-
Notifications
You must be signed in to change notification settings - Fork 357
/
Copy pathreduction.cu
312 lines (256 loc) · 9.91 KB
/
reduction.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name(s) of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unordered_map>
#include <vector>
#include <cuda_runtime.h>
#include <cutensor.h>
#define HANDLE_ERROR(x) \
{ const auto err = x; \
if( err != CUTENSOR_STATUS_SUCCESS ) \
{ printf("Error: %s\n", cutensorGetErrorString(err)); exit(-1); } \
};
#define HANDLE_CUDA_ERROR(x) \
{ const auto err = x; \
if( err != cudaSuccess ) \
{ printf("Error: %s\n", cudaGetErrorString(err)); exit(-1); } \
};
struct GPUTimer
{
GPUTimer()
{
cudaEventCreate(&start_);
cudaEventCreate(&stop_);
cudaEventRecord(start_, 0);
}
~GPUTimer()
{
cudaEventDestroy(start_);
cudaEventDestroy(stop_);
}
void start()
{
cudaEventRecord(start_, 0);
}
float seconds()
{
cudaEventRecord(stop_, 0);
cudaEventSynchronize(stop_);
float time;
cudaEventElapsedTime(&time, start_, stop_);
return time * 1e-3;
}
private:
cudaEvent_t start_, stop_;
};
int main()
{
typedef float floatTypeA;
typedef float floatTypeB;
typedef float floatTypeC;
typedef float floatTypeCompute;
cutensorDataType_t typeA = CUTENSOR_R_32F;
cutensorDataType_t typeC = CUTENSOR_R_32F;
const cutensorComputeDescriptor_t descCompute = CUTENSOR_COMPUTE_DESC_32F;
floatTypeCompute alpha = (floatTypeCompute)1.1f;
floatTypeCompute beta = (floatTypeCompute)0.f;
/**********************
* Computing (partial) reduction : C_{m,v} = alpha * A_{m,h,k,v} + beta * C_{m,v}
*********************/
std::vector<int32_t> modeA{'m','h','k','v'};
std::vector<int32_t> modeC{'m','v'};
int32_t nmodeA = modeA.size();
int32_t nmodeC = modeC.size();
std::unordered_map<int32_t, int64_t> extent;
extent['m'] = 196;
extent['v'] = 64;
extent['h'] = 256;
extent['k'] = 64;
std::vector<int64_t> extentC;
for (auto mode : modeC)
extentC.push_back(extent[mode]);
std::vector<int64_t> extentA;
for (auto mode : modeA)
extentA.push_back(extent[mode]);
/**********************
* Allocating data
*********************/
size_t elementsA = 1;
for (auto mode : modeA)
elementsA *= extent[mode];
size_t elementsC = 1;
for (auto mode : modeC)
elementsC *= extent[mode];
size_t sizeA = sizeof(floatTypeA) * elementsA;
size_t sizeC = sizeof(floatTypeC) * elementsC;
printf("Total memory: %.2f GiB\n",(sizeA + sizeC)/1024./1024./1024);
void *A_d, *C_d;
HANDLE_CUDA_ERROR(cudaMalloc((void**)&A_d, sizeA));
HANDLE_CUDA_ERROR(cudaMalloc((void**)&C_d, sizeC));
const uint32_t kAlignment = 256; // Alignment of the global-memory device pointers (bytes)
assert(uintptr_t(A_d) % kAlignment == 0);
assert(uintptr_t(C_d) % kAlignment == 0);
floatTypeA *A = (floatTypeA*) malloc(sizeof(floatTypeA) * elementsA);
floatTypeC *C = (floatTypeC*) malloc(sizeof(floatTypeC) * elementsC);
if (A == NULL || C == NULL)
{
printf("Error: Host allocation of A, B, or C.\n");
return -1;
}
/*******************
* Initialize data
*******************/
for (int64_t i = 0; i < elementsA; i++)
A[i] = (((float) rand())/RAND_MAX - 0.5)*100;
for (int64_t i = 0; i < elementsC; i++)
C[i] = (((float) rand())/RAND_MAX - 0.5)*100;
HANDLE_CUDA_ERROR(cudaMemcpy(C_d, C, sizeC, cudaMemcpyHostToDevice));
HANDLE_CUDA_ERROR(cudaMemcpy(A_d, A, sizeA, cudaMemcpyHostToDevice));
/*************************
* cuTENSOR
*************************/
cutensorHandle_t handle;
HANDLE_ERROR(cutensorCreate(&handle));
/**********************
