(cP^dfqLrLiWu#WVCf(V2AY5QcgW?|ceuGH(NcnNtdWz99A)G#BPUxo zO@GqE6kDJM@2~&zz5+Bj;-7Q*pIa%nt!M1~oet)V1)G!41%gh0M&Q5{EzrKT{rRY( z0H9i*r5~Fi$$wwdt6M+n8Mv+eG9zVLB)BMeRN3uRBf7-wbr%mzePjWy9VxD}uYl{*+h2mLM}ga_&-&9gz9%};F7(aE zUULh`e4gYn$+y{zzxA-ZhB*@s65VF@G1s2R=CR;D>Po~o_8o8y-LcYe|83y4IBF_f zi3HbtuQEGj9iq34ddx0IWTFm7-UVm>%S)84-NF5V#j@esgePxIdQyy?|MXWMx&%~WA1>Cnecm0ry(pye&(0!Q-e#r+dsUa80@#(l^N+Tuyrx4o=hocA3n& z<4^easHF$Z4eU;U>uPI_ys16l9$Lj5uaXVis4O{}(mHS{JJy<$#$V^CqA7JQH+~U)1R#f?ci{Uu8m|Z^L>}9WXVe;{wxU4PtF8_SWhg~~R2QJm)Z72!>V1M`%ZF5y2P>=RGdcJCPQd9uIkvWd>M#hdOxPEj<_VlQ1B zP-z7E*9?cudcM6Kqt84~7zC?^OJ{TM+y{u@jj2;{0<%b|hGXKDK(|>EIK8G9?3L=q zzO!-!>zT8j`0+Y{ana=DI8_(0C|v6B;^GLf)Qp_J)aVCTuT9x3>bV=N$7eWcyPgHJ zcb88-sCxuVzx-R>FRlY4x}`cvg#mUi+IM~|-3rh?V@!qG9kA{R+SKPG1Lo9Tj}`Z0 zfiC;W;ZoH`;-}fKWsZ8OBY-s{?oCnkJYYO&_!Xe00ameYzqXA#0hT}gt_`iO1N$G6 zXIM7|!BROSuJ}?rSi}wJMqfw*JN;>jd-v3m{FtS!m-S4Z%)i%eEftYnPV}bf&!1fm zsj~)1%2Bz#rW$}cD7(A=E?9@>Uw!TI8K?&*MNKU00jqS`?d9?>`1iD~sE~AJpon&q z9%l3JZ_JD+`q>DucHVqPtudVFa$_9KzJW=F25Dej7$f%Mu`^gNXzah^;RO&+sjTto z1#37VE_wexSbm)K(q^a_?75D*Ud*e&s`Wpzg)0iitEM@g^Bn=qm-My1OG3d;T+v(o zf;w25xXjo=Nd>quDD~up3ow>wk9hw;8)!lIWmS(&Ci>K1_2|vL%kzNNc!%25ITp+g z#SIzV)&Tpwdm@Lcd0>}5$>FJ)9@s~B#GT-O?t@NEasBIVWIYSxvbcu4cCaookDt^sS@4aa#RhQLhz-S$kU80cMB;x^W`1Jh@7b(9tZ0GeAF zv)aMN*YC`!gM*;=DDBkO_(3qDj_8v(p#$opr>|n6V0Zl`9e)0Q z#s^%L10$Dr>CaSK02-r9{VyyB_1SaPHXpSGmV$+}OOmd~g=lM3elFr#Ksdx%aoUFYTgoSYVzE_LNy z?e0JTWmfANsQ`d(L&yF3c|hyi?*l>(q3Q{`o-v+vk$GUch!u5wVh@-* zwH79gLS)VX5p+m; z`$KV7C&0|$)w#x(_rbh#t?HtI1Hef9Os82&5&zBdBm7tqYk~6qK+vJmUZ9A53@Sd~ z3l^1|8ZPW9h3PpnnbPTnWSnKDt5i&u8kn3Lo8{c#4yFrsotNOho?<>N=l0L&J17sv z<=bj?L~F@9`mw8)$jjyc_4J5##~D-rN9Xie+Y`a^^vs5|EPj4te#-vh-@mDwf_HqK zJ|C<_UW?9UG=Q~PCHVFklmED~zuJQsX zZd!7)FJ^$jvd7BHj$Q>5iEHsaHv_=z>s_Pc=aRuf*|^Yc`)#0XKBiY)%=foVO)s;S z|2ejCe`r)mKbYwhpYqmq0kay-p$rN?kMoUcDra6J_ghvR#lpqB5KKxx1TAXdzi&h& zi)L>QCR|zTv39w2D;oLtCB-w9%2TW{lNQd)T0Lbs}I|F9X_BVPF+9H+XW6%dN87+1uDqt(4P%JS&k^j2Kb&iZKKz(I!mdW$G{`wkoXdtNO?V1MQ z9ogf*!pDtpq@A0-w_e-MzrU6&Wmk7BB)n$i0wb5#s!BtA(}j7!+j!0;VctBjjrfm`}ujzDGiVIRN;UAcog>QdmV6_-7+J?HHcoal{mFh(yxZ_ zn;n{ON30)nf^d>;3SV>?+z%$4WwRCQrkPbXRfyRqro)oBN%fpTcKLs}p| z-}^li#%i*`x@pswva%L%UPJMQzS~6C+U9Ng&H9PgsDlZ`1Y2;`lrq?|Fuz%LBTYVy{V&rmf_L~ZGaCaKbE31A7>?R#e&79l7 zVIFyx;mvlnVu> zsf17Mke1RZo65hBbsRl@OME6ci><#9vRVV&i+4NF8@~{JclJ%E1!Hpb3BTOqX-$5E zz5|GMd@~pK(E@7v!@7}?6v8=X$@@iaw_^iu;v74!iAaU^Q~#Kr1M5JCS$N0qLJl}= z+!N7xZVuS$R&_-Lhyv}FI}szFDi*RHono#;*@$C$SNj6-u|3mCs&RyXn$|9xzw zGj-1>D{$EN^1x057UAZio-uNek=N_EXWP@~&NC|}Uf%yg|Km4sr615#e^vzaj^}qX zHAjH`(oE4F*?7W3o+;IRd*z^bc}ZgSDZ7m#!0PO3>?w=~r=j9 zRdyfHUe|;iU&68GxJ7!unX?$U`q8^iCcPwlYS(2CcFn6>3U2yYS1#S=60S0GdL6xF zv*>@Gx8}NSdvdN4C>y*>ZD0KWhwCzVi54ti1kGlQ7s~+ar?#VSwR{JMJ9OW+lTT20 z8@a<3({#Rg-*`J0%+I#BKFPBNv3E}{-}t}-r*4{rrQBIy=}q}{-98?<&B!0F7@vD5 zwQA~YuuUzUZXeu9IMBunyTR)wsi0~Qupzgh8Z2V={rtQm2{^jPmPJJ`1*?6|fgF}K zxO$w(%y9Yuw!aKJFDo4fH;d%+t-CydyXMZ`K*b=!RkpqCy?Xzm%K%e5pQY{V2mP+i zB?^Wegv*Tj(?(3Hp0{);*h?smjuc%1E~9ELoYL_k{BQHQUGG9mIplulNUe1DEAAv5 zWaN3XAM1PxevnzA*>&IB{dgW&r}=~)tiKMn2~X$h2D8bz1bg>m*9(pVXXd6!-tYE- z_Dge0*Ukw<*Bd$EEQ4q4ohEglQJZl6=7Sut_EdeT@0kpCzjJe6#%qHkg|fHgY#HG) z+mtHo-eqP?bebJF4QV10P5@#lr*h+`gIsokVV2!D^7m4^CmtSU?X3VZ<#R+omV?F9 z%)?1BJ;02LWIuk#0Go}YFRjx(NO;V&(`(_L@6Nv*UjgUW$VpsY@lY_Bu240rP)Gzw zn9#l}TbXc`nf$x4M^iD_Tsz@P1z*BzRucD6k$7Vc>`4>-%gcX*Lt@62HW6cBQ1v3~ zi+6&pa(MH_N5_~yes#xMo^Pu#={%CZj@bpeZnWeeaXQdzdE?;b3&ImdzArmJcbp2( zfbfhbUDKFfA8rmNb0=*|ynYTevh^C)%ijg{L(1LHcJe=el}KHcx+=l!?Y$u5>)b}T z(scT|`i=_`gePrxaZ8l_&o^K;7!dqmdN9}(g(%EiHX6jzy&rDx`~*g)V=j7C7bCy9 z!YCm>zxbs!nBO};O59B!44d!uH{Z=Fe=pa3uPqJm9#Z~Zb=%yiUZ^nQT>6zi!h&$9 zZ9G(GU!u5zL(u#*IW<4RnO5Cn`9Z8V4{TIw(gI5^0Zh(Po$|>S`P3Dm>cS4_I|g&tCN5;#wjGNPImg3V9gkzTdrs@XkIT6(wReC4+a-9oQNl8Ze-!TozowoM64Q|o?Z zmp=%`eaCA#v>w6-7jU#IjLg?aPI#UHlP73mF$qk3OJm8q=igSk2!Fg8W!hzxigeQkQF`I_6^bMm8 zfiq$04VF_L;g%u)&SApzN{_pZ;1-nF^>W@LaH2{$s6JT)uIG=xjlE$4_F?r(P2qjO zWk?;ZQJD=~|K59j$sFKLD4pTHEenh;%pE7GX$m}$buW#lfXm6DH$T4S5zZTO_mDg1 z-j?y|{kZwS-MVXr-L9#?QJ1pLG*u$JIl^rd@J(1Upq@3tb(w_4z&taPJB*$`NYW0szo z%>{>N4c8BicOm=~_x){h1+V$98*n~O=lV^;(c_I5dBFA94{V$7(oS;g2nUh(Xhg%_ z^LfBAcIXy6U;Ov)wJTzNa"kIrt6^9!%OYv8h;J*curg76Sou_I1znr8?+3AHgs z?mxj^xxlMiIgs$_9JG$UP?Np}uCe(^w8IR-*K@i)CQ0mE3D~48Ec`Y~mGJ#I$KQnK zA9VzW>QIpogA`EHK6z!$nHJzm9B=Jip#W~OA9y<{p%(PZ2#=AoWbi}D)UDtgMVq0U!9OphOB4=M)qr88bG80XKR92zd8q!1E#W7+ zeSY8(;`EgNI=<#mL3st??;)qq`JJP5$mk(p>#I+TDVjj|&2|qfDT8J^!ReVsw2%5+ zV9|mme`0_Gz!=+tMdsmls<7Vn7OLFT9+t|ze^SsH` z**}iy+k+X!Br3Lw0@jBTZ1*Ksf&BxTj>IQT(3T0X^)jdi`)0R_J?_6it9a~D#Y(;M zFD=j7S1eK`d^SdWOr3XZHn1q4f6rZX1vqoZz`Y9o`}pZ!r;eq*0_v{8uDq%8KyOR( z2pwh3zt5+b-92!S@ai}p;@^ORKjAT37s+@g#>j&8r2~iW=B)wK(Z)YFG}Hp)$m!~_ zZv6Wk^Xc<k6*#J$=LzmE|f-BguY!;9^Xz$n*Jcxqovc+K2!g;*OGQ?MzTI`Qb@ zTZF@gJU#mM?W<|Qw}D>R7JtVrn((NR`^PGLYI}ZT6|hD{@2*x7C7eJAa1TzZlK~b> z!uINV8?b3|k_>$B228`$$+qe~K)*5K|5czq?n~-1ox5}Gh>QnduV_1Qh<%^% z6)C@3+Gv~F$-he?uTkferDl-O`Ak9s$lkEBalg^Cp|{0Fe`jJUYgz_fHSZEFc^<`a=eU4`&;_r)2$>^+3J8U?(Ln0&EuVXgX*09c<4_Zz{9Q<-ZEjb3Wfg6ABz0=-hQfIF*~aM@VD8w(GVtN`1S2UQKO_!5pAa@deJ=vZxW zdhu^5WP)>UB6dB^JiPzszYTju0$XM^F|@8&KoV`18Lh2jUfgM{y9cUn71 zQ%eT8i(^+N1@K>&`XAiBUoKW5mVLkeQ)LR_=Q&HP+}3Zq8`xtOIAsmoCmcZJ=GiOm z(%5m91rBG9KAAsV44m4%uH8!r0jnt!q;8)J018YQJwhh{Y&u1CJmYG>Zg2&IYL-d( zhFo78FP9Je&sSHHHs7ni2-KV|rz@2KU_0^S&$VuKz^Gi=Z9WhTj_Mb#9oYK{?5n;$ zS*;`n9LV9x~6XE6imIiQ=S|>U11e6XHbzXS& z4LJUxK6ebqgMFs&W=#bH!V9FXfwd~5)4(;OHu%|s7{ZGn{0jj$0{IZg^T2+WZ3Zq0 zOMU)wKLorJ)LB8D9Mr!-t_kXcpncRAMx7Y0ylzeM?CE42@>K{&M8LNo^8`E-tm8Q3 zwIIg={X)GS!U4g40rv#QVch6Ha!W|NU>?SW{g@BJixK#R>;5Y*$dAE!g7|Sf&KJ%D zv4imo_60dJSRzM+a6yFP65clwhrlk$JMO!XpQu-a=Lh!;CN<{kYNUs!sOOR(F%!|M}a!K&HR-A{rCukQ-meVdPu{Se`9pqVHiFzx@89`nPa$Has z2G>XKisfp7#V_tDxk{^K` zVSg|mxGvF)!TgtdrT7eqlQ>D9(O=|`2skNZe+1kU%p2BmJ@gy<(NDCC?ZhuZKdwX8 z732l|!aA1d58>_z;=pr-?Pw44g7bvW1Nx2ohkhat2;)RQaXjI!Ajd}FFYZ73OU|ue zKG`?H`oiaf?7Ltd?mu!VkTYTuyP+tDe{Ue%5`NcLF&b$k9M91uZP`#y)K(n3xB&@;1`Rc;u$wc;c6UU7#}f5bh~9}{9F}ChKsQ?09?r*p;rZB)^RN{5Pqj=j^oPWcuJKR1EcTR@eH{tb$+ZSQKh4Uqx@Biuf z`)}uPxc1@V#X9Pb;QJ)eEfMI>V2R_fjyf>H?ZS41`-dARybjt&UYT&euzjrKJiA)p9^rY|Kis}xyKw(-aSD$gZeNA%2(LR_KCyi`KZc7# z*zR!lg!3!B&T#n`UYBt1gi7JKhC4t1&F|szi99>u65s#G_s0YrI;^9=&Mg z_J$jW?SywHRAN7_D?DDgb%pE0tt%X_aGb;WExb?Uem+e6!t?&8 z@e9uroc}9k1-TrG5;I;VHJcFK z6SoO$5m%-nOg$LU*HLzc60pt_Zi|JdEEx z&OZOE$}RM>{Fmi-$*C=dpmX;4h=_}!L~hBQNek_5;+^lDM5W3N-5`eoIU=b4f%B2qA#7LJKGxA5&O=TK z&bO8y*j`6HPIwg9j~o)5=TP~!fkhW zWYdG?#4jB0rli#BxXq$`&{5R!uGDVPUY-=dU#XL-av>fqpb|AFf|CGURpSj?(Ifu6eXneR;!2kzf= zYRl)q1rPs~5A+x9VID9}%qPYp*p~_!m(*g}C_`MA+D9H9?xV0DI9^k9 z!;1QX9Fl(=kNzRYN0{q_=LE;$Il}$MxNsfe{lPp5)+gr{{pQVxyf(A1n%Kwv66z;B zFFAvoQx9{OA(7c8AW&($jv|=39e&1GBS-*b%~5e9tH9;u#WSQ*M@Zgf1_gJgSpcV zSZoEwJfHCa2h+)X!f_GUA$%2q4hnKI$o)aUi4n>}#h7&(M%!klkoYlPw2R-XWETa` z?PA1`buh2fm#mae_`HsAN`(EwcES229*h(13(rG8?7FTuZ|FWo;=y?sC&q(*;l2p+ zRiQHh)K+vHBI{xv1bHFx3+)S@BXSNf|F}=MzfKt?hyMu)0XfBS(#c<&NxaCl5k4oT z6Hlha_b^Bu&neo&xNtwn_hkQ*hYAh$!K~4#)tI;PAIG$q<#&$|KQMo|@0dr-FYXtP z!}T$LgqtGRUyKX=AUe|mooe=0%RT0o=aP2R7smHL)SE^lq5o(X{lt>!A`43N6UXEF=nu}r zJm7fLN5(p?J6s*}jQ*lsVZV9%kj@+e$KeRGTl^P*kX^JU|xQeeII zvWj^WOU@;Z!;-h*p*X|MjM&BaP}iHXU6b8tlu6>kcDD(!`#P^AlJUdsH}*O&r2UhKPBU^MEmFm>U|SCf_dcM>jdj!yUgN; zOl6->WIXl@&&NEWzZfspQHLCLoQ3tKttZ)0Sl(8|Z>*!=I3L#$)GK6<&yTosRqn68 zxxgRHv+zC&=T~?=)VaoXoQL~~^G$lnE{}SB?O*$cc5xi~gC*tz?P8uV59qhR55o1q zcHz7V`-$VoxfQI-zM{Kjh^9jJAJ0Foi+bX-C~)w1;}x!uC+V5cR9k4(iUK zPPDKc>_=T=To?7S(LRo|?@+&Ed0;zP5AC8ow1fS^rLgYv)ELcNW%*{34_pu9z;-Ng zeTP>fW5+F@^H+~q&~D9WV2C(OBIAYQ!utx*YefBQpRi3{^OlfyoCmB)C7!!u{*^b} zFZ2WZaea(qI9+k!ebtX&utCyQkJv}Qg#E?1a6a0{@wiVo9?t>lpbO8#^Jz+Z(2#gD zn&c7v$N0$p3HpWe%e(Hfyi6kOU-4rd$KgE82iimbr_)4UboAvBe=rWBw~hZ_3G`F& zc?XVMQBu=92DsYZkcKI-;IgtMJw?74oF{afYR7kx=Yvtt1$8{|IbqbRaXnLJqckl5 zcxm0-X_KB39T`sO-N97l*Wo@DEi(A6L-a#jZf`tM zo^}p+Bf5M-Qy-A$15mGo7Z)6v-+T*r)S#7*_Sq3V8RCzibm;(-{{3AfZuATFVtARp z=g(zmgY&b+Hr&wxME8a0%Lty^KzrPmOO?tttRy-yyiHltR;Pa^dO*CYZ{oiX{s!0P zn?DDRCH~a|vaz-LyzeFOrYmywC-{Qv_7peI!!1O&1)m$?%!pKS$j#xn57D!6@jiRv?rweHdH57R@aBJ>uUUKFMJ0AVbYa&J(f`5cO*qvZ z5w1b?;5?vlf8&@8GM*!Cuj%ltm*^#NJzga3U44z{+VH}a?4)M35`7-d`?#tjA=$vw zaQW5uFdo=d>)MRxq!FDWw9B2;C!NvH_rv^hg!K~sK7Q-}P&z{z*oWGZ+GkY)+gs75 z?qL8p9X_8sIf_EgjqC2;h3%>u;F_TN;l@8ne|3ih=MDD{{ozT?Df>2lI?+9H?aZwj zm%~4&8jbgh1~R}&X~(+QceQ`@kOcEgS~tjMhp7>r7W`hnsr(PUu@R|2d3OFws7C?O zYeD@H)W0!FwGR?m6iw<@t+o!Eo~#8(pHpuo@{Z`apq>on-hDk+4|%X^42oOS+z#fQ zDvt7*BY<}IhQqg$Bf#?HkFl-SGJtwBB{OG}4|zTT^=IgtY8+1A8Uc*3M@@Nc7GO52 zD_%D-0IXKKj6L%(gXq9O)-9vk@ib!B$Y*aBuzZLP59$aSQ*Q)m&guoDkYz!>tX|@$ z#d5{KS?7C!k+^qZ`^#uB{gI>FwdKhvT`IMWyiMwiQrS3{SM9`qixBfn z`gwOSkJXg5NS{n}RPgy*qB&VFiy*&=B6Lz7DUGdbrsQXd=3M3ac~^!-dNQnUUqJ_2BX|M$9B6BL`TWQ zPNsBz;B7Ep>gf2-{*5Fq>PNla{sbLhI%JPs)s+Fpq1N$xd_sZIcBbiYXDQJ`LVZKa zduf4&714j6mlEU)^_Lj(VQRVYFt%805Cn{no{3WNIn?$7ID6R z{*Km}y1G?-A6S*-_EH|7Cg<1EbjH~3%acjG%$r_K37-ncxrgmBl4>H(VD_r$@<0mz z9Pl{0jM^m7F3DaRK6eV3yO-{$qRj`>ozH6q6l=jG*SJ=0%-@pec$BcsHc%u;yH41B z&o_a2K--dO=Hw_r^kPs?#ORgxZ|nCOVC+;_OC7W)IwiE1g{MYwUBJ{g;8fB?7qCzp zyJMH@e4@9bL-RI|37~_S%HwuRonkPpoZTKUnF4rWFk5}5=KR z5={Fa4AoCLLG%~R6HQMUSk@Cg7u1Q-+cxjFS1k9hPKn%iWmO#oppRCaygN7z44dRm zkAC3|lxu3{GW|P=j*0eEqbb^+cgc8zmO4+T6M00}gxWQ?=AISd|w@zT!Gb{t~A0Q19N%z~^WfbzJt)@GoV=)2HVPYf-y(I9qB$7&C~ z9rssf2X%vJSCl+1aaIz&7=z@!r%q)L{{5bwV4sX`9auW%T@SHGR~&ko7oraq>t+mb zJx&na9iw#%YC~V!ljq6JFJGuR$Y7A?Vf55OYS*vf`|mIE@`pW@w4)A>30NhYOTGY8 z)^TOe2?{`Su<@w29RSPE0Xuwy<`X?3+EJgHcsAdUg6Q8E&)$>lHu!?*Oro9;=9!ve=P5sZ2rTqJc${_}0E$&a z)bEcGV9=M;9-sS+{Cfv}E)~oZ5fL9DA|m=*L_|c6|05+L&i@e+k@ScR^N-ed7gWV( zEshAp-#vrEqXfT?bdHQzzDQ6Jv-Mvi_;u{!K);2N;Q@;y{Fg6|j1aVnt`ht*Vlf(% zi1J(Hzuf3QUX1wTh0LG+IR1Zr|85!ipLQ|yZiHZ#bfEuofBohD0bxP^M@w+De|XS; z=7|59qagSh68!vsjqr~L|3|JdnvsFa{Z@LQU4CVme|VH%aAfqK)_+eE$B?7^|Af0d zD0&(C{U-?+USvRM(8A@|B@ww|dDM#K|1mdW?4MZvhbKZzU}4mM;_x#Ps#ApO#{U@K^TNT^nnP=U0HHmFb$s9Hs({#ry4Hi9U~M^rxkC`6Qse55E85J>O6Z)W%H z%SPZ3+n&?z$z<-#otZl`@7{Uu-uEVj34)*zv?`UL38GCQX#BXM^c>1-%R3|-Od*QV zq%h~`@7`H53vdNu>~DzadUBt+$v{+1S4;byzeFO}ezoPPdk=W^Qx<==spcJ5L)g|n zF(V)Up`rJaS?N3P5B2u@3XbU_fbYTB<7v;rF|$Y!iG zxoAVrgOiwAo84xDwr;H5YIJ6lV%J2AtsL9qOqC9_Q*5`n%|K`hj5UgJLY?-zGjOa( z3hMdvUsF@l6{SOER-+3YQUf!r+~_uDxQ#QdCO^(BC$*?B5S?MMxlK-+(VF2hS!X#- zvnaDYz*T_OkCvHLvl*fV90$XoUlG)l$zh`ZY-J|6N-8#M9-@Dc6cvROa8c@imS;O8hLQ1DRbN`XzxjgpVTeyT@xRQVLrC`5t|tgorvX^} zWfbZu9Hj6eg+vN(Ks-BOjWWL%({?Awjg|DC#eXDmIs2_3YM@hr?gDftpb@9eAkMbB7j;{xKyiT1J_K}a{ zwg(#hxgBty1b_R8m2xSHeBRmu-Cc1V&@YTfc|GuYVt=M$Jd79pzg;1hs=(nOk9k!3 zuf(VqtjH(!WB!!$3G55L`pDM$9TcVuQmq_LVWc3{DY~|WVFIrS!Z>J8W9Fcr$rVtT z0eY;?O#*o)OY4#_3iu_U$HvM7J%*=H7))V^Ak~*KppWe$@Qv0ZVIYOkGT$asxD)h8 zfDGeJ6r@@^3H)O81c-s@jR!ldZ3G`nWWE%D{1}LV#aRe?#o+4znU52oJpt@8c@gAG zA^tJoO9|K?1LF>q=}rONX)sPHjEg>ulU+AsBA2Z0k0dokG7-G3G~>5YBGf+3iSDcZ!n@jkL^gbAkXLs=wq^NWpT8j!0y%T zW*QHAtY0tqp0ATYCIn<+p-%;4>VWP5{^(%bD2O9Y@I6$sc1MUs2V+G7F9PJ^1>ZBj z8hq>oGD+YY=BzE~>A}ZNG9UGjgEn9*8Ty%AB8<=cNC4;nHq{VUEZ9$w#UCk?i-EZH zAR7Tb#!7u`GoWq~{I{F+5?_Oxgd5mlYMX?>8_ApB^Z4ysT44)yRq-^Rc@2;gt`O@o+V_Ya#1b{#UZ@XA+~-&Gp-1h0gWvz!ZQ_v(-4$WW|lDjvqjI_pOn$=x&;B->s%< zCgWRMcxOlvq-v>#tEUzG?;d!EVU?BLB_cqNt-&^euX3_##_YyQ>xj>HR;^hz#p=ka zCaZ9)in2=S|P7d z^lKFTTEV}bsT5<#dD;LxrLHD`oF;&ra$Kdaa-LF7sjE@&v_kW_6Nn#3K9HS2_LcK8 z5^$h7i}P6!eDg;R>gxo}b%Hhk$o;@MrG&6nhCpMmvDq3;$<3&p&k`c;knWe)#IHv4 z-+wK>&Nwh`L8?*gdW6z@c~iji?Emxr&%0S3&M#PZ_nl!=PxnXf$w+6w9RVXB-iZ*H ztRw`mUV-BQ$13DID)>O-YX-FErO^)BRgN3$FXz?ktib5EA`ai{4Zo)q9po&^QZ7G4 z2X2Vsn7{eKzp4ZcxXea})l_4++hnOQKHvK=m)+?$ zl?(oF$&?;R53X#EHi+LhHBEWuqpKcTGb?J=kL7rE(6bz$(e&eZ_v&JX%@OC853y{E z&MPcG%4+PA!n-zj)-GRuaN6Pv9ItzD5y!O=I*zv*$8&l6gpnY3p6g}p-OK66+N|Z+ zTA#-8i^r?Ee4mvk!CoE6JU-X=IxE@PKXnVIgP+df@-OP{;QYU>`GU)TxAInwf0%FQa%o>C@%|6UNG6}s z=G9odae3;8MEcuYjT}pnO(}#M_mcR%+z(v;RG7|B zJ~Cky=U;KpkgmhwqY^*w6sM1Vc8{NYbi~(E9xI;ZdWSxLfXlrwCxPSR?^O)R%?Ka# z$i-X{^h@0dMSg!$l+=0ltZ=7R|HL6qi0E!y|M zd=sVlmL^K`%_d6oE!iW@w-IRH1M^vg`7FYG_P~4=rTN^S%fJ3$PYrsUDDEii;K74v1N9d4F2Hz;M5wnS)Z5LAx9LAl>=VlBS4H{3I*#koUgP+S z)I5$)p5Dl?xko{W;{Ks2w^RzgEh{?$NRizxR^yFb_65Vw{!p$Ze51c>*}GBu*Q?)> zy=#qgz5UngcWcYvX#cgwxzYY>@o)4xT(AE(o0pb;t(Aw?qFXEO8(puhorjy1zuCC` zw=_}S?SvrJM>zlGXTf2D@92shi!xpZ!FRmLj*al>wY`kTHec)rHBQFEW7l>v9y@+z z$FA`*9y^w0o3;cQkB!f2wqEc*(qq0R3I0cVcr1%NR`=NvZL(qu7lvDvUfAf3jVx^R z!A4(fWMiWrHgd4h9~$ajnL^7)=H5@bTnNB&CrQbO4V?#d%Ge-l$0>gR4E?%6%;wheERf%b$5)tob= zsCekf8DoZ!!iMPwrq_%mL;oClHD*mN$sV3k`pS2QNZ+0%Y3l}tkp5xMRJU7ll;o$+ ztXbdp15%h6x#q5EZ;*nAQtQkMcas6S<(q3ao+LS^-hcG|h&VE6N2kW)cb+AM5vzKx zPAVlum+qK2u1F+BmB!ps+c=W-{+`b=7Y31jPj|iTiG7Dj_TtjZ%esb<{Ljn3exdtL z((gCJ3bhkr$w1>%_10%k)3|q;&F2$H;hSq#)VD1qeQ){X<#>BA$vINo;UsCVC_&nv zKh$v;%tm)FLoWs0TR~_28;_w{)no6*Ac!4w&ZQp08#=#Ey}{7zgbCl|we&g^Lk%i- z`@SrWqJ;c=S(aQWl(Z{hN5 zZai%*zNPgZ>s1@ARo+v-5d7F5Pn6lm-M;th0jEb0v*g6Mtriy#?O(KHK@7 literal 4082 zcmVhg!6Y!Ku90~!XYqD zk|8rPnHeWTB&Z8&SPj`l(4fM~wVtSW?rPi!6JSx0LsSGW1Vr6M4pD>!7RYw@ubTPu zGg;sfclW*Bd8t%abyam${qFj|`~RuIf*@!Ftx6?m0%%hRm^>*zC6n?x@eT=hpb*Yz zl9ze(cbgZ_23&y{`$lHPuY22kf*aEwa1v8%v)fG2)=jiqjn33!?3!Y+m1BF7snUUV3hXwQ83;|Tu|_dYkkfuwDvlLK zLA{XvYiVh@taPZ%YOF$s)W8fbH@b|eE@P?H#-A0H%)0(4ZHqA4Zxlq_@958P*_Fb6$iBupp$^^33MFLh*Ng4-)_)x zl^oJB(0>!~k&Xg=RicLpijE@;Gh}g`JxLW1L7UrydIX$j5QJ0FD0K0(fAIuYJTyxkN=i zZ)$_?qqq*}7sjK!9(X;mKTRr)+J#)@C!kY zjg<|03{R&pg2G5asxL*LkL`T$jn*S!7=;Nk-= zgB{j3f{%qVUvfdd2x4Gy=7C-T_&QYPV+piNz%G*)LB1H`F9Kf*!F~~pJ4~iK9du{H zIK?n7`Y=g$-Pk>j-PhPXBM1O_L4Nqy*2#EGrUUSh-$B-gb^>G|*A0-h17-R;Ke~Z3 zzT5}YQTFQ;zR5v8zT9W!IP#eN`635-&gA?