forked from OpenGVLab/LLaMA-Adapter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_generate.py
51 lines (39 loc) · 1.92 KB
/
image_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import llama
import torch
import numpy as np
@torch.inference_mode()
def image_generate(inputs, model: llama.LLaMA_adapter, pipe, prompt, cache_size, cache_t, cache_weight, knn=True, point_scale=5.):
embeddings = []
embeddings_weights = []
for input_type, (input, input_weight) in inputs.items():
if input_type in ['Image', 'Video']:
type = 'vision'
else:
type = input_type.lower()
embedding = model.image_bind({type : input}, prenorm=True)[1][type]
if type == 'point':
embedding = embedding / point_scale
embeddings.append(embedding)
embeddings_weights.append(input_weight)
embeddings_weights = [x/(sum(embeddings_weights)+1e-6) for x in embeddings_weights]
embedding = sum([embedding*embedding_weight for embedding, embedding_weight in zip(embeddings, embeddings_weights)])
if knn:
index = model.index
embedding_norm_scale = embedding.norm(dim=-1, keepdim=True)
embedding = embedding / embedding_norm_scale
embedding_ori = embedding
sims, indices = index.search(embedding.detach().cpu(), int(cache_size))
B = sims.shape[0]
prototypes = [index.reconstruct(x) for x in indices.reshape(-1, ).tolist()]
prototypes = np.vstack(prototypes).reshape(B, int(cache_size), -1) # [N, top_k, 1024]
sims = torch.tensor(sims, device='cuda')
prototypes = torch.tensor(prototypes, device='cuda')
sims = (sims * cache_t).softmax(dim=-1)
embedding = sims @ prototypes
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
embedding = (1-cache_weight) * embedding_ori + cache_weight * embedding
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
embedding = embedding_norm_scale*embedding
embedding = torch.squeeze(embedding,0)
image = pipe(prompt=prompt, image_embeds=embedding).images[0]
return image