-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_visual_callbacks.py
151 lines (109 loc) · 4.74 KB
/
keras_visual_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Sourced code from https://github.com/chasingbob/keras-visuals
from keras.callbacks import Callback
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from sklearn.metrics import confusion_matrix
import itertools
import numpy as np
class AccLossPlotter(Callback):
"""Plot training Accuracy and Loss values on a Matplotlib graph.
The graph is updated by the 'on_epoch_end' event of the Keras Callback class
# Arguments
graphs: list with some or all of ('acc', 'loss')
save_graph: Save graph as an image on Keras Callback 'on_train_end' event
"""
def __init__(self, graphs=['acc', 'loss'], save_graph=False):
self.graphs = graphs
self.num_subplots = len(graphs)
self.save_graph = save_graph
def on_train_begin(self, logs={}):
self.acc = []
self.val_acc = []
self.loss = []
self.val_loss = []
self.epoch_count = 0
plt.ion()
plt.show()
def on_epoch_end(self, epoch, logs={}):
self.epoch_count += 1
self.val_acc.append(logs.get('val_acc'))
self.acc.append(logs.get('acc'))
self.loss.append(logs.get('loss'))
self.val_loss.append(logs.get('val_loss'))
epochs = [x for x in range(self.epoch_count)]
count_subplots = 0
if 'acc' in self.graphs:
count_subplots += 1
plt.subplot(self.num_subplots, 1, count_subplots)
plt.title('Accuracy')
#plt.axis([0,100,0,1])
plt.plot(epochs, self.val_acc, color='r')
plt.plot(epochs, self.acc, color='b')
plt.ylabel('accuracy')
red_patch = mpatches.Patch(color='red', label='Test')
blue_patch = mpatches.Patch(color='blue', label='Train')
plt.legend(handles=[red_patch, blue_patch], loc=4)
if 'loss' in self.graphs:
count_subplots += 1
plt.subplot(self.num_subplots, 1, count_subplots)
plt.title('Loss')
#plt.axis([0,100,0,5])
plt.plot(epochs, self.val_loss, color='r')
plt.plot(epochs, self.loss, color='b')
plt.ylabel('loss')
red_patch = mpatches.Patch(color='red', label='Test')
blue_patch = mpatches.Patch(color='blue', label='Train')
plt.legend(handles=[red_patch, blue_patch], loc=4)
plt.draw()
plt.pause(0.001)
def on_train_end(self, logs={}):
if self.save_graph:
plt.savefig('training_acc_loss.png')
class ConfusionMatrixPlotter(Callback):
"""Plot the confusion matrix on a graph and update after each epoch
# Arguments
X_val: The input values
Y_val: The expected output values
classes: The categories as a list of string names
normalize: True - normalize to [0,1], False - keep as is
cmap: Specify matplotlib colour map
title: Graph Title
"""
def __init__(self, X_val, Y_val, classes, normalize=False, cmap=plt.cm.Blues, title='Confusion Matrix'):
self.X_val = X_val
self.Y_val = Y_val
self.title = title
self.classes = classes
self.normalize = normalize
self.cmap = cmap
plt.ion()
#plt.show()
#plt.figure()
plt.title(self.title)
def on_train_begin(self, logs={}):
pass
def on_epoch_end(self, epoch, logs={}):
plt.clf()
pred = self.model.predict(self.X_val)
max_pred = np.argmax(pred, axis=1)
max_y = np.argmax(self.Y_val, axis=1)
cnf_mat = confusion_matrix(max_y, max_pred)
if self.normalize:
cnf_mat = cnf_mat.astype('float') / cnf_mat.sum(axis=1)[:, np.newaxis]
thresh = cnf_mat.max() / 2.
for i, j in itertools.product(range(cnf_mat.shape[0]), range(cnf_mat.shape[1])):
plt.text(j, i, cnf_mat[i, j],
horizontalalignment="center",
color="white" if cnf_mat[i, j] > thresh else "black")
plt.imshow(cnf_mat, interpolation='nearest', cmap=self.cmap)
# Labels
tick_marks = np.arange(len(self.classes))
plt.xticks(tick_marks, self.classes, rotation=45)
plt.yticks(tick_marks, self.classes)
plt.colorbar()
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
#plt.draw()
plt.savefig("Matrix.png", bbox_inches='tight')
plt.pause(0.001)