+p>;lx*Fo@&9eoLsjfFAbbz}EY_81-q zdhE$EfkHe5`h3B61mU2^wh&s7XLKm^G1*SCI66{b_iA=CjRrl|uNS-z#PJ{#2r^O7 zr-CtcKz9RwbTDo>#L-poJ_WOOcZfv?V}$`P6y%}>??bv8e2fE`c<>E#)(Q0V;A5Q3 zM?K`ABiKrSekK(~-%TLk|*zZ>7A_-sVlVb60#@ifh{WT5b!^kfW20(b{hJVD8HSoLMqxj@Fl zD<3H1;cD*OM%FL?uVmfFBu1&5=d)!Bn&;V4dG|j7fHm#rj@rkJZEmH>X(_uQ@|Q>$ z2JgAFGWeyhj|MlyR%5Bjiknv*KQZ#`Wy5CE?J?btTTRtW#=Exg&X6cb)lv;tPb>J| zJ@5|0Dl5B7gn}MhgB=BL zU5y_(jUPGXxJqB;Jf)mcSEJx*h1PS&AK#z6KRf>HE9YexV1IKK=d&Pq=Z_rJ*9e+x z1g#&C`+;*x3Bm0Q{>ETqvo)HSm0G)yB}CjI-7l|-UyI0V5w?Vi1_DBoMG(fujLODdf8=_(0=J z4z%Z?(GJ>GjvM7G=h5q-!05Lk4)4nqpQjZazId>d%Ma0k8>l$9Z+()lDntWSW~0Mu zsxjPUvQ(Jy=wJETBY?lDXybYQ@GtN@{~wIc`vR-V?sS>T1>e_NN{^%mS2jnR#UEN) zra%4R6*sM!6*X^8TDC=G=anC2HFj~{9gXhwD^?ts zS$Ce}4G%uVac!uM9A^;= z!=GyRv~azg>Z2paY>P-Z)iYV7{6|jhPUrZ*tM$45RQ^cyLU70+@dLY4^fBFKv%?*@6dT)yz2 zNd$jH@W&1Qh~SSK{gKUPZ9Fz#(c{C5soZ#OV{fo z5w4e8x?V;RuNRYd%$X>{d~i$ip{pC_g9!6Ml;%S%+IPcz6Q%i?*C){9$OFR7xmUh+k0y(IbgL)W7l)}sjP zQH1ph*CYdTa@a_b~n@$ zQK~1GeeBbEB|^P&L%kBAUWr(*sC@8+=WU`?4==irQyYGT;jH#bmm|In0M zDh2PBl^p>j%5E2H@y0Iue&S#LP_8X}y}zs3yI%X(s^6BqtBrH5{nzSud&^&M|JBC1 z-u|oculG7!tN%Bem$rWGm527C+biztU9at(hZ~i@(YSrLG~u4@gdo*NIRE8m!NG#} z=!zYSGF~^qd%VexjqvETi;TxMU+f6AtBi-ouAOB(cKphYU87|@b}Y*_Z80()8=uu| zz2JMK$9#1jQCE7`H0@u`vJ}>DU;EjX~HLjExLzWMX3oG}Qgm zgtm{&J>O_mIZS1q?b1|iOu+_zai*JSfXz{>&$BQqiJna@T-R2cZp9|J)uvs!2~Gx# zpFQ*e+!t^v;55Mf0S^G24tOBoL4XGX&H$VVcnIL3fQJDd4tNCMk$^?O7%=1kzqlmX zM_$}DZ+cpJel01|9o#tSnTsU}H&@Kj zohP>@J=HsEcpMp#rapIQ_uXXtn6r0IFsG0SdB<1Wv!^%7Z5gy^a{gH|X7#1CyVm`c z6a?+Ry&?WdQaHA;$B5$1B-`D^^~B{;GHTYrgr=z_q~P6%-fJ7{$=F3dMSo+v*eVbC z`Id2AdzO=&`Gb3X{05Exp~j!H#GRfz5f^>?$==3blC>;++R&O} zl2txE^OKkwk{z(+#Vrqqk*v?c>u2^GNOGR*ec_dH_Yv~fWz*hodX;4V>80)6KfO%- zIse>SHND92!S7UrKb}FvkIv-0{^5s2tf^Q3Ei!?Ocx>sKt+zyzkqa*5eq8c9k`*4U zZ`%GS^{4D~iMff0hj!ol;P;he=%|YRs^DBQeCgBS+jgvMm4{I(-J|g@5t8xhnzbow zzb3i1kipgFw@A*B9*M4{yGY)i-J@@A{4*J5j|o-X`6J0M7Q*F~pl6msINA3%aCc}5c9XWQ}8Il*err+B5Vv>LH)+v+nMUr1>%qq4` zCh70(`7CWw0Lgf&*UeAtJ4^=G6<=E3D}>~HUjEGseRh(J-;B=FmPCLI+L^Xb$Z46RO>@J(J@uR}4^fO41jQ{iw*$Uh)%t%lJBJB%zB zE|b&qDKg6t-T>^ScbLjto)3nl4~_-zMn;3nAE$pCmtS-JX>0Q>t>;*;+Gw5YIrR&~ kuk-OlnSHJ8eZTH^dIT^_PK?`Xsp6si6Z-nwXt6N>03}R4)c^nh diff --git a/tests/testthat/_snaps/output/output_lm_numeric_interaction.rds b/tests/testthat/_snaps/output/output_lm_numeric_interaction.rds index 1bc8b877cb0a0b27c50f7a60170ed00a2036610b..1b1aece4771461347399d23dac4f4870e68cfb4d 100644 GIT binary patch literal 1659 zcmV->288(^iwFP!000001H~9yY!p>=W*=QzXxUO8Hh@+rlv=2i@_~lX0hGol5~&6> z>M-5C+m6i6j5D*Pg%3!;C@}#{fCvd6@?+u;ACUMV(rOejz7y0BHM}B;i6S2)N&;Qa zojGTA_wKgR_+Zl0bI-l!oO{l>=iYnnZmy9eDJsQeS&GJ?DaD_8dfk#0(AVG(gjlNM zSb22Cl|ygs-^1~~#D_CDK6d_zw`qK&?fB)>KV14nnfAu;J6$W!DfM5T>iqhX<)Qq7 zMOy1s?Z!ys!g$|D&b=e6*Ee2ioq9}?Vi6dZrI=LBjWD$=bD@z8tn)i#re!j0CweSH zbJ{o3&?enX3p%PDYg;?%sRfAaf`9pZ{5e#kR;-Y*UqKIa$ppa=MZhxyZUmQ9D}HHiXp}BS_;JR*_bc zMDhic^Ek~c)H_MDZO775{YX!>9hTNpo^F}ycIH^vU1zE(E8DA^8Xs{fjrtrbXH)W- zs;gyfgSmx{Ud>DOhaEAOu{5@mTN$%`0X1Ve>Oc<(>8@%IdHt4&9h0q`XXiZC)wfgr z#JnLp%%y(I(YJ@(HNHivq4m+ERi2*J%|5c24QeTmm`ydqG%x2Ao6H7nL(@rL!c;w{ zK-MC^8f-GkOIP)$-KM)_))Z5vz=nJcrkXSLmvgMbP|js(Rfut6M?~;UqTJ!R@+7wo z;1a-(u&|IzGT$+<)umqnngQ+scphK?;C+B=!1FNjP6PTkfI(fb{@9m~cCB{tp0718*BoG5|R5q!R$IBj)F4Bfv1g z0sx+v?*%qW-+~;-$ZG)>0@R|+p8!h%ZUKB2*us5~=kpK(UITapFh2n<0_+Cp2;w7k zL;pj7R|BpOVk;q0LRpOT0;C@dwzkrQcpA#LcKTl# zAJL6C-h%x^Pe*y`Uw$&^pDWl$e58-~Y2JB)o<)esPohPCDJ~>W<3!Uq*?T|Y`2s)1 zp;?IIY{8Gk!hA`zi~OT`NS^q~FPcAz{IpK<1pU-c^Ug$?>}f;1ys=b2VUe#%h-b?f z^aH{=kX_`DxE{2gG`>`rkNhS3+XTL50Z&GLilb=1h)J$Wh$oFx{KR}h{lX62oTrd730zBl;ZboJMH)+Ke_WCZg=VEp`e| zP=VX8L1{arZex01KNXN-@f`Q--7)srt^Z)3-9`TjPaxNFJeHP9A4Z}@!N%chIHl|N ze17O$_m*KlN4~jl_yR;{^o8M72hRS{aC2c(kUKQqy@mRb)^J=qQ_K(LVi(tQopKY1|1hMf`-B$ZGuS4w+=w$-k`9E&Xf7Rl`PdEH{ghyMXwvc?`U{Y1f z_8p!7qtf^nRy^$$p5b*s6hF?(#mKuFTjR0tm=iwpd4wndt=^Yd$_pRk!DC)3Y`-X_ z52eQ#%O9P1*v7nT!^3VsGjicsIEjAIqI-z{5>hBYDyB!AYjVhMLw9}G{sNN}tNCFR F005@-Jl_BS literal 1640 zcmV-u2ABCCiwFP!000001H~9^Y!p>+@2f`(Emum>28gv3N-b1M`GJPe1(e1p5~&6> z>ax9i*IU`!-R$m_7JfhiMu~}Ff+mn)B7aQ$!w*ROA<}9TF@7hgKQ!_cNlX;^VN??6 zId6An_wL;lY5ZW*>AZPwX5P%adGF1;Ep?J4#iV#7BE=HWloC%ozJBRS=xg!@0xUIf zEI+vN(yMRm-^=mK$@iN%K63VvH)(vl>*&Rk-(C1gp7qMuTYam}$c>+$=>77em4W=i z#cJne_4o0XMTwyg?6&bW8(J=P&U{^x;!zlnNO7r_8)2w<=0GFmTjzDg4bx!QP7av5 zYIkpkr=JsyVQx6c`4gZS8;tg@Kw5~cdSrj|#GODX~yXv6M%6hUkXcQDQ zc58;qY(v$%9j0e(mW9qa2onfX^Ms2;dF11Wn^6VLIRn_3#o(WjW*FUww<_?54o7@> zZ+d@xzbxVB(S28?$>=(i7uzCVsZBM8Y3EhF#OZ2UA|=*EOWLuLwl1v3Btfb$Oiqzq ze1RfGRMU)d(^Si{O*NfEdZuNwjFxsa(@=IW+r;h$LrI(YLCsM4h(l>IWSa$xlFLvW zHE-$62|ET=H=PSQ;tpdOY^Sy{W_bci*0h!30TR+2#Ts>Urhy&P&4OzcT*c9LP=3VS zQ7g!moM~%20`5A`B1Kn+Xwn*2%WK9ESQc&5GM+bDevav&2~2e1gB z9%cRnSO#z%;1k~#?n7h&4SfX4yzEqfkd4?vF}AE_Vu?*qIBaHAjFNE60k6YAtK zpN)DSgRzt!!-$MAxq`s`PXinT_!i&`fVlu~qdy?GdY?S^5dRL# zQKZ|EUV!v`qzNzmlz*SeOORfO^u7LGm0Jj{E)d z1^bAP^btSJ+a~B)jF|i+TJ)FVLh>|DG>wzJcOzaP@KYSxg*eU?{8%E)mqNS9KbnW+ ziJ$zU`BTVG>(nObr+%7u4$@>#7vdEy<@yPWe62z}J0_v;5!Qk1B7em7p!KBjWx{;q zFWKKE@U;tgI`UH-Mf*ieay3FcX`JFG<`e1{ZmpYNew;O0l*&t+gMNQZRB;Q{Oq|P9 zD_Z{M4xSKBcYcj40GIuf8p}Rf5n)IFbB}M_7LTi2JyLdk){X?%Yj_tX5XWw5s%ROD zQOGk}ON-=GLRfkylgm>SFJq^IwnkS6nNBrA(krNglA%5eRS1+lIveIZVagvEqT=h=0Yt4bcF`dP$6bdyw%YMIj7ii%mGoU1JGpz=WlPELhdbyV5Tw4oeTgkm+E z@Cw*T_SyCSV4vMa|H3zmW7;muNaZgX(IS82@HL##_iM2@dZvHtn3p48-8FU&qBHT# z*y;nP|7g0lsMXIM8t>mq{Ya}guAVC8hjOux>$yrf5Lgn+Xn842bJ`wc&NND#k|$YJ zTI?@RxrSi5Q9qs!-dRCgE>>31Ad6XPbaLFp( z65K{_OOYQkdLv^*!k3`WM^9sUb!MM??Al)WVb*-2ab|wMls=RmlPrI1>S3Got_=>mVO1{# mXW=yZ35xC^{?kTSfK*M71lMGf-@4{_uKfiu7qR#f6aWA&GbyV8 diff --git a/tests/testthat/_snaps/output/output_lm_timeseries_method.rds b/tests/testthat/_snaps/output/output_lm_timeseries_method.rds index 377970b70a4614289f6c7b435d9b612327f21817..3c0f1665eb687c937addc6e9ca094a71bdaeca06 100644 GIT binary patch delta 33369 zcmV(#K;*xhh61vN0+26%L&=l)5;@B2Qomk|;Y5)~2?78Vi}Cx=4fwu?;08j^F&KR)=g|M3Zx zY$9MDEbbp4_JZsmi+XO6`Zb?ZTYl)pw`X!WA9NiT$ZT`_HBWppmS>*OygG*Hm5)C^ zyZ+1X^+gR|mL=P?=A4r<3Ru;=^Y{F#%AMyLZ=VQt|byP12ulYs%}fBz1L`_n-u{N?!fq0r!80zmLntdz6Ae}JE}>&l|l@ed4KxZF+Z}-6A z2^Z%e*Ok8~!~)&j-F}W~tKHrG|2V~Lj8Y@C0F_dc!m95E%S#)PTtO*zl2JVY2VA&^Owf%ACck+=cF8|@*iT?c?JGbOUn1pso!gSoqiem z_jycTr(j>NHNo!x%16P0f9`Hh|EkRe!)0uohgS%>EYQo-$JuGEyX&t?`wuHz{DOVm z0)>XFqsUK0qxI8AT!{M9r+7~7VMNv3C(}A(RUyjM9w;^RCMqs3Oz}&K%qbjSvZc$& zkQfM<>+z*!1@UN;xlkf~CDAB2;*}oqfoSt?oxHzsHpEWIN^0iXe-WRgL^TF1%OIY+ zT6)W*3y?@wKPE@HO*HktXE$eC5G{enQ!KwdfJB_e>=y|Oh_1M>fN;Q_= zK=drt)ExQbHDv3~_15n`OuXZ=_h`@`5j}BlLW;uA<(xJ5tzOX?4&iYhRNi{KL0Id? zq^^ydiI#Q?YRcBne>o+U%N)kXe;_{8++O!7KZ(@y=HY)QyF61<|s~x}N6q{53Y|zl+Y!{J|BkQ*1 zwm;Dsa<`vzl|?j*eV%q_C!J{Eo<8&CVLb6|KyP7lZ5#0|n(?Z8=S!k4?aa2DV>2K; zw`_6YF(cyZc~6lB{Z&N1e@SBZo3BLo`8f)bJEVxle{~8zJB1HI=yupqx@0NwRn0Lg zJL4JAljwft>_lOr|NN*Wo}0%J-6eF#$mRCL*Eh@0>|=vy7oB?(W)ujk)ZWqUctN~v zUL3vsNfbnunWpI{?9BP3W+K_gDIj|79gcg>dQJ2#T2bKS`-W)J-nx2ev@6kOKkC4M zeg;v?e+nIlt$RU~Prs6rs+354i!!zBj#12cf6Z0(=DY-m8h=_jeUS;IcJRH9ZSf@D z(b`LI`iBwS7cYx2YnKuof?V&#_j7*7#eg2Mr>_YRp`PhJu)&V#_1)hY9I6Z9g~U9i zD;-3B-H0( zjgb06$>zBTK|W()*}1+!Fvm0Zi+uHmNOSzg2{wTcpU~2?n72CTQC;;4iE9lIesQd$ ze-ee@%i*Z$nHk#y!t>xup&8RouyI~}x`_DH<3V$HFcQofrRuG27 z6it^K3ztKP_i{UNH;5Sc`lv3-tPj%buPRjwDMCE#vTBpqc%pYs+WYWpiNvd>-uY)! z7ZBgv%ac5GcVTuXfRG);OSxhJP(yrJ`gd!vbO%+%|O z``jU_z9ga0>J9Pf;pR=3lD-g~ac@?Sy6sE!Py3d1tMw|RSB3dK_h=+qUk1eJbUuaz z|B%Fo2_+B~eVY>Qc^|?p#JG1{e=*|I_uRX0-BuFcO%LmAJy;2uaAFO0uRNsA(elT8 zQ6Ty%wtb0oFvR0dxOXROL(13k`-yyQqR(Ca`IO`hM1Okaxi1r~iJ^6=V?w635k2uA znvXeeg829MbA(Jj=XC3Dc-5Xl1>@Yb(%Hc$A%AI7r+u9>@p;WG30@C#usu$CsGS2U9>aS`;RNo+&-T@curc;Z%42 z)Q(*c(HWs}A>b`BU>LK1{m$XI_}Xl&XE^>AWG7vbuKbok+RJo8O9ch=@{V8y1$CnS z$f861OPUZ09AoqmMnsPfe|PG6OA+FOMC;l0(bsdbeNQ~vy|b3+pJLAAt6v7Sy=?k^ z?IH-;h$|*`YeDN&UNOJTpXk5Lo)IDHN_1&&YG@BqgwX8N)aA$Zh=EtG9?F(+5H_0^ zenYPrl6v3b9>}PGwe7l$a#kG}*|RfeW+p?-^y16nSYe_g@2E~(f2RxNYGpo-m>)#6 zryRY$QLZ+pM&Tvp%YGe52#r1?IyxIt@#T}3Gt$ABMa}4ZxC9a(pCzp^4~JBQ?nM1_ zLJ%_9TOa7X0HP;75=L1Mf;DKs(f^_WiE;_B03DBv8J*he9vN{l|9gx?Ey$XFMM{>SOgN> z_7O}IEeQLaYWn0_K-?%y9yf5m0iwru34E81gRo(Ee)CNs(DK}$a`bKz?}ablte;p7 z+Tsmi3>9OdjB0((fc2GVQ~UI6ua73EhgS8=XjVdES^k!ze-{nGG}q^L2#!H`%)ZU^ z8913e-(AD4>?QpXHI=Ks%`{?EAe{h)mQXkBTzh4`9r%d?f32a(Ty=2up#fUj@q z+4=ntsAWSEhaEH_db%`+AAgeQ9AEN)F?S+_7OvhU`RFCld$%y0giPQ>%4AD4n1CAK ze{kg`ZyWLT)yf+?3o?jmlf^kaxkW_NA`4F|Ee4pvMsV?<~6guG~%bzp>i%Jg5+3*qdI=REGtB0eVX^IH;=4|bLU&2qIX(RpU> zi}k^=5P9%q&5W@Upgpb|DCxKlu{K+8f6*Napy-lj{_6WF;>-F7+g`C;qAqXq#PcXNvDD6R8ixx3sUvVhZXZ-CZx`dG8je%g)@}YwYqnE+pcslY#{D z;MUJtu*_y0Xs)J>QKuGxrOjg9Sb3JH{j|s`)l(004|l0QN*5u9B&9zte++4d#L+`~ zX?rL{->uka@fF%c+m|Axv#Tb6v-73q&-g*(_qeUKeHI&yN0D5MqT z6*1cx(t8q>v*@jmvvvJ2qRkDmqc_NNoLs?mHFx}SZ!#2ke$Cpeg&`<8$hmc@2=sN~ zYdLBhqPZjCw7Iz&j#ta$}DXj}1 zymtrj?STGA$woG4H|4K|+ciLJ&x-?BH|zx6c)JFx_7d^cU_q13a(|-F!BB1U?EPT8 zaa$%gXAG!0Gga0)2SEJHDd9Wi1)xv6F<9!B0%=G0#<-^|KwsN`@S*oeaNAw-AH0bo zaoP%o=-3YMeC{0%f0{Q$q}|e9CrkzLm6Lb3;_7uUHoV&CH^Q6vQg^I;=y?gmwZ|Hd zcD4a+g}L_l{KXL0RSoe~fvM+g?19R$U9xCH0#pl&%FMb614_Y;CgMeV>&nb|363E%Kg}Z;&?M z=V5Rz9F)A65pSekfxg-{wSw~WcU;KiP1BdG8UTIp=uYXn!=SDS-Yn8U-ggmmN?Xnb z2s@t3D!E7nB_*`e_kb`c9iE5iXG9^iy7i`?@gz_#e=UC`@+5-j3GX^G>gp*7-ekVe zsV#wmX5@*Fv`ENrueHk(Q77wK)L_7a(V%|`@TW-cg>c!e@YY@y82fkZ&HeU_Xbgyp zIJ)2#Xg;0m%`I)f_uBP&6a6rFcAvy&q-uki8`P>abq8e6ugNlw^#Gk~acg1ZXo$HC zxDxuGe;}p0wSAPXFX)sx*$0{ygSO}m%{)OBT>c%c3)g0VIq80jE!)dpM4o} zU+Hfxx3+^HMbkx07WL{dndVA2PYY|CCpezxHKCW%v2`O$`O|y69^BN)kd~K~l_h?XKHwTWtm<0(9lflqDJ;>geo;UB%3D9o` zUz{?U2`S>?q^!j+z^q7gN=hFO#f*+8?PISIeOn|m`$oS8dnzqz6Z-^&rEZMK3u=b= ze+AW}B2OB?Su?QXip@$0Cz$rN9Wn)Nt~#$ZL=y6H5^d@+Nf3G4;X5NvnD{DBNG;rc z0*q}lmt?+v31%yILiFQ7$VH7bpXPLv_-eZ#bY$HtuzPf!cLg5=bDbu$amzfg8*`sc z+dd0yZ_btj;$%K*3oU9i2mmwICQFoJe-29MbjP8$RN~7b$~CD9YtRx?^eo=a0p;nO zkePb~5a0AI>CoYu;LIJjZ}Yn%Fsm9O4tT!GX$iU~bMveesAuKGCwne{(7vOcMgcyc zKh#nSUt$Yp&yl7A9cwUpbkFWyA_;}223F9>8Iahnzr!f`5d^b4#7MJ3Y)-?8f14Ut zATQ%4m#?~)^ry0<;MDo7?Lp^yL6d@_j{Iu@56y%>(U)?*O0+Fe9 z9(j71U@WiF>Qfy{e2&8P}t+TI&dV1 zjHl25vpvT^SJeDY6nlVedui#zqE(<36x2M;kAdtu@3b3R>LFWknRb{>f9|U+_T9PJ z27%U0P3=#Xpw(RNGxFF4xd%%ei9K5(wY=trid{5Vw+eE~lO{skY}xGCr;kZ|{Mkp# zFA}2Xe7#3ke1S+reY1bhQbC>}17p;!t?wF0+?jPzsBuOrq8q@V=p@Ex zslhoAy4Lvh_{RWnM(tg_fBUck#2v36q3Fth>-p^MvByJ@=jc|xekeGenRzW&5#xHSa43(7&1rt?{_&|0;}mj} z#CNII0;GZFGRAuT^XrhBe7$*BnkFb~X4!I=_<=rRutZ8e8ItM;e=VLnbwYmAMSn(W zBqUy6o!Yv5Cul*QQsrw@Aojj*LcnDsu+~nJbo{u7%qNm|WCIeHPFNeK7Xt44^?FT{NWUHBR35#Nj2o5I^K|bgkX4iw z6D`#w8qTk^Evae)e{Gd(@)zAiQ009bACBRX@j5!*`LH}#`bVmRLY*O%oVBPXD~ZVX z(mifKmdv+Gk=`}u{E4A!>eGXK#UQ4by}e>eF2u70Yi5Rj1E+l9*Jv#!_#_aW&=mt| zGk3ATg>_Ku8}~gZIv&&`FI;r<+95S9$8x>Y2k?EZl`1;=e?gzQCfzaS9VFcpFFoI8 z0{L?J*M3!rVA>FaNklpdMf8+koV4Cbt|Fk^>(*0+4 zb=#N{WhW9hU&|?g{5r9RLt{4)of>8hJJln=hzQxSFV+ph%U6WB`jh$ha(>47tGggr z-*xlp=Xqcee=pd*$6di#^Sx19;}-b3bA}`?k^4|5>agMcM#$SV5cOMb5gobbj6W`x z1m){|_lKYD!O_g+H_!V5fuX(KyO_APLN~?#qBG_%x(xnl6gSp+Vt(< zt(d6&f9~o=FeKc!8f(XZrl&l{SK<)SyEQv!W4D>2QX9ao-+V?} zvIO$CM@=idw-nrU>in~+XTdmUna9~v1=d~70IL_-V3|*vxso*>VyYEIM$TKoo>S5@ zw3(EnFukekkrL4xD|}?hrX3`{rO?s?6d_L2e?79%i_9m1SM%Jw=wQk|w(C^u1-EhY z1SNYDNEIzwRW|W5guO;7*~l?!@s5NrfAmJnsdFJbZ(QD{y>~&ochdb3s~U2-c4M^LNWA{B%7H${ z38J~_ll0tN!4fjjSx3DL_R3>totG#yl@OMF=8SQ#X{5LDw^j$6O(Bl-+JPH!)@ z03|-7PI#^mq!(TiniMPs1;^S236;B`v~0q?rL`|1|9E><#XQfVyl|l^onXaAV56OeGv^_2?F~`I{+_J#prVXr2X_IRp1MUAX`X^SVWma55xBn_s-wFoPg}+Rh87&k=(? zx8W3+^cO}$P7Hpq^Icqd^z`J@W*UIq{fAMXmY4jn<&BS}J zEGM6B0NX09JeW!5t0Q)_^<5VrwK@0B*Ym51K2Htn^u4iA+Mm<3m=OS0*ZXt0OxESS zRPLfx1yJS9^LXcC4RM~X>;2IrpP3xA^y!w(;A!k06THd*v|wvjsSOFBIxi0q4RL}5 z=VZXm;(3r48aHqMf1=^%QS=>;XdjRTl|5;nN6%Rg_OeG>u{mVD<~}~bHrfSl=cx%2 zGeU_5`PmbXjn)Qx@-2@Q9UmZj&67T3$_q%#YJBXyx&jhX`?aLDE&+R6rNjL(WFG$7 z?$FRd#=!$U z!OLmJo`p$Z&K=vt9`6gKkNafYZ!9Nq+yN2sZ(ATaz42;OjtCSTZLNiyxnTM)-g&3( zE10v5o>c_8gF9{VLb(MbP7>>ya4{hYGJ6Is<%>1J4bVAjI8X!H#HkljHfn&*(^c@v zb%!91<@YACe-pB&cJ7Nv+yPd$^%8|31<3b3E!unH8mYgCiS%MWh+p1!Yh_jkxCN53 z2RCz|!YraG2oxbd%Rf?h@p6b<=b_8=7-UMCW(-wtgOWj3@wXW@L{F*ai&sU0J>&>IlgvMmq_#e@HzgKE6ElP6*2GHo7&}*q|3> zm8d^x1*`L}uHC72DB0e)c&uU_xYrMTu$}%C3eWQu-f%ubF6>63^jR_p%LiJ`G&xA~Damu7!S`hx+%UByx2i~(T6C!UU z$vbv*f9rEzL#$M%X?$q_7}j3*LtH9X{7rdi4CxE_`Jz;m%PKZlCd{3Lb0V;E(i&bJhAvu>eLf^Cw+*{Owm%JEA zhDL7>c}U7_EBrPl)C-Jdi=CFB67 zW#4ULFnUZ2d)h;AX|l`5-cJU1T@-6X| zyGP891!s%C1!IyXnK!@QTkP;2GPYD=e?_hx$+He%#!L z>#+gq>`+gruplziQPfuFCX`;9jZp|C{i9Zje!2S%=n;i7Z>{N|XOEo2i@FcWSVh~t z%OXj;*zv6Dzd?EGo`g#x8lc=df0O4|@(`TpCuMKL4WYj2)}}L&x54s|a!ZM zD5cM^G8pp=az4byVxvTGZ3EV&+>Hla?nQ;%ns~@;nvnUSZvxSiy)NOtP7+Z+XjR~C z90zHdy5RP;GSDV%@`*kB5e#wDpyMA6!IBnQdNt}A(f(*zu+Np_IipmX$0&m2Mvr5w zX3PXLR^!Q~k)mXsv09SxLY5dRxWgWh4JZ1#%O@5~8GBKcg^8psc?_YIcMS@iM}gC|S!||+KLk?y9ly`M1>Vt)MY1bc zBSvYa^JqE=k|{K;p63z?1p& z@$!5CV&c(*_C zj{#{nksA*$lJz2ZyVvBcC&2c|RPK=>`Py_(qhp0{A+tMaC8MtaDq+=>g{%#b?tK0( zGJiX0V%|-n#u4BfC>~vVl>?f`71a*wb>Q#6GV8;^iBK?qDjscOL<~A?H={320lQXu zYxO!sC>0!#e-69u0Lrz^7S^Km;Jz!6xUt>c7-GFoz)qIG}JtXlxego)? zM}zlo8G}A4FLOzx8|Z=E&-9WnKy^Fyy3V!&l8@EQf04F(4f+Y2d8reNA>F>W<->=I zkfWDxAq*QJB0hd=SbhbB4%Dt4wT$HZ$Bl0tIPw{c*`=Fj9*qL`)$J8( z>rX*+{Hk~F=1(JPr>x|Un-K=e-Q(}E>I>vX?amLGPVPfCb-G=a3`Fd2UzaGJ3W4mU zk1WL*f1u8!WZt-14NiZ0llCcXDD%p@d6Ndfd|OxVv-~zxqsQXt$p%nY8}6ApAqSKV z;p0q1NPejk+BB*%1k50pr|PjcK=+AsDXGc)9Tya(Gf(y%p9jIv4Z{%&$CJmKk}l`x zfjKVCDLvd9>Va(K}6nQLADu>=;(aDQ(mqHD)swa ze=erjgC87xS?}y6uu^X98f$e63IWk>k4_CjI8S-RbkPfnP+K!wc}b zdS1C7cLKL-MsSOh7+7)=vBAz{o_@E$DEa(VD0Y9`w@T9-%YNea?7rpYp*%Aq@kET(e#zmQ82}`+lZ%gK~H!PSMJFLqh8xiUvv?uqx9;s)*k}>oRx6c zp1pUF=)?!9K6zKjIQxx(co3xSB#IphS;NI5??