* Create Tensor Descriptors
**********************/
cutensorTensorDescriptor_t descA;
HANDLE_ERROR(cutensorCreateTensorDescriptor(handle,
&descA,
nmodeA,
extentA.data(),
NULL /* stride */,
typeA, kAlignment));
cutensorTensorDescriptor_t descC;
HANDLE_ERROR(cutensorCreateTensorDescriptor(handle,
&descC,
nmodeC,
extentC.data(),
NULL /* stride */,
typeC, kAlignment));
const cutensorOperator_t opReduce = CUTENSOR_OP_ADD;
/*******************************
* Create Reduction Descriptor
*******************************/
cutensorOperationDescriptor_t desc;
HANDLE_ERROR(cutensorCreateReduction(
handle, &desc,
descA, modeA.data(), CUTENSOR_OP_IDENTITY,
descC, modeC.data(), CUTENSOR_OP_IDENTITY,
descC, modeC.data(),
opReduce, descCompute));
/**************************
* Set the algorithm to use
***************************/
const cutensorAlgo_t algo = CUTENSOR_ALGO_DEFAULT;
cutensorPlanPreference_t planPref;
HANDLE_ERROR(cutensorCreatePlanPreference(
handle,
&planPref,
algo,
CUTENSOR_JIT_MODE_NONE));
/**********************
* Query workspace estimate
**********************/
uint64_t workspaceSizeEstimate = 0;
const cutensorWorksizePreference_t workspacePref = CUTENSOR_WORKSPACE_DEFAULT;
HANDLE_ERROR(cutensorEstimateWorkspaceSize(handle,
desc,
planPref,
workspacePref,
&workspaceSizeEstimate));
/**************************
* Create Contraction Plan
**************************/
cutensorPlan_t plan;
HANDLE_ERROR(cutensorCreatePlan(handle,
&plan,
desc,
planPref,
workspaceSizeEstimate));
/**************************
* Optional: Query information about the created plan
**************************/
// query actually used workspace
uint64_t actualWorkspaceSize = 0;
HANDLE_ERROR(cutensorPlanGetAttribute(handle,
plan,
CUTENSOR_PLAN_REQUIRED_WORKSPACE,
&actualWorkspaceSize,
sizeof(actualWorkspaceSize)));
// At this point the user knows exactly how much memory is need by the operation and
// only the smaller actual workspace needs to be allocated
assert(actualWorkspaceSize <= workspaceSizeEstimate);
void *work = nullptr;
if (actualWorkspaceSize > 0)
{
HANDLE_CUDA_ERROR(cudaMalloc(&work, actualWorkspaceSize));
assert(uintptr_t(work) % 128 == 0); // workspace must be aligned to 128 byte-boundary
}
/**********************
* Run
**********************/
cudaStream_t stream;
HANDLE_CUDA_ERROR(cudaStreamCreate(&stream));
double minTimeCUTENSOR = 1e100;
for(int i=0; i < 3; ++i)
{
HANDLE_CUDA_ERROR(cudaMemcpy(C_d, C, sizeC, cudaMemcpyHostToDevice));
HANDLE_CUDA_ERROR(cudaDeviceSynchronize());
// Set up timing
GPUTimer timer;
timer.start();
HANDLE_ERROR(cutensorReduce(handle, plan,
(const void*)&alpha, A_d,
(const void*)&beta, C_d,
C_d, work, actualWorkspaceSize, stream));
// Synchronize and measure timing
auto time = timer.seconds();
minTimeCUTENSOR = (minTimeCUTENSOR < time) ? minTimeCUTENSOR : time;
}
/*************************/
double transferedBytes = sizeC + sizeA;
transferedBytes += ((float) beta != 0.f) ? sizeC : 0;
transferedBytes /= 1e9;
printf("cuTensor: %.2f GB/s\n", transferedBytes / minTimeCUTENSOR);
HANDLE_ERROR(cutensorDestroy(handle));
HANDLE_ERROR(cutensorDestroyPlan(plan));
HANDLE_ERROR(cutensorDestroyOperationDescriptor(desc));
HANDLE_ERROR(cutensorDestroyTensorDescriptor(descA));
HANDLE_ERROR(cutensorDestroyTensorDescriptor(descC));
HANDLE_CUDA_ERROR(cudaStreamDestroy(stream));
if (A) free(A);
if (C) free(C);
if (A_d) cudaFree(A_d);
if (C_d) cudaFree(C_d);
if (work) cudaFree(work);
return 0;
}