+=41f2Jx| zkbMZ84w{8;UnFD-lFmx_9Rg!l-iB{2)pesp> zynpc!?EEu!xvHljyL;@AYpyOh&pZ1y2c^h5!Hdryn+J-~^>(e8Q&2VR{BB;Q0GXMk zY5r<4P{0~r^)1OnUq$bvEEo=yg#DzvQ0`JZ}a0eCkf-)sbLp z?|QYOn#3gzmMP52FmS!(Gp}bhLC#cq?~RiwIomfIDU~sW!1AJAIsEoE2Db*X>-9&5GwbI+zzF>&g`p4Uqda8 zt0pEWC2_D-?nm#rWc;W$d@ei(iAHaQ=Bfvv*B^W`H~tG4w(D5y-dq9wRl)PmxnCiz zAS6+j(+8oMj9VU*kx(APTeUT1KG-hC@262uL1w(HJu#pRg;%F_e>_xsL792+h@{ar z5(n2$JTA5l?B|8O*H(Ol;88(f#wSwlLzA|9LPd~z8nkR-(_?TJ&2K+NHHG4;BnnU6 z7tBks<{@k5gRa5xYJ1ZJnrzpu`^t2%OCvKU3W~s+G4DkFUQw{snx{-zWCM|>F=Y#v ztcSumE#sq~$oYlFf2z*6O(C{=zlYNOeyDZ^w!}M(1^*PSKU^k*w7b0=)jJ3jo66h? zz9C@Cm@O4=odDh$qcGP*(r;$luj)LR38D13wOj2ELv~aVONE#Orodw3w76!-6uBt) zM)ZQS`gQ`#HyZTQvSX^nb3mUaEbRQO6ym3ICXS4L26|28XlK9^H?65;BiC1r~)VNm_1Xk6+l(^HL5Zz5=N!6YK$2Q+nsdz4^)lJ^kd0t>2 zwq0m=Qvii(r>ge8EufA0GWqGbEE4arC&t+yfv|Gc^__QPK-UY%K9G3_w2^o8BW{!U zWWk6M!Q5off3gnE^G%H*>-;;D58yy9GBZi#d@&Ro?=`JRY6iV#itid8U<* zl#mGaq(T3Iifg~)LVou>FS8S0!Jpmu!K1;C#DU_$!Ba^+A3o7pUl9R~LnUXmpK(b( zb~)`J4uXAV)ugqLlffO7YA)k{hA78IT&iUY#5Bx?zE#;ll6KfFr(6IL^z+0}JO!a*V z%Gd8RuliReIBJ5Pj3k zqSpwFz;REpy;30q7EQ|>C%1z6S><`mjAY0cm|N&3lJ%&3Fqtni8Jve4L0vry{4W6} zeMiEfG`h$pajqStlub(4pRxj9vdHYbpEu}E&&D(D%0NjknN+E<7|gt++c&*4AXwmk ze>*gN9^@6oZ_xb6e7!EeEl21!m}5?tr9&NT1-qTmpBRwVOZJ{s;R_MpMeZ`9+K|ql zXCC)q259ua36GXs0G%jL^`_f_w?ombh2{yK(c6P>2F)SK7g{;9_adY^yA2-fSqi3B z;~vSHEksYcbkV2-Qed7HS~fX81frFLf9-Y*Q_#Mw5LP(#39Og4)#=Ttkexm<=Y-~6 zuq*0xoyt8Rnwk44y!;3lhgPeNpOgIAEt$wFHr>T^I(VVwt1jy<#f(hT>{nKe{ZMj zwl9UunaUMQ6G9-le9Dg3i7P>qK326pItx6nLp=kbq(6Rb@Sa$-7A*EU#}Ixt1h!_g zE`5%G%)ATvd2CzIyOoM|hSH!gAKy-F9tUc?-}$aZabQ|xICoA|27UhAlPBgq0VB|M zbJb$fZqzTCBk$}XnxhTYef=5+f7Y9aOQKdD{2dq4$6h>IlxYXW8tVm=?vz;}M zPVO&d{*EhM$xwMnv8`7b3wr$cY}X)Zu!SXjG?Yku;dHN!qwEOr4Xe7ShLNB>+o7S` zF$s)kh5RI_Ky_f~?5Sy+z-oS^UpDD9xRzUNj%_5My48eM;Z+RUqe-q2fBg|)b~N|N z3u-|Z?O&8p7XyLX3Q_aucVPOwuyov=40>e$WRITPkSbK3nlYN(@1f-mrUvUt9{cV^ ztL%7)f3}|;-aZbzAUU5dwfAIQJvMFpqVJ&Fz0qln_ztl>Pdby1=z@Pu%t0k%KDamU zxaRN5fkG(%blR>(kbWA@e~7iSf?(ufQ9-;iMAj}W-+3YdoXoks9egtG2*oxjQ4;U% z@>AWGoey3Oi=9VR0r%K?@2I#;s2+(|6naeq%V5=wgFCK(TQ_MzIJqy3kt0V}nUz3Z zN$6Ht(^1gE8@v`3^n>|{q2zel0`jM3AJR@EaoL8X=Mz>8fphgSf9=+lNKhJ1ChA1r z1U1}OVj_13SjAI9Zf?0x+PB4U$vSo7d*H;XoeoscFHnuotdRhV(@s0+Ar8)o)u)Oc z+y=$7$n<2A7#J?R(CJJu&O3m+ncI91yrxKhLOULAY=b5?Tg|C@F%~&GE_0%C{l+ASQ>+w1U_b37aY3Nq@{r=#ADA1=IYI zo2eSfGv+>!iZXr;{>BZti@BtK`7PeJSSJXw!sSt?nW z|Ezye#20YHMn`4lQNX==e`mRs1Ef>p8uwmr03+Wi`N-vOPzc+8ceQ>jB+@s`m~O;@ z=ph-$)f3KxA}7TA(xM5@!4FjH5~nk_$0~M!hLj89FA~6# zAG0FZTov@!Gf%%zXMr0m8U5v>1cds;=e~=13U--h+JlE8U?O7+U_oWfMSvfmJg-(LUFRri<DzJru7egh?-Ud>Uxnr|*32?tXS*Yt|0E$|K{41pm z;Djfi7cqzE`>NbYo^?27^G;7;P^#9ZZ(DQ*d=b5re>-pD!3c57iJqWMye7u_?3`r}j*Qs$ zS6WQSeH>slO3Q$^Zm2k8trHlXNv3y7M8GzkqO&b#9Ld*rIj89HAS>8*P1aM3#7(Ew zh4R`?@R^DqW1X<%? zlW;T!f6T2KzFQ$9>#LrX8UTT-i8ju z-Cgz#3}^UoqLLuHS8~2;02wDcLc1=BlyYVsine@qXF?YIv)$)mH(@76-vL&E!T<3T9u z$*W$yw2|nJa}A%CtUz>>q|O|%(jGLsZmYoq8Q`eaWTfcVfYENXF-S<6c>caCai8W+ zuPv_LP8b2+!0V;*72UV}EZ#twI6>JLlcF{b&`qr8yNf zfBx4XpR^-++1g-mE-e%muYL&%FW51xcpKQvsE`}Gib(u>Fm-9?SE$*jCa^U;K$FW{zz2hEmZy z*@Ex2piDe(|3)^P%&QL+vdl`sTkCvTe|qs|$X~ARGM}FS@fFurthPQ1j-+i`HT@ZQ zK8$%Y#Ec>SEoZ9Bbve+It&QVmMuNLS?fKQh4d8yH?`w`)1o_fW5_ei&lDO5^S@@y_ zxN+8MA*!VivF@JTy^ROH-<~OT++r|Om!yg=H-XX_rj+ZEA_%fPmN(DqBieLde@|b! zK^xrOsQ5QWmqFoC|D7chk3fCb2c49aWPTGhU-HiM1Q@RF&xpBcU{+n0(Jx#8mU*3V zTxTuBR=wTvW%(Jufi^U1=ZeQ=e~?+W?Cr*oec%}F@(Ql(06YFzs6)X)@Kb`CUUm(F zzp(D>GDAhk5iQQdGqQd@cH++%UkpkOF?J}Y6_m|Wb$lahA*YdMyVy7t^4HHS*zf)h z0-f`ZUIf;GF~sq@op2XY>89#qN0Ru(tUY4P()xA^l1+$*(U7f8Ado47suS1&!%seRopVs0?$2>QVn2 z&{hIdNNN6yckZay}FA)3()EvuV39t(((^c=pf8-D5r|W?*1#l`5xvJqsNEnExkEX zt5!iF%_-|r{vedbW~8R)lDJx7)YSIIG{~Nj*bWhd-=BVRJoU6Rc1K2k#(6z)hx=3O9yjD!yK<4&vnWr z>+X7x`lKW~Ug9f*f2(y<*l~?5*mKUqFJe?5`>>dT~ z{t-viM$CfR%yT|vQS%`!-5S^f0t08%+c8_9|_ibhTr^x zEHL&sW>S;xfjLlh_MTb**z*-N)Ca>Mo})O0))Ndy;#cQZ&3+O`E50flxezi`J<9G% z63?Hy`ns!X5)^rJTAupM1}``E^1Q@264$NWRxqCpn&SxlEsCuqAGnfG@hKnN1ML=m z>y1DslhDcCf8O9J*cva-e*z_O*ZlJPJ0Y3vVOVHqPx2Mjz^>9IV2Jq*wJv`J>a%f6 zuNshX+!UL2!bA=77J<@M(bZ65?nzb|H4%&tDVkaH?ZL`+yK!8h5$xR^n_X4q!O&J` zIV+`swX>6saH|A}6__YHnX&Om)jyMpXj7%Kkf4e6`_DlVof%_yL?5ehEIY{OK zBWa~YVy7TrH7Dxrh=afUQ9Xyg|U~B&^64v>EpNf zrCS$6F{+pU$~YL*-lvA$GwPu@nv;0WC{5nxO~Q_k*-iEf3g(rJfsNrJb9@k|2oh+m%YE!ehaF? zhb@k*N(b$`!KTPaMJOCuPd%9S0<5R6^9m2tfh)52ad8ughl*p8_=}!{Cna+ERwRi} zI=tr@ze@xAO-9S6+tQ$Ky<@bxz#Gy#M&ExSf0c}f;QKM2tHIfsHb|7V5QFuxCwIt< ze}K^G&nvEp(ZRi-9rO5hG#I5_v$L}SvD<$1vdd9W8n<84gT4}ivhxA`88;w0S;56T z))2hRFBkf)wn1jWu6eQ?dnk^v+8#7n1PX((T{jw1A$_1zE`r1d%p=aLORBa(N&3aa zrBjxG&3|6GWf{q%87qz+)C_?1h<6W1e@1O2^}1mCb!!;dXPlh_is~S7SbAN$k~QQ_ zsH@6qW`QS~vE;TY&|AM3@{A(Ne>L%K z#K$KBDSMs;7#dMB8<6*sNR!AmJFx^|R7#zRlWTjh(OQaTomq~t<+ms`bMc>xq{T`u?PQgg1K2^&?k zWCB>@h?2)MeLyQ;Bb+$-4JeeTe{qLRXM=kq=HQ4t((hiRHlS(=$+!F)t!CB`oepzj zOZ!iO5%$slv#|uYs}Cn0a-)JTaIP_yC<41kJBhU^5^M=i`kgutPzq)B6K3^-d3m?p zwg4H>uWv84E@=e4JhSIxRt9n5SWAW5vs~~+Bk#_khCyCjZsZ)2_p!~jf0Qa4Nk9Cu zMQ6eM0v0NuFYCe-6J`ANv3-`u?i=J>B5MaMIVN z^S~4z>ynV-O6nnEn%K(%^UK?PPgb~sqjluS+Vvq|W*pgjiR}&1i8Az=yH|tJw4~HB zI}XZaqNU}td?DjL@9fPP?hsAqo;zDj;@d;_4ojz!d2jM77rla|f8d0czl``Q3Kbpa z)!}1EezGn4UX-yNXk}NM5i}Ew6Q9x~l&V2p*F2~2M~dC(DgBFoI_@Qm?`TPZ-J#p~ue@lEv^5V9I3Q9gCpSiX{ z=1CGbLB;hEt$QFbH|j~!dR6e(o>Q8+kHn)@Jq}yGtAJRj2u9E{;D+bV@ybrB<;BbW_)bVxD!Nxb9lHFkJwdyyk^R%CAF-&Pcg-iVLN+ z>r20H8iIU&f78|C1?I%ikdEXrp=dCR)o(x9N%Gb82CJIhkodD@#!F2#NzyMi$b^1f zPvX%jl62XnU>i*v=(4#9R=8^O<;+UZIo-;!aul#db~(>qHy6Sm(~c@`ok#kS_z`P8 zKN5eMeAh@}f!)5^d45kISbIf2-s6z@fH>uB@Z`bpfA?wcUWj{C?E#f3y-JIVd`bNF zB63mSOEQi*_I9J%pr&m^*?0LNICnNZpr?NZ>vea^-NSJZzmouDK%2j3clu-=q;K?h zm3DMO`Q7Agy%Bq$B-J^i=c%A|7H=0#CgbW@k-?tqIbdv$ z5^tG7=J}nEPk$3pR^YUsG)bGM272SFGAkub&?1D++HLUzw|S(be}ocb3`D{*#oXW(>0f{__mlmZTH(3F>n@QI*DK&&Dpdcyc%D9)c_ zbvEZ2Xn%Q5P6g2~K+P#`4^-wu(MF!Cw%QSjgHvKG#}|UWV*GuxW7%Lx?0<0CPyv#3 zn@Chf7f%mWxb#72c6jtfZ953; zW#ey(-UsW{3Gc~EBEg$`NT+1aEU-TAi@Kz=41X-!t%Y}#av=Fhle05=90a3v*4~|c z5KN1?@uyb_lYH(&SCQf&u+Co@Ql;Gi^PCpNFkuVS&r>4Ahq8%BrCv*tqOHKwn65Qa zw-SuZXMVbGA3>Vg^jIsU8w$#Etoy!)LFJY5Jk^1CuoAP1ltW`695m<3HnOe=mMXq? zH-E_l?S@xDk>v(5-X$+2SNefn@nOICSTasGUopO0;sxfLu*IyJAuvq*N0#k51IA4L z;fE{FfyFOyu+1!lRM-N2MRo^RQyzqy>X$+);c;s#m82zl4Um#aS}Kweo$E%JB#vWesmVIMs=rqaRIU*e9}OTpXA$nBU;=B=}N>onfvL1~6>g2lxr;4VI8 zcg}baT)(RIUpqt~=Hj!E@!1ockS8_uqt1YT;_{=J9*y8k$zG*ceFgFqOUWfNvS2N~ zabQMgGUVvf$IKtkC;8=shJVr)6VN+`Y8J+<1}|vQOzX}8&}XsLMY6@gX;uqu%Jqcu zVh3?+tLH?|g4>@oTIPZiabjz#g#_rK8A}_#wnKQFqgmcu66d$t+G$;kgsR$$Kq{T& z3A0|hY&|*()N|nvB~QqYyo3I)I-jjA~3o%ZX6gi2Y3E56{q6{pmccam+qVfnX=@k z(POql*jfL?iqb(aibQkzH+DdwbrGAoB>Z<=h+w2=vFJspzWmg1@%CXTtvE2OoqU3m^i!Izx4=DWEtnDdU@IU!pD-kIjZs}-Zb$le^#6Qu)In23B{ zFUhm`Ay#)HWcG>f z-8d%h9pvF@chIu|Dx5i=zMF}Io+xY9tkePd6SRW|YCOOcj(9uM#2k$M3$zQ@odoTT z@idL6A`pyMY=7Tw`Vu@J@ioC4(!jZq+kfNxBXXakzL_6e^5cEp9OpAJU_Z-=j4&c` zS>nPq4v{|KeN$txQ)fWkw|K;-Gd^HE*D0N{s1_nG6H80l?8x=eBN`mbz{$V4b$SEI zr#^@!W$M&IGSCR{%95M7<;oD2d1&6H?Npb*#(tlR!|F{O6XJvgN6!V&L@ur$ zeR~8Xl7HF~)~Y-J=i!>p)4nd?jQX~wCcA>@Tdp_DA=w19OXDNw$IS=p*eJ~&$u2N% zH1E?&DJJv&5wVpEf}z?`UU?!p4s2~54WnC@kefD3RvcAip0(^dX&wvO8aas~u|6=? zz6cT#+5>LIWnN9c3h4EgLz7w`L-M;2HL+qO6o2-}wt|=&?jsrgchAcpaF{5?bzMVc>G?E-18*{~Z@X7lq2E zW_dvA*-ct9LjZxz7t^rvA<$Qzx&QQwI202k&y}v11?Nau%=v)4IV}eI!!1Pvll{S6V6U5O(o8%b{C{*jWb84>dQZ+Sdle0Vvv|X`HTIxCQuJKc zPwxNsqO_*F1yIy(PGY4W1J7jJexcGBFcVG9=UncG%DAtIhA&B;-5dDw$|O}#POA9n zwVVJ${vqqYsD5zQO}|v=b^t6dO;(i-S+AbIu}zrN2X^W4H~F$rU=3aprR|T0_vKA9Kri;Q_iac5Lx>k7#&?2jSfSs#v>6Z#8MP;WUw{$asWM;7o1t`jNYn6j59Gc) z8acjCio}QCcO>__g8Su&B4zXf2y%kwxGnC6>LH~LmvLOEj{7v*w`LP$TP}{Ykm!Yc z`RpDhWd;;9%e6l1wt=5I#`oQf2!HUrjAwDA-N1dF<#MWXFBDW1mIoIc2lvy{bqa5T zAzDAxJF3_hQr}`8mDZVp<JgH zfK_1o*c{Hbh=JhzLDjocZNNNqdR2F$A|z?P6~{dyz;POLSmz7CG0xhiHGjqkQkrES z^P)2#{VjF+e1Q*`KJ>FhUMczcrGRH!V!?bRHlW$I6{@sRqNA2Ik@=_T6FqtsDD_j@ zmNJCEdvr1KxMndZpO3A|VFZGD$5H>Zs4N)I)|wLuj>dD1@(I0n0)$iI{_jSEcz8g1VyH73Ye+%#7!3Ze5TUtnW z=mEWA#{0e#tx#&;8}4K^M09*<{}jk?AnTvI{j(=mz})+Sru?{q^nVL&*EQDK5bWQh zY*-`@g`K85PU(0#8z-<8Qj#b0snVWl4>y8+AmY8p=gW|N2rl>HAu@09O0S1T zfaN2X5Yj<6SJgK`Lf`87i*JMA>%M$&MDjMcC(L8I=HCK8vHsSZPyV3p zzh(Jc_5u{|?|(R$;OqyMzPo(&xJ_VIoV(vhRR#5d{@Y{qzMxFrc3{nRl1ClB9X3!) z;<>i#U5}^8Lh9ASts1iwiT;zFtvB9}1ux~{Cch80;LJD7zWSvVl(h`MEpcw3T+<3P zOP2wqlJwx~Mqu<_dZ0o*2j=Tf8Al$}f&Ts~tyy#u6n`JIS=k+rg5uU`MKNhFL7laN zKkk_yRL!-$M`lQZH(Ix2^g1OlWBIuiuSk4o*_kck3h{*$G{iUld zCrNy-vlH8Soe)DE>)E;UP&}=B=dmcsN9P}pZ-2YH6Dl%M$t7t65afqFqCDCIami~# zYDO2KbTwCQ(eXxzpS-y-;YkOm5ycXbv`A1a-bGA)p9S{uGXK%%h9F-nwrqB^F4$SJ zm!po@L-NwNrY{nkiJqfZ@95{+K;m3d>HAL`z+Nplm3V6!Bph2ERE|D`pkd0M(RyuQ z+<(l8EgKO7)rB>6vrqYfa;LsUCYBH77XSR5CF{YlaIpXMeL3hdrVB%o&qDq~%5?u9 zzmJkC*^JBkK=aoSm}e{}^BmbOlR3hO~PI+lF=+&s|2UrF4_ zwg7YL!xqmx8u6-yW4&pU5ZJk8OUhl>K!1IwRz`E;#H(lYsgZFZv2ba^frAien#}D}?SRDm@u3ba1)!~d?>%Pe1_%yrp2eRm z0)}O%y+^QdI@65eRgc0OtvHS0R0{XF7BIsx{IK!4}sL*)H1 ziyr9AEE|5W*GV50#dCs!KX+)#36f99NH4vXPJznhmvcQBFTgX4+Sz@x77BA7PusIO z6#NHaXI}Q&68)+L{8pw7Wh|zb*uS)uT~{7v}w!0l2~c*t%Rf$U&Vmiv26q8 z&}yji9(i9JqX)s4=26BK5`U1$2`(C+?hSVO;nIsyG@@RF;r-ln8D#Fwwb7bG;y$q* zZ_HIp!AL&QiI+?5jSMZ3YTz(C*sbg1*Ov=jn&?m8=US%YSZ!T=Qb4&pBuNlW~ z&T)f+Nb$?9iDdljD1R4s3*8HbXVbRtBeC@=C~R6R_*B z{Nq-V-y}SkWEa{1@z9sdlaeG~x@uFVykI-{ep~15mhA^idAH}f)-te+Jf=yX_62v= z%ZK|OeSl=_%m=H4Nq#-&9?jj73;IN%aci{SfTC3`)O9Wpihm>g7ku126Rfnx*R5Ah zfwJjNgwfSSpnZ%Z)^>(LN!Y|ZIVTbPj#JVXbmG9=V75-(DhM(eEkM!=P*wCGH0EyRCg~N>c)##gg41{KkH>H_Z9GA*Z17cjPz7$vhx9v~ zli=6QUjOvtHh(BC3O_Yw_cpNYw`^v{lDHv)yYo)cJ&29XU43>M$uDm%%b9;Y5{yl> z0`3I(=t1f}K)wYk#*dB#zfJxfl4P-Rb4w&hp?*UOY3?Vk;Q= z`G(7xQed6vkgiCUfbvA+i6iyp!O<^06gx`=GJk=K-<3|8Li*t&N{N&$#N#%Gf3f}m z>GhmB^{F!(8 zvzeAVxa$}8Itp!r^cauzGuN#HSJ}Juv&B_VH?ylGCq{zxnkivP83#$bxwXpUyC7%N zKK_&&iF0mDNPXM-4cwirzWq%-UEJP^z7^?@skH z2!v-gmnk%ne1t0Z)^P=>uj{|Kd?U|8gVXtB4ipl7RkrPT1^R0bYRf$X$gj(P-G5m4 z7{U%=ZJQR+NIb7Mx*~+k7gsO4>>Jn(cCoGh9HYmOchnkMF~tz{vCk)LnP3ds3yUhh z3`Gcf)sG$BuMg>o>D<_ssZf2KL9yT1P4uT`JH0rT0FHuK?6=z^LA$#8ro+Iy;d;?} zqy9(@ptLyCz!pcqTUcEZUq=OJXn$AOD67L@tk~Z5?o$ToR|4mqfh0~bOcJIZQYM-T z<3>EGu!qQ!^w+a5@yPQOuOwDhK{PiZH8+d&V>3&&+-v&a9_XvDGs*`4X|>hK&MTk? zetx>%vV{0Lw9!YTKottj*CaaE2@^d#?2nU_o9J<;U;kLW1hgFmg-pgx(0_xz&(3s_ zB>Cy6a|ww<5Q`GM80Zo~41Hlx-E$6rcHvBAOoA?iET?G2GUk94dMm2v?PQ`SZe_ep z4atk{YspQr9Sgy^_+3S+8Q?EwuY4za1N8Zo4<6bupz4#bVr7UPSVF~&4&$+)iRj$z z2^s^w$cIt0E2JP+5?FoCMSltOrA|2#D{~?Jz*&Pjsf)~G?-%Uc)(X~P(VpBjCg2o} zU4OH{5?o@i&*t%Y$n$TO^eml6431SYoBy&1{FPFBb#CfHP5k(jgJzN7JAF&DTr&oY zV@Hg0qE>?%w%|l*!8p#b8uCK z0i+BB&8gDW;5%%r4PEpU3UR>^&a1nja9?g`*6TYE3H`pfvg#pdgQo8BnI(|V-+XGY z-5JaYj;m*NF9)l1TD?!}0?=3aFe>nfHSz| z%&l`|-pZt2D1KJ}`UEo;_b{NgFz4D@w^ZFbr6g`TgE<@=}>rSfP{Y1?#Cu< z9^bA8rrEv@*7kPL?kzq(wr(fUzx#BhQQaemUwYawb^j1pGk?b#TTDI%E-lxy{`)yd zI4u2wL-W9{Z3(&daW9xJ<0C{@NPr<3aG?7z4YHx_S=Amlp~PQUvfjgq=KX*D18bU z&uP(&8V_*l4j)x|mJI$_lfB-0TOc=c#@4UmfC!~$^yncc66Zw3mOs)3b>~vI$)lzd z{e#*o#!L=})O=%g+f9{VEWH^vP@fN(wf8U2e*Xeu4u1*zg09^HMZ96nl1vfE4Bj}f zvc(wm(;JUpvFrh>PkN1UDi;#Dhn2hQ$T$wT8ngl-P`Dy?WvTW!@ID+$F?6~C&Xvzw zj}1gY&9SNe17?BN6C!?m*;Y{2%&an9KLdhTmpSh|EWoNdy#AzPJfyd|y{D+>Ky0Dn zj2lk|!GC&DrJ5w{O7hU=s^gRIL9zVm^MT#=VBS*ptGy5e`cb8A(^}*pJ|)>8@)n8T z#tZhz%{v3u0k)Lol_Ib{d|sd^G!h)Kn`eFZXG4Z?WD=_nf}XN<={t9`AMax>^4Hry zagADByWeTDE-tR#U`5uWt2_7U?!HTOIu^0NWPb|4XP$RbX7)gJUeb2r3z-)hwPxSv z2t&Gb({drIBbdhF+nLvez&X3JzA=OfR)iY;l*d)@W^@K@zIGCf(Pc-(y_bL+G9xZ4 z;vFb^qub7@Ee5j+K22OP5>Iu$eN9+_%6ot1;j=*~ikR>^ljI?|Vehe!8d(@V2UEg1<>Y-bu5xo{F0C^MQ~hLo zS>_Z-hqav_wJ9Hh`k8V}(|zEDFRzY`p97lyoTsAu#K5I*P!Q8~f@IW5NPpHKzH+p0 z-nOIukk@m6?#{G|@ssf0lES#9o-vR;x;c(Cnrq9LcRQ@ZigEYPLb9SrMMhs^Ej zUB|OiKs{j)H?(6nIMevgjz$=O8Gp0(=C+j+z-k@AS-ISu%==nT6^5pQCs@9E!}blN z9aX)Wh(2&if@WnFka%Tw%ur=eJ=7PU)S-|#lDod^eVV5R7#`xC;{#@amp(CIW={i@ zN_X-47ZpH4C$sk+F^9xYqf&D|J^=6O^h^EigCu@!*(8&u0acg#;jgQxpnpk4ISKm= zf~NJYwqbM;F_>GvdHUk1P*9Us=8$-R{b6Hw@@56nU-pDAS0MGCt}f-~ln+WBUv%zJ zBB)hPr#khHg7Y+D8apEhT+zZK+O3I@irI0>uk8(3kC}5{qzPmTgn2g{33#B)ggPZ(JLyYSNcCYcL zT>aZ%+$tM$)gl7a2`dgKhZYh2ws*$fxzqaN{YZL-;Zn$PL;O2dP(gj7P-3?B1vr=W zHb^|#289)`J=dQ!h4cx^)I|@MlkxeqA+d5LS zm+Rs~F(Ube)zlq%4!6OyQ4?5Z_d+5=e-$G*1hl&rjgt}zAgg+N@4AW@ung%N#>}Y# zbH=Wd1}BRl;pp+H;q4fRtf^EGwb~51x`N}AS<}I>2shuho(KBOli%lOYy`t^&$@oS zS>WXBN6eSp4f@Uj5r3VnWe~77+KUBCfU|Ffn_SmrQm(S|gIyf(1FF6i7oG-p#Ehre zpT&O1g~IA9c{kh1xKp?Hm;169>RasQOUpe3Wq$>?YFaJWa`CgijWGc&rs?*l)gQpE z_{{%&MGn-Z%2ifgam3KYt1^xwWWWwzqW-MrAY?5w-gJpS0Dsf3rs#zJEhugJE?d#B z3#L`>xn1ida|#b8GW4EK03-2oD9bVc{5+bG$mD|%xXdltQ62<&&22FW&&xr%uXkqj zRU?S)-KZOMUk==BH^e)(=t8c-blY3qeUN5dn|$UHS)Y2&oY(KT1;Oa-m-+I^VAXC@ zR_Q14!)Y7!V}B`jU>eG;%McMj;IYKqe|ZA<9_?Y57o~yzShK*CtpZi65O!EzIap&R zF?h$wyi$JCEaV+oXY$-#CTj11s2*LZJK1>zWs4Q^9L=6uRf_hVZa*-HkwBruCl@YJa6{M(WaogRx-X0B>tfKLXgR>#6 zr=QceaU_^=G9qzYGXKy0a%%V9=U^y{J{W8`1AlJ2p2QQEWuQCAtr*eT1DasdvU$%& zfFWhJ{loh?knpuiPfT79o{2&J%AMyxExg#)`@{{D?$JvxX=+14Ar~Zx$-i|REhfAJ;lN)+n%Xb?z?oHFHi_`|o zd5<%pT?wX^S&UMX4>P~w3JIGlE5AU|d1TCt zog2ZrnZwX6CG{IT&_2j-hvd0dar&DeNW7?euG&q;PyF_;R}{8@E)h_noU{$1uMSZ6 zUb_#<#wJqP+8>SDrKe(u79s+ z@l+lM?2*UJF07me1~vaWrb>j$2na+St1(L^3Q_wT9S9D&wahCfaKrd zv%>d`2!gd_eji&ocDDyyDen#P;m@?66)c4$?&mH`=aVHg<-#BL!2CWtcYk~8cS6}nM*r|Ld>Ouo3tj(v+9=Jv3 ztJU?QFY+Ohqw(2VV-FbfwcbZt9RZayBGb-sHRQQt7fBixg7vv!(x|<4pc%c1?YnXp zw74|ot(LuDJYKe}NoGFy3q=+@UUvrK!lP6M@G02)mb{)`4D{) zV+7fTyCCsulX|uKOVD4iBR0gSLfUlZwUe8Nz&w8P{PPrTsK|;t>253q-K(zZ=$28$ zP4Vq-8oyiwy&`eQ!=A$*fk0Bp;=hVxgNn|{#w}~IMgW~eT1=Dwgg1Tg0#GUaZuRURN zWJ(1M%t@~@l#C0Yy1C!7WfBjH3tkDfBo2bnXuV@sXe`uT9Dlj=W{?g>d{~#F5Q)Q7 zy0&kSl7sRsf3G7n8M5vzeagy{-7MqoU-q3XSr@Xqm!|jth$7}nL^+@}mxE9&xj~Es5X)OefYnVF zN_o#9DJZ3!9&1e6)l<7liNw$5ifjf|8FWG=HKdH>FL^`7wQFG#7#$J#czY;2Wq(#??{Dyus}kJR}a2`+Aw*TeMyn>=<8>VvBgNP46u8 zR-6X5h=1|R%B62XF=j7lv+V}8v}JKKF%}{NR=V=q8^E~7QP8N61zY=xN8Y$Qpi^cC z=jr!@rENC(`n@htXMA~^@vsJzM2Y>=+{yhCjbVh!xq$VoeWyz2DdPS9MNKB*(;;^J z<>v=g7r~e&)u`^1a`o54>06dX-o z1Hq)h=gBKuz_LFxd&-J~5WimLYh-X7Qib`72@-u^E<5XojVmA>%l1y9PY3Ir_NojQ zCn!|6*x6ow3YOyNzT7QBL|Hr07;=sB=W^NW&>!U*%f>HYQPCH=v)&n1nw2{ z+SI5j$UJ-btW%e)FDooMBfcDi%&yb#lP*X>sYR@0SC$QUS3gpk>i2{B`iT6o@3)}3 zp>NEy=t6K~0+-%(7zM`6Carf0B!A!LVtCSOv;yr`jXw<3KHYzxKOl z4P@^5-#ks?L_Ss=ohPOY{=|Kc9X5W1(u$R}-$u8Bc_a7kd+`L&=5XhJYgYs9%pHey z!X}XD$X0o&)(=M9cBjWM1ZT2!Sim;2zTT&KDYCwS8XLJ^XtD%UYCOKnr0oQ~Qh)2l zjp-9Xzj8LPzVr=vt3<9g3d=(B_{qj)0}CKG^5Tt)V~#>T=T6{}rPdG(8f8#Q_mlZI zm~f|T1Eb4JThMz83VmU^W!dkc5IkX3(B25}UGzj4(I?6JR`rCjDHZI(9%|>l5#XG2 zzMG>a4BEWcdWxx!!O1kcJ@IS`#DA{_MQm8_0d|gg@6k{X$fs?ax_22LRJHznrD2P} zd1WsCYD@*FO?HP%kK2H?-ZXuw^fhqr%;}Dq_5#!o4JYic$U^xX+GyDgVCI$Ajux2+ zn!(E{w`$_SxgNaXtd}Ebjc|)O>FZ3)e1Iu6e4%Q@tr;y{8CrTyjFsF~cZY1QgUnmTWJO$3#Bdw3O zYy&-wv2EmlJTYWdzdqJ}8zerLFK@P8OXB?Icl!30zvDvD-}L^SeGG7&pN$!<9Rarf z;->-e=1`n7j`daVEok+r(SIk^Tfot&%F@rZ2W@D#Y3Ae4L|5E34VBgsuy~!jCa)*? z&3^Nz+f^bVv+c0JT7*N^n<-B_ogJX;V^JG%Bn+%$QP=yjMTysqw~tATu!6jG_3n@n zr2kl7lR3%(=;t3ye3uXkg{GGWbZliozdgvByF4D0?6oV)D-RI^8h?8(Xa&?j_Oy6M z?hUfepI@Bhw8G`7w*DXiboBSpVotNe!gz@2Ts0t%qRBtC_b9YN5anJ-aFXHfhJYrTJD2 zP($4&Y}_#eT)VwFA1xPwLGRru8d3x~+a{gLvJX&RSh?@jE`Jh_I|n_`JR=3V{b0%c z(;|=&a@*il^b&$u=|LrX5=lG~9WFc59Q-wt9)Axi0ylH}h>Kh=aN;!VPqnb1=Y#{hPe7qF$1+ko5u(|#mRBMVgT3b9 z+3XpPVA{?NIe#ngfn2fY;Fs<9z?`#Bn=5e*G_j?Dep3^{wJ<0btX7A@&M{9*kGesu zHFvslpfdyy0;%s(O+m|8967)n1ZQ>0htC>{;G`_>RFl~awo0@Iy(j{zvlFHmc9MKt z+BH~ORu`0t&g3HYB*?9INi>>4@)`++xQVm1ARnZD(SP2XtT)TfpB&h<63XvWk1B+c zJdEkt{8qyR^p#`T^Ck{}^R$z(@iq;#griNeirsea#>8H$t|osNe|yG58gS&u+LZ0If4gb5dj(*y|ZzW=BMUDVunr zBx63&UwjJPc?YCvnGH|eB9?5F9(SQjohJqo#1s{dYXIc8u*WDt-|C#f_=Q= zVBg!@M3?A{Hg)w%FuF@OZCtAgIJ379AuT&+izG^PG!S>TOw|xfdfCkH}vk$84rnt3q7?AmsA{1=I z2V<1m)bS{ZJ|LOwTDE0XbE@U1HbrH96XoA>nrS#4`Co)bO5?3UvLU2^% zzWt3NsOB!;=Futx?x}CuaUE7*gj5~yF{Oj={e0>a-IZXiHjbDUPV)E*=Zur;CW2kC zcEtH0EzlH(@~6!{2TFlgfVt3G$hX~VRew^s4aLl!woThfoFZ5-Y4h&gP&CPxw^JtZ zPuecqwd;+bpk}(wxF!e+FA`LzYTX6bd&i@4zl$WFvJ5{MeT?MoHY$QD5UdHl+QYLrK_ENHLUghd~ZtsPx*!~eW?`4B?@B5^J_!*#UEPu;5 z7}E&B3B}hISNfn>yeU^~K^Eu<7L(1-1wiq%&6YzRBwu}AHFK2GDNq|$R-7mvMdInj zU)-%_z*{q7veukdsM$?*FnS2ch&u25)({5SMGS?2_HU5l7(E{SQ3KLhIbmTqPCk6p&Gnb1VyCY6P=Jc>rQ~2$<)vh%g8+Hnf7h$8fD^Za8`e1+c*fnIiMfm=S$*b7iGg> zl5Zx6&Fd>NC*w-z-uVg2M1Obn4)cqQi(oF?)4FCbp6L2s#Cv~951eWzi_St4@4aoW zh_}%N%hAk`y?q-LVy)U$Vs*e+I6EiG(HI={frP0BiQpM(`dp4zBR*^^iMGtF2g^-d zX5N!@FxT(V*uEv5=v$efQmMWh%E|ppc8~ZD_UV*!{;%YqXkFqkzJIU|eDj=RC&o+# zC#f?g^8yoMJSBInhp~{7x?MQN$`FFL>+Yg;9e6zf;&-B#fScX1*=Hna-}nmZ8fhc2 zkB!ffpH~mg2VLES*l19^SD6{u+=W<|W7g_GGM^|3?__np0qx zJVKWBJ+hCoRM|3nEPs?KJFe;a--lphxq9nKYp}lF)i{|m0B$~`-o7LXO8Gg1iD|RJ zq^^2Otk3~%V*Q9w8!RCIAuld9$OlTdRkH?DoY_QI&%C&8uKaFDFX2yo zzH|i9rE+>{F-rPtqo4&%^D;GQgWTx21Evd< zA)fqZ$_%XnFofO4Z?p@Al>Dnz6;UKF3D4MkFY7(YBY)O5B$p|Ia;Tt2Fo6frosouH zZ_EWRN5nL$ya)0JUy20yMu4u!I4m%|2-SIFtB!oqhFsCf-D@Ilg12eP%DN#N2xZD9 zcG=lMYT?Nx2680s_5XBCOH>)O)#<@S=E-2S-beQ$JBWRv@7Q6`3~GBlDe@0>JqVP#1mH%Cmz+w;hTYb zF<(-8i#ZggTbv^%)t!al)g61viY0O0lG%=lSx3OA*}mnZof&As852`$bbtH~OMC9RjS$|j zr#~({hU9~)v;*f&Arrsm>b&XA5Ijv-k~km?g`+!lZAg5~rdG{8HAWmv`~0H`<90wL zs3vBMQ$NXnCI&mc3x<-F{H9g!-hq0(yniuaWH0EgvKnpdPmr(GaNWW62E+QiiQiNn z)DamUzvVjEqgo7HJet97y)s9cp+|I9C;HrTF#)%wMC#O=S)h!6oAhk84Y>|>?BL~Ibk@dhYZ!E%r ziw7VOlDzxb_u-#^&t2rl-*f-*cj85U{7`9VXz0YB^P<20&b!F3zjc!tct3xp{2Yne z>rNOR>JAU}hKKsYLxbVr#Npwj;o;=rq2cgwSeo9jG`(SIdc)H6hNbBZOVb;crZ+52 zZ&;e%ur$44Y5K#`^oOPC4@=V@mZm=}O@COL{;)LtVQKoq()5R=8BF+dJB5F_z~9^V zf7!VcFF9p5xp>j(*c&$mB%UVHCUH{{H;#b=C<{522R znyNb+4?l)@T(juYt51K=)7IS^d&aH_Qi;xwygrN?USCijbKEx*a{1{+GUuy*&(mpU zC(9ph2g6R{apfM9-}9^^7t=ljT>$;YgBbO>N8whw6?7;Ylq; z!}B^*oyH$t1=gAHG~Ecp;eE6^TfuyO2^?>8*`m{|-}7>Jzihkyq8`lXr5}8BT8Hhd zZNXCIoB-!p_-nfN$6>$PmG;T$WCY2ECOmmnBRlL57iJuf%AN!MW$&(bjRnK{+}d@$ zbbA2!WusbbWi5Y(*SC0fW@s&dVwX~n&9h-WIjTNaS2Nrpkh1zRbGq}eTwOm($-P(P z^)$vC-5<6yHNH^HY<@2ogQKjyRxy9iQx>XNhe)i2)WOqx^SS;OVrx#! zi?Zt*wolQ;uhf9W5Uu-i&~t3wus>Wm_37)|E{K2OntFfPeHhkro*zYd-(yIGZRnZx z_~^e;r3e46(toGH_?IpG6~&SvPC)_AUcNsMr9+(DL;SseO#E?<$d7C! z@v|5Gd;9+n-F}gO+%`$yU?2AYFW0{h|33VmbNF|4_&+;6{Lb`RLc=)if7AB2tNkDE zYX4#jMSp*OEaC0!;_e;zE48?KI|l~3|2m|2IJ*Y<1vq)Tul=!R*kONsHTnlxks+J# zkBt-h6Q=x_7Z>^ix(G>xum!m$YwYR*$gKko8cs6Gn|BM^oCW|`yW*PcShR3q4IDhvl-50Hp7|BW;m1C z3}-T%;Y?;ToXKp4GntM4u*&-XgUbJzU>^on*Gp!NHf{_jrZ{}=n+?`OP1 zLc`Bwe>IVRqlx~diT&j|GJk2Tf1@e?rD+NM%V*AFe`yl`M*Hi!ALssv3EHf2+rob+ zM3nrg*uUB5{s;U2pX>dS`}1CYH0dGo-%tC?1bO+m2YR7A@&CfiFB|;ao6T)M z%p;jZwEeW*e{=trTqgZfW2%>%ldGSPiI;YcBa(kJR2H%W;L2Uu z^)LK!Y$SE(kM)Axb-h21y?-mRST zy;Mf@k9mw_{?XfH$o{cDE}Apb-qY}9U-3$UoVT?+o%KiW7y0qWI@@KRHU8+GXKntm zu43jV<3B#1#&P-c^G4x6*YEh_K5XY-ANj|+6~TIc%9r1Hr&Ofdr<>vg9OZ=3Z^HVPIk8*#lBkv>U=Y0@A?}PY<`xt-Z z=^uLhunY0iF2ql}pg(%GMd5$+GtW)?qZb`|`xpNe zb@TEO8h-UC{?n0vy6YdY{g?FgumAhE)7gJ+{r}(b-}3*K|F`_V<^Old|F6#fTi5^h z&i^g{Z~1@A|6Be)TmFAkkN>RPzvcfe|8Mz!%m3e1{(n}Ff3MuX<^L`JZ~1@A|9|Jp z|M9qx`ukzO(63jl!#_*;^>Yb%q5sk=;(zhl!H5%9}oSVe1m;{UBdp?VDYbk&Ch|PjnmI(`oC}H#~X}aKmYyXeb6rf+5sj0L*S=5 zAoa7S{p?vkd*07p@n^64vseGwYyRv<{_KCXe)ifwd!3*CxS#!mUmNhJ9$+3U&OP4W z28BCH%Qs7&gPI^$Q~JsxDAMJVb*^bZpqV3+G@<~C7HenE`a}WSf*zg`Bn#H+)tdCx z0`Tgut{Sn<7yLNkTj`$-z_WEf`=Mq&Sn^u2*Ot8pvt3PYV0tqc^H}qbaKgaVu=9WC zt_%fZQqzL{pKAXHJp|bvQ|}b1L(_HR$!y^zP+XB(5cl2~v{F@TPXBzU-Uxqm;^<*; z50zY?WhO&v{W7O&y=*9r-}3*>(!1}5gWy-kwJS5uIq*-ZJQ#Fri-Y(ZjjOh&CpmEV zpJurhvDks--L1}9v*R2DpJtifbBup-V2?O?sCG>ljvZClXNWio;xiIU4C4*a_(pV` z!=lKA@QlEknU|7U0bP*6fF>yrACEEN1l!bvYd0axYpf|H@nx_K!3X3NC*~H!r{x!c zL@~9&_H1z#B!c{2l3E1Icr2h0fn}`xq^#8B5||WQerZWTX$b>j8jJ~+tZ+L-D-+@1 z!MV8(KATsTm{W?F4$RC0IyNsc2g>IuC`wI1?El9a?W`b^ieUcB$t(tY0RTGM&(fOE F000Ow74-lB delta 33351 zcmV(vKx&z{EK9Lz%{?n+6tJp!=kNKKRXf+qtUsS8>96|9HcpY?hZ>&u^LoD&kO}f4 zZ__=%>yLZ=VQt|byP0>alYs%}f4?1Y!oPGl{5}*K{ELJ0eqL6}+223F&)Ie5&trN2 z0CzVp*B~!HU#Bql0KcEpR9`1oKOYw_U*{j61pZ3;o&kQr{=Z6vuT!A2kH5Ej;P8Zt zbCB!G-xFei?(S|s$F$Y%?*4zA;N;;K;I!7}*GXQ1PX3`mEB$bh z)rf-Ox--thD}-DY=;i6-f9$l@-St;#{D&1Te!;$OfkMOOOynm7(fYaRE=2vQlRT&P zFrs?y<7u6-st{#r50n{t6P1@1rurpE<`#`F-O^=bNDKtb_4v}Vf_S*eTqudYl4ukh z_R0wPK(u+cPTt=*8)C<0B{lQxh)+_Y8UvQ)5YJmJy=BsQNTjGAf0d)$BAWW&vzv1) zh?c-(sg~dFLn2;d_VdIAMAzh`&V3Ib6R*Q3r5Q_aAbOT+YL0yT3bJ))d+T=}BHnS? zdo<_|iJth^A;sZmbI+Lj)~x6Zhw!)$DsQ~qAgpzLQrE`KL`%B`HFfLf+|sIL4&xI( z5Fcu9t@~7vOzL^#f6}4t(!@Z|KwOkw8qs>CIQrt#9tafXMt@C)(gO~1b1 zuHM{tu39B8xB*0)rF6c*2UDWFKjd4f#!aHr?ft%|{$Gi{e-$sfl1jaE`_~6OZrdY7 zyv)J(DECdoJ(EQ|n-4uijmo6_lmRQ^y`z1iY|FyjiqOU3$7bIlx<8ls6~q?gejXgS z6Bzr5sQqqltGmQ5w_#T`clq}OqU-IYJ5TqYg0Qj;@7?q{MEB6qj&N2p@j)nV$o(Rl z_!_MqI&k@Xe{NH|+OgYCvAOk62MsOGbP=h!vTj>$`4gQXcltS3SVXhf=V`Zh(uoG{ zsncH`BoN;Q^cFV1Z6m%#GhTM@d_mNupWb$3Y$k-~mM<EM;#c@&m`WmLI+~&o)Z<*FXyHyB@y4E zOf9=(e-v}yUv*WzF)tCK#-CPBUt|KQ9el5&TRe$(wDz(a{$WJ-g-asLw@Zl*L7w;G zd%3^kVnC1B)7J!uP)~Os*kDKW`tI)x4%LP5LSmlMZ1e-vJPiW~`%v+uNu&!o>#MK4}KR?=0n=?QR8J6x%4`dUsGn4JbxT-`O ze@$}4)`|)eE!3Ou-7pf;{pT7Zg+CD8JDPJRD+ohkil)o;h07ttd$FCk6GRMreOMP| z)(7eJSCndm6d@jVNwrCAJkdKR{eAe=B;sXL@BA}q3y5#-6)9SbPOcUQ`acuRS( ze12XQ(Z(1}D;htKXd5xwFZqK$q=m2SvHUUzQqz}y+dB6U@qNf9)~9hn?xT5&e?QIK z+CaPw>5GcVT1$NPG)=xQxhJ<}yrJ`gyQ7J3%(QEY``jU_z9g~8>NWA{!RAdDlfMw1 z@vm2py5&psPy3d9v-Jw3SB3dK^JpYmUj)SHbUuOv|DeQ&38fGgeUlpQc@M%Z#JG1{ zG2+wrygP5)RubP$59w@;tAb28f3b$TR~}MlX$9lGC=h)a+rC6P7~=8A-Mdq?A?0iN z{dj>k(dRDzY)Z-oqCcbR?3anw#L&95F(Fgih@ONG%}1R#LHzssIYK6%bG!97ylhXU zf^l|Q+3esGkiR&o)4tA`_`GJ8gs#>%P|TXb+KY4`l6q`R$eDMtvXd@LSAEMQ?PWTlrIG@AMMtoLf;v%uc+o-rMNJ3=jxqWOBcjKLJN2BU z2=PIp_00O{Yq>eT#~<$AfBBZ^pJLAAt6u`Oy?pw9?P3Vph|4B+YeDN&UNOJTpXk5D zo)IDHN_1&&YG@BqgwX7?wB^V2h=G@`9?F*S5H_0^eqFB_l6v3b@5`uwwe6aWa&{dU zIkU57W~D&P^umjhSYe_g|AMAvF55 z=;$0sB~(ma&d2~`7B#c;!4gP(e44z*JRDLHx)b%!3PH$ZZ+)Qm0*IdQNE~H72-cth zNB@fkBq|&@Bd_xya{bZd)HAU}{m1JPr#!@n&e#4U8S{O?NSZKm_UA2-5)&yGO0pz+ zG&Wg@=rD-J+N#3ve?5zdR`x(&jt3z9tmx?tV-ZMj+ea`>v>@zvvgwm+A#uGZW!%8M z28bTpCGcH34#I}v1_BR}mc#f30&xcU&a83%3SzZnw!T z?OZu-Agzt)@7=c6aMvl~{RX9oJ@;cE{&2_1i1|y2o|)Do+?2~8=D)D8JY0k5c0IAk zN=p+`_DYSl*3uB(Vj$!C<~eA+Z#dz*gCKVB#hevYqlrch2bH~Fe2Kn8K@Vl86cc^# zXbZkw_6Os>e}zPnT0bOLe<&ah?uYRB>r?mAq#;*zbz70)ThL^RR%-2iMzpqynoXWF z4&u^W@lhphMA!2tcB6Yf5nu0yFaN-ifP`khSAwB+Zo7W$mn}2~Bw4$=SZrCyocjJ& zXGtf~V!lQ5albYAhgMnL+;2?uRvvXZQY!>G?Jwt!e{8%4@hjUt<<~tW+J&OB%*Q+e z?WQHW|taPfbFxp z$}XG-#^&czizC9oaEv?}VEvYOFK*e|d;L6QL+kJeR&TZpfjH$7X4c@X*RXMTC53i$e#o}J$hf?7T#amYavqNmDo`3Wb8 z&he%98FME>XyNKzk`G@Hy?2VjNyr3Fq)d)Pg9)es4wql>wh>=nuDrgpFq5b;S)9w0 ze_KQ}Ewb>m(qe!qd?eCM{4r#9N1mMUzyWe|OsBl{Eh0J=oKdLXbCl@JnUEjtvJQ-p zPg(vedLf*%@vO(4S;WVbeSS+~3c$`*pjobVB|1;feZD?879#f_ubDAc0<=eU1En4J zAl7El>n=lLO9mj^-+?H)KfJ6{nZ z=LDKYYwE#L9ekJ`+y>zctt#qE8iY3(=V)=mA^$}9%Czm}#Nfy9^H$#aU|toCf5_gs z4nnGO0Zrv z>YhBYfq2iCt&Gw$BJ);C^7ZWFf5ecAx3fWGD=06;Ry(X10(X*3&Sx9^Cp_3zpf81I^X6G3w+Zu(VmM z>nqO?Z$B-vO7ql%+=E@}4>LrFAxY_v3q#r=apa(0`W_0=cQZCxe1$gAfA*zV>CCDL z;H*A%puvv`C0z6Dd`bG_Sm6$KaUW#Ij*gt%A_{3mc}2{2hV-5!4lLOpq@CC2Q)DiNZ->H*a!zUvUxigY5tI=VRC6MEnT`lN44RN_QsbkNqB5DH7mG9dHLCPoa<0`o`MB9!8 z$~tNcxPuN$d)m4ozg0scdGQURfBIeBm_Z{VwRPeB_wFFR9nk+Mf7!?e?S}l-aJvSG z?RkFS%7&ew8*kTOy}d|$HCWJOv)rHPb1+ofJbOPFuici(%^3q~?o5@n&H)fVeNy;# zMIq?Zt`C;Er9#@#y)pjD3eeZ~$35^K32wVf!Tr}!Bu-nw5FOhAp3mJwLGy-)^qbo2 zgsC9Da`Nv~UbzOwe}Y~RM3D_}co=c%uM3(0xXlmvG- za$i5sWp=Cpv&dpc>*?JP-!j(G&|v|1mN&Ym6r2Qg$<1%>f2KM_*YP_ZTYak_A2PvM znZE|~su#CjMVdgEV9&j^>^Wp@Z*y;|pM{*`iTQO2r*q2`#9I~pyde`B=w|!P0isXd zOFnho2wJqUh_U-u(7qp1TzO|LWS2XO_NU#4VyPixGFzXhy|eU%oiPt`+e=2$YTiP0 zN&V&tWoyC6f7%t{KU&-1~!1vnqc@zB* zcy^z}XQXL^nHSWmG<64L&#lQej`aYYYjJa7VSJoS$ zFqo-G44Flo89MGve4pM}rgt_1OwRo)PsF4ke-z_>aO0UGaH;LF?Ku~TrWtS5SF?=B0s1Z;^$S5h&*lpXU)Kl%Qh<^oM_tD ze|FFmw7KfM)(}a^%Sp7U$0S4KO^5G{cwyqJJR!Ak`*AR~&0Lc8>IIms+zHW-1|b(U z(tMiJ4dScqg3yt5FTw87b>0;m2j)6WX5*H5U^nJHowj`z*xsBi2gJ#I)D~LYXb=Eq ztWCBk#T=B->5fBhsKl2=l&eye)}SS&f9hGhnFGp`IUzIm2q3=cTk^p}H^7-YZr|p2 z#b8!9L>%yZncEU{SLVhUDNxVIiBI-i0HJ+HI*kH+K!2d67QVz5%$~zdg*w(?^yr@1 zy+jfUO%1G|kuxB%U4MsB%0mcdcZiW@h1i^i<2N)eLte&Bu0VA!=}+a!!K(wnf4=8n z=I6nJ#Fo+nNeeq6_2GR=ztURBPxd(!Vp;V&E|_EZ9osU`gT7lLjVY!H**TGwN90w( zsCnpKJ1P-kUx#|~Hz-0RVNDa`E83P z>g^>yJA_cag|?Esy&^X%aRs;+3qoC$KSN=U>*~Of95S9l1I+du1zl0|J5k~Rw(Z5G z4~kcTR#;g3q#y>e>%7yiZ>fiDwK}f6vHc7v%0Q zaU}L^h1Bxe>ne89VBIXttw^2-akFK!W1l=C@$qLLEx$;Jp7r$}UHJtf5%tafJxd`K ztv0dkZ66q;ZffMJF zAnthWFhy4eT+gR(jy@WKe>_LGa*p{eh}|x9Z+xOh40$xg%e=S-D(9%ab?P-pO!E_} zPj7~-kjH|vvc`}(+<&jj;UZX#2j!z2R)HIwp>{0h10=pnwH6{BG?y{f^PgRV)Z}Z; zyV5m5Su@L)yTlLl5rd^t@+pv1kF$8@)Cu`b7yKD%k&t+GWoqm4f1RKOc}i8RQGwX| zz6k-BjKEquNz(D-9x|Uuwp}`r2HAsWmpXB_LrUva2uD?ftlMuQs$Lz2@(%99CzB0G zTsmQGyj}>n@7L=!O(Okvlv73YMlxpy&ip4?lO& z&2NX)v|P*eQXjzgwN|R^=m&k~nheL7caU^by!dRJ3FIr}e_#1kCxK~?j0QE%@3@d_ z()1V={}TM;Z!eY1QiAM`ul*bMe+JWJf5xZnA&~Ary{p^Clqf%*wE1doA>`MIJs29h ziRjcYYuKqC0Y*f~j(xFi5MI6_#MPh7zn2O!&t2IC!TPQnPd?8Bi+IlNJ?09=n(vL; z8aKh$oiikHf05jWI#GuW?>9o;rh%y6a+B!DJ8S%Lu_P#8=es}nY!8lR9>00s7YGdf z4JW25gVONv(yWegU~opZc)qa%t6@!9k@iIJyDdcTY~Bgk_2;u)g@r*Y-Aa9|+yrT6 z;QJ+e$U6V*%lf4OnP9z%?(sXj6O72`Q{xw#fFb&ge?4(=3;2sq-<)&&7Gw@>wrzj6 zh0L>4sjR>hP@j(QVL8`>vX%eohDIKwZLe!R5?ev?i>IHL_w_<)ou_f7>1oo>T9U<# z?1^uJQy*6y*#&yz>UV-2XDnh?RQr;f+69))mS?QG(F`p zz7hwCf9?faZ@rV-1j+93R!t8NFdn(h6qVWlcKznl+LEP^zcp%F(cPusu2biqQ9T33 zS<8IRo@%h}Xa-n4&jHJP(#(~t`4CgBEH-l93ih1Ro}ta89EIskT@RIr-dN$oOE&Ew z@hydx5ugZhn(pC^USvKAypr$cMF&&%kzJ=+e=oR=n%^mmm}#b>>8D zBt(L5*nIB24=yv2ad*)zs98bUMNtnxl>f>?ul@48ky2o+sU5xz+QXCud`#XAzh{LvdN zf2Yoc@Vs&PoA%xT?d}QpgRC0J<=KtVZX@yf$7%=q7$=D4WlYj@a|KJtL}wlK64)z` zo^f8H1kw235hvSTLHSN7t<$3ptbXMiff;F_r#)yj-82dOiRbI(HA}!a(4@AeXe1;? zrXCnEm;q|^uDsRH=7FYjCuZcflfUDFe|1WxI_=~&s2n~zc7km(_SkDZ#r)Mx{v5H_&B}2%mS2z%sSz@LXci~QD{=I7!(}e zE=a7}1*K&Z?k;`%0`iZxSLaZ#gDn>pD%5wIjK4?Id+ZNF@b0*R_99)#C-&Hnf3Y|~ zbSX)6j&->S`S$GXCe4=MG(Om6d^jB{bN58;mU{^K4y4gGh=Vb`(l%}Had1}Zv{)&` zfS={sIsTwLI7{2(!$Q7-{n2a0rI9tD&U$Fp;ZR5NIuFC`V*9~vb<4eLwhVGFQ}wjE zYrt@BQLCuj2Y%Y#a51k$=w&1QZ^>FgN~WM+}5` z)-4Ki2mAAG+lBx;vfjLoj9Yad680aq@0FYdF-=|ZWjFLdyDmSyse}fOe;#vs`K%%E zF5En~`o$E`H%P6d)_8-Hv-s-Qw{76u+A)ha*^cBnvDJ6z&%l0VB`$v>6|%=qKNiim z05f;s-logvL1A9AC>BnEglO~g_Znsp6inNB{?u7wuxFgxEz5DBn>p|KBD@PSIv=}g zMOHwt_H4LA(hXv8hscMHf1!JjTDs=JxY$Ra`O7G&Wh^G+Z&l6Kj>k}aprmBse2^Fl z5tL{yN&_=trRnXmO3;c!#jMZifPaBsadlf1@%`CISv3<9SNiSvwlAL#T7U$zG+P7W z?dvXwTFQd$Gcae3rVe;lF6LP|UL?NFG>twextVzHmF?uS4PaZPe^&%E$$WL#j<&w* zJft?~-Tr!RHPPp(VV$uz7E1ebn-((y!0LK`7MIAnyqC&dw5kxQym=n)T&y9^({;T! zn&dN+gO)zovKc&$-D84R8GsgS?JBh)5me{pA)+Bpkl>sMxKT0>@K zA?*XQp|U6a^XNJ2f5Be%P%AcK}$Js`^!0kLaL1IQI(I7v2;?dFCU{Aj3v7+Mx zWUqSCXH0nxX<3bry;oL1LTbO3)Yc_nZ>w^+H-^l^U)voTI>@-z$lf4baUP0OE!bmI z1W+>6K76`o66ihZt5W1`rkn?;eF?cE6f7r7q8O*t3o7m%hq4aT| zjQjQFB#t{EBK~a)B&RoCY04FWqNA;~a5EQ7|HV6Rw|xb3w$andKzDGbO<95n`);nx?f|z?QZ{Zg2P({Bnu0(P^0WLSg%>Y} z$Tc3iOpijQv}wjr%{C|*WS4xKQA_lcX+D2BB>^ml12%jmkT_+dv1qY5<5P+IVV(a#<48O#FnH^+NA~I&%KPb5q01_?J^aGCoa)Hm@gnJPEW|Uc+R14;``2xB7f#AJhXy%jgB-tfi7c)Ku;^Vuye}e`~A$og@b*&CoTN4i8M))SI*X(RMa>%hH9EquX?fn;d(_K*jp+_s``V?w>aShm<{ z>2(%FuPqxg&7TTd!8XaH^&P{!d+55$*mbj@G(V8@JopUg?}R89WG91O5PiDl+D@p6 ze{xKN=vy!*X_9&K>)pi; z?;&GLC069wkvy9bW9^>|?rr^$2Lq{)e>YIFPMu^<4D}g#rCis9;OJz@eA!K4rr(Ln zo3{x3jnx*W_t!w#^qEbE1C{u0&CZ&){u^YX#m7o^tRm|PVKsF%$^TxtpZ+S52UhgL z#>$gTP>|!E=RBDKnK;9mUIivtxpkvAJ8pv1EVI_k`qN<6Jme@}FDHh$NBx~;M8 zQS{EDA}MGHvqa+7h(X$Tu!r_V2Vzdk`XpBGf&93+57uJ?)Y+k)P+>u2rlY8>&J8HN zFdL%~O8UoJDf*@E*Purf$-J?qgPt>T4ln8+C}S0E_b!Vh?PABXs{aP%se2MHifDjx z^K`yn=>u@0AD6!gH-!48o10EYf8GMiL&`n*?iTPi=pTJwstfAH=@SeSA40Ti)TnJ& zNPLr1a#jCm2`EJog0{+XFb~YXBNZMF#?&JBRa@3V++HeY$N6x`n0u${zh!`Rbi$;; zG+{{BukxL`=PSw2y&Uq=qQH7}_xQ~f{h+n(Wd=I9LMda0mBE;&kn%fLb~toHBAwGxApLIUHa z_-%+k(b;6{UBpB zFG@Yl2(mp|BGCrt!75j^t+;6kO`Rh%c#L95ZuB_1YQ{`3V>KRMe;g@F))}iMna^d3 zp~Bnj0oib(ue)MmiIgGe!U>N4eTh(5msWfkLSV+Pd~NtL9-LE!XLqTsh3dYB7h$Kr zg66LA)ZoxG@Rqd?gx)v@QSRt@6E%$?b@6)cp0c@#KZf1AZ-O87${wcqjk?3>^n=~yJYf<@x~<4?4?n#A}09!GI!5Y(fm zd5%eU!MQq^T;{zNyuSG9lCw5~dGn(5?GGd#iw!(cFs}f#b(HZ2`-&j2h)6lEPx5z* z8%oU&jKRs2m9C*BLZ%^YB3(KMyt{QYe%l==zG~fO_y~}8e-pX>-~w4Mg1383-g+Et zk1XXL8IrF}_cS_M^ae7!lUFkO8lVzZLs`h$0O`(W?;;DfgC^$PBx)Q1zJcPAwO2Tx zd0bZQuwDoL{>!sI#7%^P`4jPI6C+~KVY?Z9X)4%nrMK3sQ-o6C0qL-74xn7!Y+)^0 z5AM5iou}2;f55(VChyQ|l4n(=IcAoQ1vAW{&Z4{o^tl#OV{%V{7M4RbJ{1g>Nm2L6 z@G?lm&lfHa=>cQTbp16p6wnPwS5Ym1*xZ8>-xD@~&UiR@@1`;6lk&5cM7n_<*!@&5 zCZqC)&a} zgOB7_K#!&gE6~o^UNbr;J&=ILT&v?h>lz=`Qv7U zfpX{Ad#w5bxly|dLZ*}ZkVBnrmn{Pk`&-u}N~S^}d+{SnaR#U}DOuOA)PU2U(WHG+ z8_K+je{SBS0Wjax)%z^J1=Z-WIC7!^)YXQ2rcTHOWkdKl6A_YM>V!6pstN%!$mNN8 z>~+w6B3(*rvwp_~Md|e8eaGfOFm&B;#KQ69@uuWU1^Hl(OLxi$_l9~=yw|J<2MGBc zaW7b|4@Lqf^^s8?*gb;@VQq#GNi$#LmJW!Te|pL3ML&bsvc%(i=*Pf&yh&GPn;$4{ z(=0bV7J_2VDKnX^U!XF3{T+|Fq}@$R4$tr(3C=aOfE$CxptV$HF(2oEqO#|>k^OG4 z>+VGQmM;L;wSBhMu~86_H&~Ek#v?j9pY4>FtA$GaewPcW_TUExU(!2s5vwANQ@&GzasVn!lpeb}&bd(4Kg6Dx?pJyqY>^1US2IdU+_nCHcOw zNcJ8U81Y*b#(S@au$oK%-P0~mi0PVAe^B&^j6;v~u?FmBRZ&V2Y{A73LfSr-NqU+ZPF$!sIg&e|`tS z*p+|%^oA%fdIDO@JaQp@VLo+h(_3Q5HSko`u>jDOq($C8e*kvDX}dhtQ;^*~cE~kP z7o2CE{hEVPWS!t86pYOW#pqhQR?JDL8g_m+uU3G}%(8TUwHPR1jj#Ha6r!)PciKq1 z*`VqcXT`f`k##v)OZ1v3gkSJae*~Vhf_wpWC-cfku(fx+Tv0>f5(mpvW>pxtUh-Mj zvYH@gD!upmiPYTfn~jvpnL=QBQ7<2Qa|`mWN=jy?8DN`qvNq(ug~TC_)~)5`PzfFF z{X&=kLn~{x-4zEgYFgswiS|Qze9Z$+tqO?;%%^#qav|tngW(1~&c{E}r}$?0>!e@+yt@QU0HrMk|XD@R^IEuE_-CMY9uuvOki@400Bs5X2q zItz(LZ-wUS`=HmyJ)WEJ1q|DDtaYz1gZ{Gc+2_2kkX8_qsLSnx&`icn56Va=kKwJ_ znmQkB7vuNSs3##aUe=x%P=>wi=`YG8lHR8FT zPZJh)ep&|cQ@ImIMn46;DobiK!w#~_w{D)5p9PuyS39qte;Y}B?|pj6A&tbVH&$xg ztquaKdSFWYDNl&*CbFg8o(9LZz*DJYE~qt4-q!hEU>~wwXm~>ag&L>o_P#BkjrlV9 z$=PfY@3AMw+aHFoa`v^IcVa--3&=T;bsMyixAh}#k@#f6h*H7a6wtB{&ht%+A?y4* zlMmoPE;1`wf8|^W6dUh0tw?SLy>{da8;wL_;7(PPQm6n_fx~!_rpw^GDC(CC=?44S z>I9dw8uRLmlb2--6;!|sFpzClSyD6H$5>`kqJgv z+ZQ8uBhV7p1@4&s3bggdq-s(vz>{8nGjrt8+vPS z@vq>|Zv5cU;78&>@!;U8q@E8R>#VPgfX2bnGultNBp45>w3 zx2>tQkXxnkengx)RM{dMr>}Vl+Vd`n4U@dVC|%}O%`AG2zz7`oRNKpyGGNiP%yD8X zn4eXi#mq>7e4)98ZW39KDh5;dGLyl1z!B8dv%vonVA6Lu97>~$ZIb5NK}y-AZ2d_q z@Fk1Q&iQ$R?(}p#)2l z2_X=z8f>>?n1c3Yg|NcOPhh>Ut;uLke}nAwk-5h;?|@xdr|VSV0nx0yPvI4Z!8o{D zZTzGHuxZr>G5ymZH@&v>X`mhi&MjRz`GrLPo9nr0q<$>rIckC~5s2G9-1VkyDX0j zn)K1?_0iejc^&K-2qpdTYlHX1;7aZpS1ro)++KQ{Y-|u{pYtfa+EgTBTPBXb&g3M)XI3+0oo5FL(>OX#b+jx)=!5e^!W^N52Ep z=eech?iA1?`zL$!+=5h*^3=@H*~>I;}?Ag-R`wcYs7bm?Rngpd{`I!t6~l+ne)NDaoe?ES1uGn`KQu%ErRrua7L`1 z6$B#>i3$>wA+mO1#m?i2f8b=z?d{-`aYrb&Nr{qpZIFf}+qX8dwIauE*`T3~t?|1>xkrFh-6XU2Rqhc_pEnM3B3aDOd4I_mge?rFoY5Et%^WaZ@f79ig1w@ZVHqKul4&IlEv682*L0Vg6`~FGu z!PDjG2$XL@?tV-zn`s5H%MvzIzLWl#o!A?#B?_kbLpM`3l4s1lFBN6{3jB>5@)mPR z|MFYBZ?R4gWQ8lDPBGKS`qVvcgzZakpK0fRN^JzQ;A#J&e~2&Oh>ecQ%BO&P<=)N; zD+frY#y9T0)&NF-=Gk-{myFrSV&}Sm@(am1JQ#rj;kk}14T}V_oYP>oVX8E z>y#0YA5)QNDV<1sQ+k*+xTzjY)e4iftZ&1-dww-4Hk?;P;?FcbXvH`B~= zrh}f9Zq)0r6iRMEZGs&v5~nk_$0~M!hSc-o&lACte;>0V*jyF#S2IsNS7(76EE)af zqXdNd#OJ;F1X8QdHB47mcX&!w?`r~fK`t_%FKz`m<_Lxh1!0lNlulJ=9yji(B zMTJg)$1kb05amL;PE9f{hveUN2bxxmvn1Mc)555^wP1f}t>nw9fjI$rMI|2K?mY39 zDzJrue-}d~%-#l4k$GdYbqR34Jzl8mWB`ge*x~V8 z%%b~13s!GgzF`C8cv&k%zubZBxC47il$F7zZnwO((gRA_XZot$NuG5mb@NV7VNj~q zW^7w@8hjDG)Z4EUzzA{6jh>)QyduW>?3`r}e~ygU_Lo{r$bB4OHA>5Xw{EB;bFC8? zoyn%ROGUsoouacXW*o`acR8o(@gOVMc2(9>i^NT*)P?t5hm2XJv!X~o>7UnHGe?nl z>0s?f1GP3tmC+CNdu)JWipGAEnd)H9GgjVfDg;^MVD^|WK52)nts1^tAtURno}Cr| ze}SusIpyFc$TsEmwtt{PrO@fttqW@*rhny1!R1y^?akKRS@sPKXZUcUk|DcSa@C_} z6Tl39ddB>#H@N-9x7r?$BIDaA(DBQ5qPH+LbqB=~T!|V(FJ>)Rrj3df{^!BzbxpXq z^eMQ7(>r}?3m^#02#M{u2RX?jv&`?je}%M%g!iGwI4J7Lt6sUdk?4+h4WE{xKy;L* z%^b1P9yGgdtHA@A;HcJSrs~&%(QdUdNJyD@_P#4=pXN@m?c=S}6iR=`1;bFLAv0zO zeDzfJlz?ss&(s~_jIIP@e{bSjg+vH;&bxl=;VN*;aw}{7uR=a~N6NCb!Qfn6e<&?5!tZZEnRw3rwQM+_$1OCY1lR=j+fa5wiTaPM1^orXFyB+xk+R&(- zD;||YX4$eg8$=o$onVcpkdhKi6QTAYceWc_^P z#Gf&~1e980>`-niD4VD1_(r~koJP9sV&gQ(Upu{Ezxz7~bk03|9#{v)5Xb9Q;vGn3 zn5vH*N#Yl?_J}c$_Cxk%`P7#i48YmfZ2i_G7Sz$5%#F)*pe(zle_So?J@NMNra(zs zDNu?VGA^f({Q9Es*ZqaUkQ-Z2*qA}qcPDj?sxU{W9`U~pZ6z>;^d`98KScBg?|DzD zIZfgSx#o>`1Hr#f&9y9%0K14XUG;V>_(Qy)yjkC%#5!Yn#ZiIeeVlxUv+0mOxY{rO zQUR2|_+Y7#%c*eiy!oP&bx8b?Yva~DHUXT617?kGy+q&F zqRlIwe+7MYQ{I_^yTjj)a;jYH?!N+@?_o|cdVGl9)SDxJ*XhwPcU)BS~Q;4#Xx^3yIuM)J+b3>j50(>Vu^f2`(#!`)45OB@GvY5mK~ z>YG7XKhUtB5CQ+9i=RcSGE|P5Dx`nC2hJ^r%iO>zz%<=m1T&F^^?v4kkPil(eMZPk)S~r9p z*Vuxc@4CmFf9+3vD}J!?XagW?WGiWK;Q<8Fa@KQl*MN2BMo!?BB*;%L6&7=v3Pq~( zCr@HKSPdfr>;?%4J>F3Bexf7Yu--HLf94lvgR#dki<*2F%z^4Nchv&G zp0B8(J{S)1T*WE0o?tMNzB;#R_LDeT@n!kQg^;1@QFd36c>d&-S6$VUpvark^2BF0 zczLmx<|W0GxNhyX!uf2_97pJHQEVmoz~#isPX*u}Xt(fNZv;A-gih@C22a7(czMBN zD2clke^lJt3CSD}!y-F-lCP)+c9kswL(Ffeb@@wBpN?C4#ej_Crr7M`CTftk2$Z&p zu7MJBPm0Q@iC}z4)y$r64_1!b^gNpHBk^EYe~nd39GM4+WilnV}1h@SHWpY()YgLC?8m|SWqIO!Qn*3X#>zS8OA^NeFa&A8O);86&k z;lL)rmo1>vX770Nh7Y;ox&!Ctjss_VcCrz5Kd4rUX^UR1Bzoz&O0BfDP$-||=1fu}@ALqyGpt3E zCFFnL@)@H>xS=BG~ifrIP*Ye?aeC_WpMJO{fYVvN*gd1GMi3n<66>p>TLT zH7@-*SWjN%7agbrS7h&_k|q)lmBb|T7d-<{O61bbND`lPc+WF_mk##p%$7~Jq(R?$ z+h}#6H>7urzV}@I3K*2J2%_?2s7&p;Mn%Tot2(dtN){f6=XI zFv_}S=i~rlxBTekm!hCFZoi}leI*3t=K}gOuS0aQf{S^qA$VC|&i7kwgUo_m^JF>p zP#j~mJ!rBB6b56vt~aDX`aq{#1c?urhn-iKR&Rrn^z(^Jrz`=R|Ey}uGLlC#Rvd}b z41n~AcMnEJZ6x(NZ~Ap>7}%$sf1Lx0>mYGRdR>N+HRMgGtIBIircu|Ue6X90#rf0WFItrH^L%fL5_aIBD{0 zP$*I34w=pd_j*j+h`oQ4<#LR zqk=DRt~Hh@2D?~0nYAerYza^L?K%%oie&W@XZ3=4X}8_B02$D)Z7;JfZ3Mj{tLI~O zCUO2~OQqY>Jn%&$@64fwL0(*L- z6+8NGQQaw0ZlScaS=KCR&^uzt3nfEvzCM7!Mqq9YX-?i zhtidbqaYI-ebKdh6%=>-v${izp%h6eOuCW?zCUlm+C6t6xMZ?!saHPef&-g+$h;+} z%a0uMf{Y(gqea%!f2_d%9Dbob_C8qj{nhn*y1|LzWUS5Lfhj)LB{9{N)I-EHsh0)j zmpA(!uW$uN>+s>V>qEfIJiPZJ+Z&=2W#}_^uLh%ONttC%Je12t%PMC1LdJdGnHw|Q zA)3KGd!~lOw+HVYl1?M@-sG1qdWB2D39Wb$@l_NmI?k)Zf5(vgWLxyzC}TU&%C9sd zXeJoPKc!13)quLLc}~%Z=iq6Due!J3D%8ScQ{D2Fh<@*|C&sU-B;P$S@=zlUitqij zN1r44LUCfMyRQytYWl2OY$~XVv0gp7r%0SrXxvpxA^mZ{f1~dqh`Z1N?oCL8_>q@I z<@4`Bq0``If8Gf@NIyAyf>3%0$|KstL!Trdu)Ja7vFR(6n=58{w~)NuMsM+;HJKN6 zr`lH~C_{Gk`1HVWEnvDApRe7#3-kiRGJBbm;LNOyeT7rtmr+eURxSba$eNU@CmqE1 zlV5KIEh2gF1KYfF1q(oX?BLs%^p51kZ3`8Yd`LcXe|3Y*<79AxO6nt8_dsH9)Z^s! zs^G6Zt2A>TiASq@9JYK{0nhS5sA*>*=(3~PQaRf|71FnOzPJghPV-M+7=MK5lzQ}1 zt#T3QrmhRcJnKMl-L-OIh5$18%?l4#T!Rvwk$Uwc7fNf_mwn$f1o?udD7K z$)iHie_)oV-+H{09R|~HkvljWpe|p zaMk8ZSyiBOx|L()C}4~1a-P3#E`&d(A5q*okMtw)!`6C!B>pt{u93WSvz|-aq)|OL5oY?(W4M3dP;s z-CbV3NP$v{ySo*4cXxMpch~p-+u7Zjo!Ob(1Pk)Ib}tiCZL$ZC-|>@VlIN9oTMHY< z2`M7q4+8238Zv1)Kj1QJ)^=eX?tV&x;i!gjlL~81OuL z6>)0>EjB05wmCBJs7uE~#(AN!Fii4T)P8m0&Z2Bppz=N)85`@;{t+zO)yjJb(~@mD zl%T zVDl*MMSW*7!kVyJN`laZ@#D+o9Stml{wpabzrbryBN5bNEj+ixRiOKA^V2?6?Dm9U ziE67Qwie0L4}CQqn52uvyfvAYnD>H_6+A!?C1{4v_G&x|a?Zq|w^Y5CGW%^>z1$0} z+%-8&&AO>apzH^m-1^rC*95qmT*6)B)TOw6D~4;%BHPIMimw!BrP-J1VKEk5g0nIg zp+UEVXPsBZO5UXciteNkw0Qg@3L#i$NW{>v;vNq^@ik|VDYd;(wi?AXdY;E*uEu?M~i!EEusanER-(G4PzUELqjZ;c{` zu^SMJ32!?^ujVl_erhV3su12Y>b`VWFgvt_w5!LVuaraq^mY|pff@O zva7UvlZPP*TDvTB&6?padZ(pmmzBxe0@59dPiT<7X;;o9Q+7^EgvxW=s39gh6IEqG zt3gHA3CSOJOwaHO@GJ&P!Me^TwV{EGW*)*Uz%(x$-pw-OlJt$yuS!Y@bqzrDP+PH6 zXIQI*2g)hxf+Ix5YCGZ0MVBmIXrYj8_nTJMi>5grMh>Ur_{QZGUJUR-<^`!`_P%j3 zjG+SQIW^jLrpp{)DdZF07)n%NaMQY>!zFsrm=@&dUgVDJW*nq%d@cR)83h<}#lDlB=N}Dn z@-4s0uHV?udHLdb6U~jZyHf+1gJ*uU6W8+f&DXf=12h+t_^3f=njN3EVQ~F=e%S0n zzCoC`&5i!^*4NR7K0I^z=oxgpWmvY%;#nqiEfSL0Up4Q9L{oHo5ZNSxN@yqz?8Ee~-1D&f+D<^qk0} z9Odg`z6f%o)!+0mbp7Hgk?tHS3nrXWRph|BS>?nF~&`#>xRa zh(cS>Y@(X{3mk=r{`Z~{z2nOQPBuRCIv-TwH`t=LsqdtBeEMSf9?%J+M=1&&>97MP zs_=953UN&^MTo#*mhdkhyFR|AwDcg9#QcZ#tw;o?ABpX6)1zl{dC<|EWhm(r{&^*;G{; zbZLxfyC$UG^rQ#N{8l4`3iYk}ePP=6y7U3+WORs0D*#-tb*k)|RzE)tz7@rA%y(LF z7(ont9~&1KwG42ba4U+!Bi}Ny#j$(>zEv3)}8!!|1V!RPvVe z_t|X~_OB(Mxhi%?$Z$kK?JO6+3+Vng%#e!{f`eV=rpRq6s>z5ppJT2Ina_#rNQhDt zu20eR1@wMUpGG((e}Jep!yTZ8I5~G4EESI$2xw+n*Bf|4En~CCLb_rHX?iGk9W#y; zUnNYWdWMd#h3&d7IZ3}44d506^a$;!G}YTPAQeyrZ8ipizuraKmEU` z;{M=@ihN_YISiLMi;+M1Y2$TCAewPgQC$ieWyVF=!PO&CaxvfTiuV4p3r&cQO&2Sb zGm4-7IC<3SQNMbLQ`fLqZQhCIVapQLIKAFF=hdWDNk((+98%` z>j+|5H*@Xc!_cL`6~^2H17aBFq04r$x99&}O5H?D{A?Ow6S6jQ3R$7hmi^d}%W%Jf z4o-X(JAaF_Dc{fGAnhx@W^p2-B9Y9!YB`z19smA zse+oyD!)INuxp9q_uP!7yl;>bTt)Mu3{aVeG}+FR?X-GrC%LfktR0z! zUrqe-Yk&NF$#0PM?_AxGw&SqM^Qa7tCKPQtG-Ku}{WbmqcX+01k|VsVBEY&rvJU;& zN=H4>U)Q5JBsNGKQvS4`ahp7Y2Jl31>*<@KzKZ{ta{t)>1XvUtTUFtHTpXHd3@TsC zHD2J*M?i3l%==9i`j`BDOEY^8+F$7iWMNiRfj;>4C);4mnRTC}8s+aPtmnpk#19A9 z?%P>2^|P3V(-qsberb?VGLf%7DFO82_7CONPpIF*9F0O{clh@h!oFLfW&rCiFHsXe zn&HrIFBP)c5Ir%d`qCbqiop#uqgax&Wuc>kK9#lK>W&FqPn`p*xN*I2M1;xFq(Y+&TV;q^(2da(xr7n8aFYY2o2fRC zhdrugtpwl5r0*&O4$&c^=2FD@48KGTH`;ZGc`=YS(bzwZ0oY_i+2 z;VBjvfej4AL)jXLiN*@0!bl9FhVt-nVfpOinL3fu?A68uGN{cy#MmKDS&W$jZ}xW=fs|l;qSguh$%uXi!2$PK zgzfb?ysrOnuUbBFXW%lDQqi1d^A15R258SYH=I?52>#F|PnGjy zpoAzND#~<~ihFJBCw@e9bZ-(T;o#H|yQDuLY)TVB-2FLhr3swKNv@g(FTUd5O35zC zU7>~P{dpF$oRO%`)*J~%it%zqGALBo5=n?kJ|n5=#=77Bb7~##+cW8y-QO;GNcT7f z>zgv7w5|_o0?eNb!z&-&8$@&9*Y8ovLPcKoN}>%g$wfKbMoJl-VeB)y zHGWEGjTg)K76~rHJqG@MBF<(JeS~OUM}!?|?_p@e#)n9X*0br|zsq_3hR2fPi?!=I z=s@SKc)8c(S4D*qoRio|kmhtl{VNft)s~(p>{chd8kj-Hn^u}V^iiY@n(cp*T4IKW zZ5ui7=|yZ3t(y3r-P{1H_f+xCW$veeZF;?7Wh*WMD#ie;>N472Ue+$tF60tlY7YbD zEhu@U<1bM!s zIj47*0|LHPvHuWGK_A>wXCTqk_KWVc3(9CdHwL?HrtqWHN_W9Da>UYP)JB_e70Opd zw?+d%7`uHQHvL_w9on+fcruZtBB$K^**@G8^5EZp83>_BwCV-0h8$n>pLRjtPPJJL zL8AhGT`2cYnpP8e@i|^y6Qh?}SXfO83{lbm0C8IW?cG`NBgdxlLXce*qkX28D1V7A z5N~X%%ujk(eC!bGW|I&DfFa?X_Cc=IrO^ac(}sE-=?M0PS?7d})DiAV8|>|V+H;)H zv}Z8k59)JwBQ4z-)Sn8bbRK0(m=OdTy4tkO?3Wn{J?1`@^C4+JF&0~Zxqh!{^EK-L zrNKB>TsfqT`1cGpY+FV0B%d8w(2A*@3D66dWQhTsjwKVm?2nn3QnZwSZ6yC8s(HM1 zV)ii;8Y|+3riCz!VMG0(gD=}mC4X}_DK$yL15QCJMCt7{Vv>-yIz6A0o<; zO!z4=ODMz;a(Ej>8%H4vJltyC-aM(G{M8 z!LW=U+XPm>Jlgb(6r|6Q?ku0?xa>nfA*(+AU9^SVlXS3q`Hfq`Twak5nneW?)*hJH zYy4=No^ke>wNax&fuT=oIajQueB*z zGW{GnN~xaz@S7mYe~9?nNS{aUiXP7-g>(2(E!hqOyrs4GUKqz8y+mRc^xMCe#*YD2iajxto!Nd! zXEdv{@e9?9fd2QJTok5|oC^OdL5mX@xLvNPT}5n&KK6O%zT67RNjWRsf1|%LhJz|* z*Cu-YHO%BJ~Hh=&q4?=0Tnjtv1~i4N?0=gn{etE1K%m4PyJ8EY~5MM8h0M zR8gw5FutRS{S>2IXuNv%E}rvjw3%9Zrs$S%gL$7TmUvepH24bb)4DJQx(l^MgFH^e zNs|V>1jwtCVeO4vPKFAHV`Z~u>bN2PDi6emkk+^6f8h%UX}>` zxnQ(m*SS=t{sYN=mA#r$1K*E|1fz@W zAWnZW_z_zwW^_W$#FUbQ0;A8s2&f=hk@=QKFm#Z;3EXC^#(Y^%^UPJCF6;g#P(Y`t z7h<=%yg(jb>neON%~+y|C%v0~m+nCFP2|J&aE8EjJ%?1~*2ESAPne&+e?#mkXlJF~ zd5GFpi5qCqVyvceK0n)gI}J|ku}*F$tX+jV=VJsnC+>5HKhdm&aES=qL*MrvUfXsK)IC*c3

    vV%oo?TWJ3-to>&3QU%4(_^-W6E^wXu zD5l63!f4_p=G(>w^5d;%}QI`k#UApoGe+-j!Y|70V@Q1jq>sVy0(f%@O zcLKU3U+m*KU0MDynfxUFQnyokweGr|+IeCF zNWlS3wUlsK)m z-6hEq6w56}^#p$2?l{-ohf$*mZni)_Q6&ZKy_d*%g;UMkZs@a^%b-!B{$UoP907ve z!Zr))L+lGcIEw}fAc#~Zjf7M5hZy;dG5aH0aVskUDpv|T8rXDnzVEOmKbq?Vyy9`D#%q@mBt-*vT#B%?hWHB@R4H==X1sQPg1nvX z$4~|*RRZOqrV^rwP5rLcM$Q{FSVG$oeO9jxX+|PBTL+s{|0QQT`SI=}9 zvLC62<-Hj&mv=GTld6P0nI8k0503)4d2wwRhki7hx6H~+S+V|aKh_3*NmK+_ zzP;A8A<_c-j~5i77INzz8f$Rv590Edt7SQQ?yq&JN&L-cIFEb?_QChK(GMI;6_A=M zZ4Y$=-;}uP%BW~0gC73S8B62AO1HH*CJuRuP8NaQrMWSV^s-|fiyjD?`E@~W=|0^^ z>X(sw2ug+vfb)xF zRv1jND;*&%<;y?2wHu6kP2%~aHkcSg&Fgt)_;aEYLf0%iHc19~m_Hzg1$y>9q?Wll+j<873)=a)KptoZkkbz4WY6W2x|}EDZN!kLU~({{0KJ zGBD9G;5r$yNV4(PeCQFJ)-<$Cfc%WdFT>1C7Dau3H|sE`yK%S5kN%lUkCj#><5r1D z?c=dbLP5tpv!~GYSYrWi#g7n?^4|dp7L=WNKrVedr)-HC9}19SQ~8ihQw8C^_U5!6 z5r4UOKlzs;p%166F!RTJ9D?EALhUAfL_+a>6e?XO4rgO7F5QeDJE#u6?T0*&*)D4JmPFBx2-K~qu8nU*cjE~jAPkM z7b=ZI(bvv873F!T>LmTz6M$D|I@V5oWf>cCmfG`FjhdLcvs5)?3DJ^Ou|-_DPq^%x#&H<%(r z(^GsWYkl%uvxyAj738e`067gKzkyjRLuOe0vTxMJk%CF6Idy7)qOnr%lf4L?vz1ch zzwbxybtumAh*4t(sv(u}ND0tvv>Cj}FYdPaOXs0E4xR7Un9ni=;g?yrrQ&fAbK@+( zr8kAlZUgK!nnzUz_7;iLRHXkEiB~+J_Kb$GbQ(KJw;X9t{2^#~TZwiLZ^3v;CSq@V zxzONXy?s>aru)c_@>fWAP$>CC$;&vP-+%T}ipGw3s}iPYr4wcG(PR3OS%|CAfo7)b zO)XJ*L;Sa)-z=*;7)^^~2wzuD2!WYts_yem`zOG|_z@I**X_TC;qtI&z-mY-@w+nS zi#YqX$P*d9nfO|rt$>3_cvrPsM;PYJ3Wv*NR9ivEAilwwjyH5YL>E%gP}r7pkN&P- zt>zwQc)AJksPv=APQI7wcAow=6Su2vtANPuB+rOWCJdFyHWEQ@Z$BsQ<5gxD232X#R97QGF!1kDy_IAIERTCw6s@2<1W-O=;MlS&R^kI)~k1C{K^KuTC)xZ#SB4_aE!i{zew6+!+ z>6O_KqUB>5p2XNj>LfZqFB`<{+WMyIyenCwlJnrhP_U6;m4-aF2bH&#>qE_mCy=Y< ze6Z5(;LGYr|JET$0`-bsXg{a3Pbx$;Kzd6ZzBP#WI5NSHya>^laByH!E#zmAL(7Rl zSVLgx_jDu@>STsdwkM*v(R!cRwi5lshVy)8pVKVK)VXnmrHzBLWLHgoHj|k7=H|IY z#zz#fVpt2c%`wGG$Kjj9$KuU@1B8qtM(WgEIsYQlZ?tYfTR@lFyS^B=72D3x*51Mu zgJuwm^q<{B@Z#WuYrq|?Y(5wxOkuCL0r^7y=yX(`zS(2Cb&SIvl9cT50jNyS51?pyvs9vEhcHu1#No3Jzx)&(T!nfyELb9ZvH&r) z!sZ7PvTFsnf=!*4k0`{?9#5R2yMJU_1wxwg)`asIwNd)FUS9@-7cYDJsf-K>RO$U$ z5XP6MqM@Q9w>|XN)(?eH*xMs_ND@yrq|QH5me@Q0pr9}Z5wd6#CsI2 zB#giEf>NLA=O}tWu1+X>KVZXMU*5w9zW#K-d=n8|`*|xMscNx7=JZ~;d#)x%`g(7_ zxpQj}r|4CE;hIlYT&3E0v(GqPxHJ&rUM7C1F;QvCTbe`6{hMU9h9JZGy;zDIsr#?C zuj$$-yir5ccDdfA0&obbpg|B@a?VnT`5qATL3}Qz%+jiy+<3&TmmdUqXBu zp?IwHlW;_T>p^Hk6%q;cX7UE2u6ry6m$j}KLdLw!>mvezEH{3^H#tRow^-S_h2$#u z$?SFD^HCI|tI;k_dMV)FSjV;Ig4%RJUdAsFjOg6!W23Pf8^D&LS>ye>TdJfKuXz~b z74Ttf>N#owJ!|;*i$#<4A*+)4;85+043VMRr4mNTf&vZyLsY;Wr3pSi2b|taUf*hk zbj+U>=h>=@?^=5uFU6Zrm>|gmRbhoBh`s)^?Z;Ig+JTd4i;V`DHYHbk4mv|Wr_tkM zDy-@`rmcj9xnOGf?qFYSRAx?jN3sVt`2=`xG zGj-f@__*<>q?mJ}+ixcOBw{GZ5z?UjuKPxqA?rgxN$eQh`$seDOfg05mB;)v4|Z(i z*>5&RtpUR&*b?V*a{b3(to~n7ah&FC>pdC|iNG=Un_K`l_Py8UG|Deb*J!l_p3&8Z zEVi`k4?5x3RicPN>F|&k^^OKleRCwO(0gRlL$zRD(!j{Y*g+P9j!T5|Rlde56#MLJ&MAt z8^tj1vz`m3HYv5Lt^X?cL{ryK4@{lF1xl_sUjm@#=&#Nz-Q!w*I7=gS&|r4|Y{eR_ zMfxI~Z9&P-i}E$OrI4RKh_tGOiTXwxn)c~lA-dB9s-}a$J@|4Y(D$L$YY1C^SUt_b zH@^*aw!AD}(U9^?b?U_Rm57@RH}ft}LA5luE%NhF*C^Rod zwkNhypKhNawRsI|s z`|(e$uB7{}aDc>3FPG2O@ViX`bVfXLsCsZO(ZK z#_re5R?24GMusMspg_@FHUhG^efOq-luvl@DS5|sG-!O`bC{Zbg>W6Ojk-vijU zsGj?tQd5>q?w7ZfA>n&2j5lG)!bvf5H`LIP-7K7qADvRgB+sr@Z8M^faktD#rbBIW z%^wLyP&>;xZT7EFD#p0`TkUQVBPW&T-TY}@iCLVRx>)1E827@9^N7gKb{u&;gYd=UP8)-k6nEQg)y&oMff ztjodHw>krz!^k`x7vg+xAS1ig8F8OlCb`OvbLA%xHQb(N^*W?5b8KKd;Jo@eKnA|K z|D-V6kU48fd-#S#(m zQd>9opP|}u2scu^P_btOv7_jq4H@6F_+;USP4GecQ0jE$SJg2_$`LFc0>cv?m zTQCocFg6u^`Rks6E0bA{y`(@$|Ae}_Va~AtyT#ySq|wH(`EgS0D>AVa$$pdgtz8+< zhdUZ&mZq@k1@#_{@!QfEg04t1T#1^(Cd^DSY>98xCgj0((qR+7LqKwlmECR|+PLDZ z&x8z}(QyVFvhWMUI8xn#M^=lH_Wmxtc@c7DmDPwEG3}1`Gf_b!7T1WZ1)$ zV~(rM9oSMRojZGrxojQnxmaHM<*IpfoG!Ki4B~e(4cW!}jbb3rGk6s9a$s~p5mIJE z(s*kgViPpPtInZKjz9lrD(G($<&{$Qn~f&fNLQa_$Q2$sRN%$-!pR6*PQ*qsp4t_x z`+C%Lo7Ax1tkCFVn z52}2EfXVD@68hGpgxsv*uIOU1W7Zr#Q4esHJX=i)yY77+GNy4u+Qv9W#QU+GiLYFc z5Ra^0e2;$H;&sfhtjpt1fy*IejVN^bdIE1Hw>ti=#5WPZH`zp2_PV=HK}a#S}*xA3N}&#dx-)!#xMDBkH2f54QfGzSS2r5QZrfZ)h9ojZ3^wj2Y1i9pv;4tDP&uiq65KyJJZ^vak)W@vD((FxQ8r%>Y;sjI=h@14=4Bwla( z5xLT40{@!ANos<3Z^c9AJbwkXni=$8+)!2tI=FhtP$7>?vv4H-Ma*q&*{U_iK>dSg zfY3;Z95iFqVXA4xIG;t*`Ro&eA}OYooQD?Prv|h(I>y8W-^v43eVll;mrS7E$yQhm zYfHWNR-WHJ;olP*RmmLDXS7f2knIlcs$>YBw>`g~>iM}Q_mkwgMj6@!;Lf$0hXjI8u2V`JQ4K=uk>HQi0ZL*)Zy3S4XBU3xZc@ot-4vpb77w0~@No$OM|pJViRN zqXP4&ErQf{`ttFqijmY-BQ7D@QujR(iS1^!TH(i~9Qq`9xsk28ht{?)(q-C!2InRE+J=b#qh8`Puq zj3-R-<|h{;Y!}^2f0**kmKrQwjj=oYHVgnDVNE(P9VN7Rf~skxbeoTjCPVD=ieBtQ z4t=mfNkK?L{5us;vahl4F+94l)@}^K;R*39X2EuayjsSIj5;K*&WBaFfcHcGKJv^* zpZcFEDG0Wo%*Bx9#y4UKF_>tNLB%BYOXJCf`R1RwZfrJx<%WA?+QD;Z`^Jr&B%p!O zfqGEPtXoFYz!wtNlNSL$vDU~|_;HxTlfZ5CeB1BCzq)>c+OTa6`t&c0BRk1_P#k3q zkjCF)n8)^4i5I6jtMN+hL_oTItE*&$(vPn{s^i(O>-8({TmioO{^WmK{h-i6`4VSM z+RuNzXm?wtT+z2Tq2TC=lV)8eO6j|Nb z{M-JWijoaF!$zV#2Z1$hfzP5RzQOdmQO`P*tjUfkP+P5KW^*gq}RMcM2ELknqh_Mjzu}xKo^p?I82VWOb)~F%dweHKW*ZTJoxHB}vuNogIHFU`5dBiqHo#@*c?w#>v)JUuCnm&K5qq|4g+rHn((f3zD z{jk%zg7B#HzKT^s1%`_q(_209NYolWLFUF0-QL#BpDuD#CGs9&qfsjX4V#>%rT6Mi zj#DR5sgH#7sK`SXEMsCXjH_0>$VP{n?LtK4Bsb9saL&9|MYCF~)OwED6ubHVLLr=kgRwnga4w zGb^$!QCFuOfVpz1?C{FxGJN`qLZcf#Pk95y+w_k^#l|uTF^e^_zy`Rma&FZuH$Hxm zm7!hx{vFopC`tXZF?1?}@0)z|Y`qA#i{IPCC1XBKLF$KausPXn!Z-RRv{-2dgwr*N z&>xGWwwJe1N-m3)g3SPC0r zYP-rR&l-q>=vXW_IlT~}{f|@S;hTQ)FETMzn*`vWavASM;cc&8Ong|iz#;iuDa^!} z46ksVs3igcx4r*BES|Am>%7OEht_n{7qGHdKqf}u-|6)s@dD%Gp1Vxc(8XPR zEKq@UGW#3Kxe!Xoq~6%i3(DVz{W=Cw0#J`>%^bWOggy0{1TK=>kS!QfJuGWiLA;jP z0GH-2y_Jb9t|0U~8MDsSAmx|hgM_+y5l+9P?wFGtcerh82I zR^d|Z84lc{)KUd9S|9XgoAl$g;jN0JnFRg7Tv>w99ZSx4XT4 z?^4^E#C&x-abM~u%_gK{4~(iT{Zfh0p^NNhZ)V3|B*41x*9%zz{5I(e&vWqoOxX5h?!cVv4y>eJpo zq-15Tf@?Ot=g-a_l)gR6;%Z`}tWcr4+-9+N>$Tqv{^wvs!*TZP7@rSqHjLR`x3hGT zPp>Bt2#3&&;_@B*2r-IIK1Bev01#OD>AUt+9ZL4Nvzu+6gc4N5erq!~(0+wB)(`5g zJ;;sOjV%`(TCkj22ALoweeQvZ!oGmlUBupd)6H^+3Gz47}W~G$~G&G1=@Z!6jv4Jnczxl4-7tvr=ejtSeJUYhg;tJw_ zC_~P!v=|%9^Pzc6&ZL|wKzbg``M)V*l0KK?b<_;wd~HiQ->=#4EUdDMTb8{w%pU9* zrAQ9uJMGnu9N-}Rm}w8=Xds-Y^S3Nhl@?y0=Pd=*fu4CU@a@CHi|2Zjcw5i9?bwtO z+=1s^bXfoQ&iwECp6scLe^-BvE(ObOeK;(L2&G6RTKx5I{dL@>WZ^Mn4R6IwNxReb z7_`{rMr*8#D1m1vrmn$4^8$?Qj(nqx)*q}%otD_8P7J9Nkoo%iGDE7kZ-1a0zHy}U z)q>FsmBiP@ag4mW*X1gz=@X_Q9UAuXL;(oM7@40&9~%}pP5rb#$2Z@#b@Bkz*LdK% zgmOrBj%0VuaLoIR;vA{}Oq?-r(d@|_UADmg2VYE}+#&u&G-6(#YqekvJbpD8_XU(u zGw^95Cdo0bI;^YYs%N0bX2xSWKm=GO6|3qd?%i5E{M@56xP%XZ{iQI{+juswdVq`) zg^(RXWaIch*fDuMi_JYG)}^bN8`AvtK877pq&0ZbDCD$feonwYp&b@)Y%N%ziFF}airu^i9^tqZ9 zOG@jlUoxlo))dvzQB#T8ny8bo`oKp2vXxT1W-8wDdZ1Ra>Eo#gdp0fnm6>}d%tg~8Iu#stq&l$XJb?4>`Pb~iz2Z;R5 zPEG_F=$2sVle(UQN*}TEX$X6hkKf7!jHF;PVIihrSeYiZI#|_g5i9q|b-*qDN(oMm zr{1lJa3t7p9;Ss-~tSLDIRHftBtkuu*^%}5mCD*e1+4&s|BN^?iqgJac zhc}p|M8VXqd#b)kufv%MmnCuy2@9!PtGDAWVhJcB zY|D_=&cV!p@Bq=_BK5g~NyDhiE)z6FL!<`%)`2 zWB+a)yng%)S%jECmUZhhic}%S`fFp*u^urb;eAX!QJInjerny1`%Q3!Vv(yLfg#AH zx>|!Z5OyXrHdME23YtZ;pYvZH?5#74#8*EG5lu5fj1+@_Q-K=wFkx%)%IE&e@95m! zYnaSzw} zzFWf(jv0Nte>>6Lp+rj8F+hl*%Ism)!T)74E;v1IiH&S+Z?AI2K+;d2-}R{_po-Fe z({^eqDa1%&R~}x52rIGd=xUAc+kJ73L=6{YZRAmH)oPLWw3mD4_W|^{rMW5<{YsJA z)5@PVw;0oVEQCO@ROXj63yH1mx{>Y3tk{psQT%EoH&06a#-MJ!gV_Z-CQ64L!&Y}K z!usKi3Kd5A>rL~n>$QIB2Yt}#=p^~|X_S!hKpc# ztFV7qp`ho6B%I^&90>`r_^qh=YM^UTjI@@k`R2U^ToypdERByA+8dkM%0($;p;~s7 zMM!~C1nPq&CGT8QMxq!5w)R=5a_5PPsjatKeZ#5NZeJl?8AS|_r-_R!fxxs>70DF zivo6FEB2wA1?UY#ge66bYrk80>d6Lj^!JBItiU&68$bNtm8`9-j-Rvd^142q+J>uy z4dR)+gn>}7PRHf1o!rZ7B}cCkVF6BDVg*8C1$<%!Vq$z0)Ud)6WZ5}_q#|xcc}K0Z z&1%jLV{4zj+56D{D+n{n16paH)tn#3*028w|II*^og+yq`rks&FX1ND=VZk94iLE5 zek*zy)BLl>9ncU)&&!wZVgb&Th-Pl&T^piewx9go`Yau5#Q&rG9UEJQ0w^R*83Ca%2sCe9@W zf-j7gr3L=2n%??mxj&1&hUMJl7Su~Ezr4R>wRmMYW{N*&h$@TFwJSEZN82HX~X3LW;Hh?MtM_+DhzNnXq?9Fxi zq+0P!m`0#GpMXAhuag%^#iSa0wm#I*nqK2G*4b10dM3+SrC=2-htCNtN#>$4zpZYy z8t+h#H~#0J%Ma(}Dvv_Ig%4e{HWxnHaB&pnt?vbID9`0E02pa2(>Lv@7UK5QXILZt z;{Q^Dt*afe13WNgWv1#N<}4S^o8Gx;DMtO9N?btlgexfT9M8BEVANcSR`GeF@)nG| zk$eihkdvpy;7H#>9Neb0tx_M~x=RS5UnIk@CHv+{Uuyoeef_$L`69HmDPlKqU*T?yiUZg#?5m#+!Yu)M1AW!h|liqJPCTnsVq(20K$v~k6x4$o&<*AvFtE~VsLY7Bi-om)e(-ju#MeI}*uV8Q)K7Bs`+ZpQKWoEG zR}&aKeSz~bWFLQz{OF8&?eg(eLVYLxRP&K1syh@o657^ePk-KcsH{++!(wMX*n=V!5`TP@r0Z>CC>j=wTL@)!*KmxXH&wIUg3KTm@4&Qd}4I0j+w&tL!F zXC{p=7t>rYVtuFv1;A**2dv$-;|BkoCD_#9*plVFPWf}^wQDdB%=+1YLk?)u+$J}W zgGYU0yZo4Mlc#=wceL(Vo?ez(x+>q!T7ZtMzC&ro zk@3qeG(Kj+38NNIL5!IgiS`ke+|KNj4xZnl3;Y%Ps`qmY>N><#trN{GXYG{fYbjgoW_F zKGH#(Ks6ZLvdPjSe03ldPfQN}sPB@CNsji-@eNqI(nJTdjKA0ROm(cRKlTa4jYzC1 zu6=Mn0VC$K!rzO0T6kMtUz)vM_+Y(XK3-uWepv<>R)eeB;%=QhQ4mm`LCGqe3gBH= zJj3Fyaw^^a~OGyYOKqPb+W_QLG7O6TUL)Cpk+XJa+*q zDg6Ie8~Ye?FIZpCb_vgRaRo-HK9w)4-1kBIpY5o-M<6t?6UiQ`@QZjfi3gegYRI#7 z@;XpGR^?uh3He+2!cXu?k^c-0SoNOo(vrH=y_^D3_+J79H?~{;2GtWzq9>C z-tQrIi%Is+QB>$M9uA^E{7y}9@1?35Y2Ty$4_B;#`#f>S&)u#(2LmCozAEAYfbUk( z^Mj%h9GCU^0DwLC-li(RVE#|t&#hZ<61eFd%=`jgcmd8{!J98#2Vf?!;|nkbwj2XT zpWb8xiEmBs|ECIW8wF3D-dz2^CBGM8VjLAf_#Ef;;g9>XC0&<4Ga1Xhq0f(Z76adR z9|5{@hI`@9Ka#sgVF}q&cbQ*5HuM3(`Q*>N+^%@X>ZvN(WiUSD=lALt-k5sl*B3eP z)5N=1@Xgs#7toIS3Yf#abHWz*|4#tX0WSXbw4XieXV3fDEB@?NfA;D>d(EHy$e+E| z&tCgyuk*7X_p_hyYXkn&1I)ORykq@sP`ItMe6!?Ps0s2kr7tgnB3(X3=c)z-nz=H` zBMPBtv3B;XPZY2%=;4_`vS6)Vtw~=k0I&YasuAma!H*Zdneo{GJX`mFGaqW_gC(yO zdv)1+Fx%DS2BtTIF^@I>FeeOL4Lg7C%1|&SH7(fx>FxiZhakse>g{56Xu57Zkt4hW ziYw9z7NhP>){WNA2|f>!P4`ztQ1JCU*=S!mjk8oTc()DyafH*tc&MX zK7o8(=>NBaLC3Z@h`-T)xN3WPk^_hTX_jjdiyc_r-Rhh*JI+DyX_o0d$0!H(h?9qE z*M#BNQH6bmh@&7rBeBFV-Vlv%M8`QSid+cK2&|cTDXA6E1sM!zk^=GZ7!yvgO-;CV z6T-a4no<&92Fnn9Ku&RDZb5unei29%QyXm07FR(c$nPboMX-!m#{vowSjNgv%1TWx zfl0CDmzETimM|cu!I)sl3P-du5e^=lo9p1Sd1Z+?rHJXk%silD^AdBQe4c`$)D*=2 bf2`5Y3Non(=D(cGVz3tgQCkOkOV9uS<@yuT diff --git a/tests/testthat/_snaps/setup.md b/tests/testthat/_snaps/setup.md index 3ede34f5e..f9fedb8ed 100644 --- a/tests/testthat/_snaps/setup.md +++ b/tests/testthat/_snaps/setup.md @@ -5,12 +5,13 @@ class(model_custom_lm_mixed) <- "whatever" explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Message + Message Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain(). Consistency checks between model and data is therefore disabled. - Error - You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain(). + Condition + Error in `get_predict_model()`: + ! You passed a model to explain() which is not natively supported, and did not supply the 'predict_model' function to explain(). See ?shapr::explain or the vignette for more information on how to run shapr with custom models. # messages with missing detail in get_model_specs @@ -19,7 +20,7 @@ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed, approach = "independence", prediction_zero = p0, predict_model = custom_predict_model, get_model_specs = NA, n_batches = 1, timing = FALSE) - Message + Message Note: You passed a model to explain() which is not natively supported, and did not supply a 'get_model_specs' function to explain(). Consistency checks between model and data is therefore disabled. @@ -38,7 +39,7 @@ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed, approach = "independence", prediction_zero = p0, predict_model = custom_predict_model, get_model_specs = custom_get_model_specs_no_lab, n_batches = 1, timing = FALSE) - Message + Message Note: Feature names extracted from the model contains NA. Consistency checks between model and data is therefore disabled. @@ -57,7 +58,7 @@ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed, approach = "independence", prediction_zero = p0, predict_model = custom_predict_model, get_model_specs = custom_gms_no_classes, n_batches = 1, timing = FALSE) - Message + Message Note: Feature classes extracted from the model contains NA. Assuming feature classes from the data are correct. @@ -77,7 +78,7 @@ explain(model = model_custom_lm_mixed, x_train = x_train_mixed, x_explain = x_explain_mixed, approach = "independence", prediction_zero = p0, predict_model = custom_predict_model, get_model_specs = custom_gms_no_factor_levels, n_batches = 1, timing = FALSE) - Message + Message Note: Feature factor levels extracted from the model contains NA. Assuming feature factor levels from the data are correct. @@ -93,8 +94,9 @@ x_train_wrong_format <- c(a = 1, b = 2) explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_wrong_format, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_train should be a matrix or a data.frame/data.table. + Condition + Error in `get_data()`: + ! x_train should be a matrix or a data.frame/data.table. --- @@ -102,8 +104,9 @@ x_explain_wrong_format <- c(a = 1, b = 2) explain(model = model_lm_numeric, x_explain = x_explain_wrong_format, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_explain should be a matrix or a data.frame/data.table. + Condition + Error in `get_data()`: + ! x_explain should be a matrix or a data.frame/data.table. --- @@ -112,8 +115,9 @@ x_explain_wrong_format <- c(a = 3, b = 4) explain(model = model_lm_numeric, x_explain = x_explain_wrong_format, x_train = x_train_wrong_format, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_train should be a matrix or a data.frame/data.table. + Condition + Error in `get_data()`: + ! x_train should be a matrix or a data.frame/data.table. x_explain should be a matrix or a data.frame/data.table. --- @@ -123,8 +127,9 @@ names(x_train_no_column_names) <- NULL explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_no_column_names, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_train misses column names. + Condition + Error in `get_data()`: + ! x_train misses column names. --- @@ -134,8 +139,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_no_column_names, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_explain misses column names. + Condition + Error in `get_data()`: + ! x_explain misses column names. --- @@ -146,16 +152,18 @@ explain(model = model_lm_numeric, x_explain = x_explain_no_column_names, x_train = x_train_no_column_names, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - x_explain misses column names. + Condition + Error in `get_data()`: + ! x_explain misses column names. # erroneous input: `model` Code explain(x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - argument "model" is missing, with no default + Condition + Error in `explain()`: + ! argument "model" is missing, with no default # erroneous input: `approach` @@ -164,10 +172,11 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = approach_non_character, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - `approach` must be one of the following: + Condition + Error in `check_approach()`: + ! `approach` must be one of the following: categorical, copula, ctree, empirical, gaussian, independence, timeseries - or a vector of length equal to the number of features ( 5 ) with only the above strings. + or a vector of length one less than the number of features ( 4 ), with only the above strings. --- @@ -176,10 +185,11 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = approach_incorrect_length, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - `approach` must be one of the following: + Condition + Error in `check_approach()`: + ! `approach` must be one of the following: categorical, copula, ctree, empirical, gaussian, independence, timeseries - or a vector of length equal to the number of features ( 5 ) with only the above strings. + or a vector of length one less than the number of features ( 4 ), with only the above strings. --- @@ -188,10 +198,11 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = approach_incorrect_character, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - `approach` must be one of the following: + Condition + Error in `check_approach()`: + ! `approach` must be one of the following: categorical, copula, ctree, empirical, gaussian, independence, timeseries - or a vector of length equal to the number of features ( 5 ) with only the above strings. + or a vector of length one less than the number of features ( 4 ), with only the above strings. # erroneous input: `prediction_zero` @@ -200,8 +211,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0_non_numeric_1, n_batches = 1, timing = FALSE) - Error - `prediction_zero` (bla) must be numeric and match the output size of the model (1). + Condition + Error in `get_parameters()`: + ! `prediction_zero` (bla) must be numeric and match the output size of the model (1). --- @@ -210,8 +222,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0_non_numeric_2, n_batches = 1, timing = FALSE) - Error - `prediction_zero` () must be numeric and match the output size of the model (1). + Condition + Error in `get_parameters()`: + ! `prediction_zero` () must be numeric and match the output size of the model (1). --- @@ -220,8 +233,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0_too_long, n_batches = 1, timing = FALSE) - Error - `prediction_zero` (1, 2) must be numeric and match the output size of the model (1). + Condition + Error in `get_parameters()`: + ! `prediction_zero` (1, 2) must be numeric and match the output size of the model (1). --- @@ -229,8 +243,9 @@ p0_is_NA <- as.numeric(NA) explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0_is_NA, n_batches = 1, timing = FALSE) - Error - `prediction_zero` (NA) must be numeric and match the output size of the model (1). + Condition + Error in `get_parameters()`: + ! `prediction_zero` (NA) must be numeric and match the output size of the model (1). # erroneous input: `n_combinations` @@ -239,8 +254,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_numeric_1, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -249,8 +265,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_numeric_2, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -259,8 +276,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_integer, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -269,8 +287,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_too_long, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -279,8 +298,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_is_NA, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -289,8 +309,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations_non_positive, n_batches = 1, timing = FALSE) - Error - `n_combinations` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_combinations` must be NULL or a single positive integer. --- @@ -299,8 +320,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, prediction_zero = p0, approach = "gaussian", n_combinations = n_combinations, n_batches = 1, timing = FALSE) - Error - `n_combinations` has to be greater than the number of features. + Condition + Error in `check_n_combinations()`: + ! `n_combinations` has to be greater than the number of features. --- @@ -310,8 +332,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, prediction_zero = p0, approach = "gaussian", group = groups, n_combinations = n_combinations, n_batches = 1, timing = FALSE) - Error - `n_combinations` has to be greater than the number of groups. + Condition + Error in `check_n_combinations()`: + ! `n_combinations` has to be greater than the number of groups. # erroneous input: `group` @@ -320,8 +343,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = group_non_list, n_batches = 1, timing = FALSE) - Error - `group` must be NULL or a list + Condition + Error in `get_parameters()`: + ! `group` must be NULL or a list --- @@ -330,8 +354,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = group_with_non_characters, n_batches = 1, timing = FALSE) - Error - All components of group should be a character. + Condition + Error in `check_groups()`: + ! All components of group should be a character. --- @@ -341,8 +366,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = group_with_non_data_features, n_batches = 1, timing = FALSE) - Error - The group feature(s) not_a_data_feature are not + Condition + Error in `check_groups()`: + ! The group feature(s) not_a_data_feature are not among the features in the data: Solar.R, Wind, Temp, Month, Day. Delete from group. --- @@ -353,8 +379,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = group_missing_data_features, n_batches = 1, timing = FALSE) - Error - The data feature(s) Wind do not + Condition + Error in `check_groups()`: + ! The data feature(s) Wind do not belong to one of the groups. Add to a group. --- @@ -365,8 +392,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = group_dup_data_features, n_batches = 1, timing = FALSE) - Error - Feature(s) Solar.R are found in more than one group or multiple times per group. + Condition + Error in `check_groups()`: + ! Feature(s) Solar.R are found in more than one group or multiple times per group. Make sure each feature is only represented in one group, and only once. --- @@ -376,8 +404,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, group = single_group, n_batches = 1, timing = FALSE) - Error - You have specified only a single group named A, containing the features: Solar.R, Wind, Temp, Month, Day. + Condition + Error in `check_groups()`: + ! You have specified only a single group named A, containing the features: Solar.R, Wind, Temp, Month, Day. The predictions must be decomposed in at least two groups to be meaningful. # erroneous input: `n_samples` @@ -387,8 +416,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_non_numeric_1, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. --- @@ -397,8 +427,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_non_numeric_2, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. --- @@ -407,8 +438,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_non_integer, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. --- @@ -417,8 +449,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_too_long, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. --- @@ -427,8 +460,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_is_NA, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. --- @@ -437,8 +471,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_samples = n_samples_non_positive, n_batches = 1, timing = FALSE) - Error - `n_samples` must be a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_samples` must be a single positive integer. # erroneous input: `n_batches` @@ -447,8 +482,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_non_numeric_1, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -457,8 +493,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_non_numeric_2, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -467,8 +504,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_non_integer, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -477,8 +515,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_too_long, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -487,8 +526,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_is_NA, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -497,8 +537,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_non_positive, timing = FALSE) - Error - `n_batches` must be NULL or a single positive integer. + Condition + Error in `get_parameters()`: + ! `n_batches` must be NULL or a single positive integer. --- @@ -508,8 +549,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_combinations = n_combinations, n_batches = n_batches_too_large, timing = FALSE) - Error - `n_batches` (11) must be smaller than the number feature combinations/`n_combinations` (10) + Condition + Error in `check_n_batches()`: + ! `n_batches` (11) must be smaller than the number of feature combinations/`n_combinations` (10) --- @@ -518,8 +560,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, n_batches = n_batches_too_large_2, timing = FALSE) - Error - `n_batches` (32) must be smaller than the number feature combinations/`n_combinations` (32) + Condition + Error in `check_n_batches()`: + ! `n_batches` (32) must be smaller than the number of feature combinations/`n_combinations` (32) # erroneous input: `seed` @@ -528,10 +571,11 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, seed = seed_not_integer_interpretable, n_batches = 1, timing = FALSE) - Warning + Condition + Warning in `set.seed()`: NAs introduced by coercion - Error - supplied seed is not a valid integer + Error in `set.seed()`: + ! supplied seed is not a valid integer # erroneous input: `keep_samp_for_vS` @@ -540,8 +584,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_non_logical_1, n_batches = 1, timing = FALSE) - Error - `keep_samp_for_vS` must be single logical. + Condition + Error in `get_parameters()`: + ! `keep_samp_for_vS` must be single logical. --- @@ -550,8 +595,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_non_logical_2, n_batches = 1, timing = FALSE) - Error - `keep_samp_for_vS` must be single logical. + Condition + Error in `get_parameters()`: + ! `keep_samp_for_vS` must be single logical. --- @@ -560,8 +606,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, keep_samp_for_vS = keep_samp_for_vS_too_long, n_batches = 1, timing = FALSE) - Error - `keep_samp_for_vS` must be single logical. + Condition + Error in `get_parameters()`: + ! `keep_samp_for_vS` must be single logical. # erroneous input: `predict_model` @@ -570,8 +617,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, predict_model = predict_model_nonfunction, n_batches = 1, timing = FALSE) - Error - `predict_model` must be NULL or a function. + Condition + Error in `get_predict_model()`: + ! `predict_model` must be NULL or a function. --- @@ -582,8 +630,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, predict_model = predict_model_non_num_output, n_batches = 1, timing = FALSE) - Error - The predict_model function of class `lm` does not return a numeric output of the desired length + Condition + Error in `test_predict_model()`: + ! The predict_model function of class `lm` does not return a numeric output of the desired length for single output models or a data.table of the correct dimensions for a multiple output model. See the 'Advanced usage' section of the vignette: @@ -600,8 +649,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, predict_model = predict_model_wrong_output_len, n_batches = 1, timing = FALSE) - Error - The predict_model function of class `lm` does not return a numeric output of the desired length + Condition + Error in `test_predict_model()`: + ! The predict_model function of class `lm` does not return a numeric output of the desired length for single output models or a data.table of the correct dimensions for a multiple output model. See the 'Advanced usage' section of the vignette: @@ -618,8 +668,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, predict_model = predict_model_invalid_argument, n_batches = 1, timing = FALSE) - Error - The predict_model function of class `lm` is invalid. + Condition + Error in `test_predict_model()`: + ! The predict_model function of class `lm` is invalid. See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models. @@ -635,8 +686,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, predict_model = predict_model_error, n_batches = 1, timing = FALSE) - Error - The predict_model function of class `lm` is invalid. + Condition + Error in `test_predict_model()`: + ! The predict_model function of class `lm` is invalid. See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models. @@ -650,8 +702,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, get_model_specs = get_model_specs_nonfunction, n_batches = 1, timing = FALSE) - Error - `get_model_specs` must be NULL, NA or a function. + Condition + Error in `get_feature_specs()`: + ! `get_model_specs` must be NULL, NA or a function. --- @@ -662,8 +715,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_not_list, n_batches = 1, timing = FALSE) - Error - The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". + Condition + Error in `get_feature_specs()`: + ! The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models and the required output format of get_model_specs. @@ -677,8 +731,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_too_long, n_batches = 1, timing = FALSE) - Error - The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". + Condition + Error in `get_feature_specs()`: + ! The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models and the required output format of get_model_specs. @@ -692,8 +747,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, get_model_specs = get_ms_output_wrong_names, n_batches = 1, timing = FALSE) - Error - The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". + Condition + Error in `get_feature_specs()`: + ! The `get_model_specs` function of class `lm` does not return a list of length 3 with elements "labels","classes","factor_levels". See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models and the required output format of get_model_specs. @@ -707,8 +763,9 @@ explain(model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, approach = "independence", prediction_zero = p0, get_model_specs = get_model_specs_error, n_batches = 1, timing = FALSE) - Error - The get_model_specs function of class `lm` is invalid. + Condition + Error in `get_feature_specs()`: + ! The get_model_specs function of class `lm` is invalid. See the 'Advanced usage' section of the vignette: vignette('understanding_shapr', package = 'shapr') for more information on running shapr with custom models. @@ -724,8 +781,9 @@ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed, approach = non_factor_approach_1, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - The following feature(s) are factor(s): Month_factor. + Condition + Error in `setup_approach.gaussian()`: + ! The following feature(s) are factor(s): Month_factor. approach = 'gaussian' does not support factor features. Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'. @@ -736,8 +794,9 @@ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed, approach = non_factor_approach_2, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - The following feature(s) are factor(s): Month_factor. + Condition + Error in `setup_approach.empirical()`: + ! The following feature(s) are factor(s): Month_factor. approach = 'empirical' does not support factor features. Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'. @@ -748,8 +807,9 @@ explain(model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_explain_mixed, approach = non_factor_approach_3, prediction_zero = p0, n_batches = 1, timing = FALSE) - Error - The following feature(s) are factor(s): Month_factor. + Condition + Error in `setup_approach.copula()`: + ! The following feature(s) are factor(s): Month_factor. approach = 'copula' does not support factor features. Please change approach to one of 'independence' (not recommended), 'ctree', 'categorical'. diff --git a/tests/testthat/test-output.R b/tests/testthat/test-output.R index 9cf0f7977..1cccf38c1 100644 --- a/tests/testthat/test-output.R +++ b/tests/testthat/test-output.R @@ -211,9 +211,9 @@ test_that("output_lm_numeric_comb1", { model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, - approach = c("gaussian", "empirical", "ctree", "independence", "empirical"), + approach = c("gaussian", "empirical", "ctree", "independence"), prediction_zero = p0, - n_batches = 1, + n_batches = 4, timing = FALSE ), "output_lm_numeric_comb1" @@ -226,9 +226,9 @@ test_that("output_lm_numeric_comb2", { model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, - approach = c("ctree", "copula", "independence", "copula", "empirical"), + approach = c("ctree", "copula", "independence", "copula"), prediction_zero = p0, - n_batches = 1, + n_batches = 3, timing = FALSE ), "output_lm_numeric_comb2" @@ -241,9 +241,9 @@ test_that("output_lm_numeric_comb3", { model = model_lm_numeric, x_explain = x_explain_numeric, x_train = x_train_numeric, - approach = c("independence", "empirical", "gaussian", "empirical", "gaussian"), + approach = c("independence", "empirical", "gaussian", "empirical"), prediction_zero = p0, - n_batches = 1, + n_batches = 3, timing = FALSE ), "output_lm_numeric_comb3" @@ -290,9 +290,9 @@ test_that("output_lm_mixed_comb", { model = model_lm_mixed, x_explain = x_explain_mixed, x_train = x_train_mixed, - approach = c("ctree", "independence", "ctree", "independence", "independence"), + approach = c("ctree", "independence", "ctree", "independence"), prediction_zero = p0, - n_batches = 1, + n_batches = 2, timing = FALSE ), "output_lm_mixed_comb" diff --git a/tests/testthat/test-setup.R b/tests/testthat/test-setup.R index d4137e3d6..6b7a2d4b7 100644 --- a/tests/testthat/test-setup.R +++ b/tests/testthat/test-setup.R @@ -1584,7 +1584,6 @@ test_that("different n_batches gives same/different shapley values for different timing = FALSE ) - # Difference in the objects (n_batches and related) expect_false(identical( explain.empirical_n_batches_5, @@ -1596,7 +1595,6 @@ test_that("different n_batches gives same/different shapley values for different explain.empirical_n_batches_10$shapley_values ) - # approach "ctree" is seed dependent explain.ctree_n_batches_5 <- explain( model = model_lm_numeric, @@ -1681,3 +1679,210 @@ test_that("gaussian approach use the user provided parameters", { gaussian.provided_cov_mat ) }) + +test_that("Shapr sets a valid default value for `n_batches`", { + # Shapr sets the default number of batches to be 10 for this dataset and the + # "ctree", "gaussian", and "copula" approaches. Thus, setting `n_combinations` + # to any value lower of equal to 10 causes the error. + any_number_equal_or_below_10 <- 8 + + # Before the bugfix, shapr:::check_n_batches() throws the error: + # Error in check_n_batches(internal) : + # `n_batches` (10) must be smaller than the number feature combinations/`n_combinations` (8) + # Bug only occures for "ctree", "gaussian", and "copula" as they are treated different in + # `get_default_n_batches()`, I am not certain why. Ask Martin about the logic behind that. + expect_no_error( + explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + n_samples = 2, # Low value for fast computations + approach = "gaussian", + prediction_zero = p0, + n_combinations = any_number_equal_or_below_10 + ) + ) +}) + +test_that("Error with to low `n_batches` compared to the number of unique approaches", { + # Expect to get the following error: + # `n_batches` (3) must be larger than the number of unique approaches in `approach` (4). + expect_error( + object = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + n_batches = 3, + timing = FALSE, + seed = 1)) + + # Except that shapr sets a valid `n_batches` and get no errors + expect_no_error( + object = explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + n_batches = NULL, + timing = FALSE, + seed = 1)) +}) + +test_that("the used number of batches mathces the provided `n_batches` for combined approaches", { + explanation_1 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "ctree", "ctree", "ctree"), + prediction_zero = p0, + n_batches = 2, + timing = FALSE, + seed = 1) + + # Check that the used number of batches corresponds with the provided `n_batches` + expect_equal(explanation_1$internal$parameters$n_batches, + length(explanation_1$internal$objects$S_batch)) + + explanation_2 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "ctree", "ctree", "ctree"), + prediction_zero = p0, + n_batches = 15, + timing = FALSE, + seed = 1) + + # Check that the used number of batches corresponds with the provided `n_batches` + expect_equal(explanation_2$internal$parameters$n_batches, + length(explanation_2$internal$objects$S_batch)) + + # Check for the default value for `n_batch` + explanation_3 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "ctree", "ctree", "ctree"), + prediction_zero = p0, + n_batches = NULL, + timing = FALSE, + seed = 1) + + # Check that the used number of batches corresponds with the `n_batches` + expect_equal(explanation_3$internal$parameters$n_batches, + length(explanation_3$internal$objects$S_batch)) +}) + +test_that("setting the seed for combined approaches works", { + # Check that setting the seed works for a combination of approaches + # Here `n_batches` is set to `4`, so one batch for each method, + # i.e., no randomness. + explanation_combined_1 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + + explanation_combined_2 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + + # Check that they are equal + expect_equal(explanation_combined_1, explanation_combined_2) + + # Here `n_batches` is set to `10`, so NOT one batch for each method, + # i.e., randomness in assigning the batches. + explanation_combined_3 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + + explanation_combined_4 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + + # Check that they are equal + expect_equal(explanation_combined_3, explanation_combined_4) +}) + +test_that("counting the number of unique approaches", { + # Test several combinations of combined approaches and check that the number of + # counted unique approaches is correct. + # Recall that the last approach is not counted in `n_unique_approaches` as + # we do not use it as we then condition on all features. + explanation_combined_1 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "gaussian", "copula"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + expect_equal(explanation_combined_1$internal$parameters$n_approaches, 4) + expect_equal(explanation_combined_1$internal$parameters$n_unique_approaches, 4) + + explanation_combined_2 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("empirical"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + expect_equal(explanation_combined_2$internal$parameters$n_approaches, 1) + expect_equal(explanation_combined_2$internal$parameters$n_unique_approaches, 1) + + explanation_combined_3 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("gaussian", "gaussian", "gaussian", "gaussian"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + expect_equal(explanation_combined_3$internal$parameters$n_approaches, 4) + expect_equal(explanation_combined_3$internal$parameters$n_unique_approaches, 1) + + explanation_combined_4 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "independence", "empirical"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + expect_equal(explanation_combined_4$internal$parameters$n_approaches, 4) + expect_equal(explanation_combined_4$internal$parameters$n_unique_approaches, 2) + + # Check that the last one is not counted + explanation_combined_5 <- explain( + model = model_lm_numeric, + x_explain = x_explain_numeric, + x_train = x_train_numeric, + approach = c("independence", "empirical", "independence", "empirical"), + prediction_zero = p0, + timing = FALSE, + seed = 1) + expect_equal(explanation_combined_5$internal$parameters$n_approaches, 4) + expect_equal(explanation_combined_5$internal$parameters$n_unique_approaches, 2) +}) diff --git a/vignettes/understanding_shapr.Rmd b/vignettes/understanding_shapr.Rmd index 32ffc3c7b..43d6e4bb3 100644 --- a/vignettes/understanding_shapr.Rmd +++ b/vignettes/understanding_shapr.Rmd @@ -809,31 +809,29 @@ print(explanation$shapley_values) In addition to letting the user select one of the five aforementioned approaches for estimating the conditional distribution of the data (i.e. `approach` equals either [`"gaussian"`](#gaussian), -[`"copula"`](#copula), [`"empirical"`](#empirical) or -[`"ctree"`](#ctree) or [`"categorical"`](#categorical)), the package +[`"copula"`](#copula), [`"empirical"`](#empirical), +[`"ctree"`](#ctree), [`"categorical"`](#categorical)) or `"timeseries"`, the package allows the user to combine the given approaches. To simplify the usage, the flexibility is restricted such that the same approach is used when conditioning on the same number of features. This is also in line @aas2019explaining [, Section 3.4]. This can be done by setting `approach` equal to a character vector, -where the length of the vector is equal to the number of features in the +where the length of the vector is one less than the number of features in the model. Consider a situation where you have trained a model that consists of 10 features, and you would like to use the `"empirical"` approach when you condition on 1-3 features, the `"copula"` approach when you condition on 4-5 features, and the `"gaussian"` approach when conditioning on 6 or more features. This can be applied by simply passing -`approach = c(rep("empirical", 3), rep("copula", 2), rep("gaussian", 5))`, +`approach = c(rep("empirical", 3), rep("copula", 2), rep("gaussian", 4))`, i.e. `approach[i]` determines which method to use when conditioning on -`i` features. +`i` features. Conditioning on all features needs no approach as that is given +by the complete prediction itself, and should thus not be part of the vector. The code below exemplifies this approach for a case where there are four features, using `"empirical", "copula"` and `"gaussian"` when -conditioning on respectively 1, 2 and 3-4 features. Note that it does -not matter what method that is specified when conditioning on all -features, as that equals the actual prediction regardless of the -specified approach. +conditioning on respectively 1, 2 and 3 features. ```{r} # Use the combined approach @@ -841,7 +839,7 @@ explanation_combined <- explain( model = model, x_explain = x_explain, x_train = x_train, - approach = c("empirical", "copula", "gaussian", "gaussian"), + approach = c("empirical", "copula", "gaussian"), prediction_zero = p0 ) # Plot the resulting explanations for observations 1 and 6, excluding @@ -849,8 +847,8 @@ explanation_combined <- explain( plot(explanation_combined, bar_plot_phi0 = FALSE, index_x_explain = c(1, 6)) ``` -As a second example using `"ctree"` for the first 3 features and -`"empirical"` for the last: +As a second example using `"ctree"` to conditin on 1 and 2 features, and +`"empirical"` when conditioning on 3 features: ```{r} # Use the combined approach @@ -858,7 +856,7 @@ explanation_combined <- explain( model = model, x_explain = x_explain, x_train = x_train, - approach = c("ctree", "ctree", "ctree", "empirical"), + approach = c("ctree", "ctree", "empirical"), prediction_zero = p0 ) ```