-
Notifications
You must be signed in to change notification settings - Fork 357
/
Copy pathelementwise_permute_padding.cu
327 lines (269 loc) · 11.4 KB
/
elementwise_permute_padding.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name(s) of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <unordered_map>
#include <vector>
#include <cuda_runtime.h>
#include <cutensor.h>
#define HANDLE_ERROR(x) \
{ auto const __err = x; \
if( __err != CUTENSOR_STATUS_SUCCESS ) \
{ printf("Error: %d %s\n", __LINE__, cutensorGetErrorString(__err)); exit(-1); } \
};
#define HANDLE_CUDA_ERROR(x) \
{ auto const __err = x; \
if( __err != cudaSuccess ) \
{ printf("Error: %d %s\n", __LINE__, cudaGetErrorString(__err)); exit(-1); } \
};
struct GPUTimer
{
GPUTimer()
{
cudaEventCreate(&start_);
cudaEventCreate(&stop_);
cudaEventRecord(start_, nullptr);
}
~GPUTimer()
{
cudaEventDestroy(start_);
cudaEventDestroy(stop_);
}
void start()
{
cudaEventRecord(start_, nullptr);
}
float seconds()
{
cudaEventRecord(stop_, nullptr);
cudaEventSynchronize(stop_);
float time;
cudaEventElapsedTime(&time, start_, stop_);
return static_cast<float>(time * 1e-3);
}
private:
cudaEvent_t start_, stop_;
};
int main()
{
typedef float floatTypeA;
typedef float floatTypeC;
typedef float floatTypeCompute;
cutensorDataType_t const typeA = CUTENSOR_R_32F;
cutensorDataType_t const typeC = CUTENSOR_R_32F;
cutensorComputeDescriptor_t const descCompute = CUTENSOR_COMPUTE_DESC_32F;
floatTypeCompute alpha = (floatTypeCompute)1.0f;
/**********************
* This example illustrates the use case where an input tensor A (in host memory) is
* permuted from an NCHW data layout to NHWC while moving the data from host to device
* memory C. It also adds padding for 'w' and 'h' modes:
*
* C_{c',w',h,n} = alpha * A_{w,h,c,n}
**********************/
std::vector<int> modeC{'c','w','h','n'};
std::vector<int> modeA{'w','h','c','n'};
int nmodeA = modeA.size();
int nmodeC = modeC.size();
std::unordered_map<int, int64_t> extent;
extent['h'] = 128;
extent['w'] = 32;
extent['c'] = 128;
extent['n'] = 128;
std::unordered_map<int, int> paddingLeft;
paddingLeft['h'] = 1;
paddingLeft['w'] = 1;
paddingLeft['c'] = 0;
paddingLeft['n'] = 0;
std::unordered_map<int, int> paddingRight;
paddingLeft['h'] = 1;
paddingLeft['w'] = 1;
paddingLeft['c'] = 0;
paddingLeft['n'] = 0;
floatTypeC paddingValue = 0.0f;
std::vector<int64_t> extentA;
for (auto mode : modeA)
extentA.push_back(extent[mode]);
std::vector<int64_t> extentC;
std::vector<int> paddingLeftVec;
std::vector<int> paddingRightVec;
for (auto mode : modeC)
{
extentC.push_back(extent[mode]);
paddingLeftVec.push_back(paddingLeft[mode]);
paddingRightVec.push_back(paddingRight[mode]);
}
/**********************
* Allocating data
**********************/
size_t elementsA = 1;
for (auto mode : modeA)
elementsA *= extent[mode];
size_t elementsC = 1;
for (auto mode : modeC)
elementsC *= extent[mode] + paddingLeft[mode] + paddingRight[mode];
size_t sizeA = sizeof(floatTypeA) * elementsA;
size_t sizeC = sizeof(floatTypeC) * elementsC;
printf("Total memory: %.2f GiB\n", (sizeA + sizeC)/1024./1024./1024);
void *A_d, *C_d;
HANDLE_CUDA_ERROR(cudaMalloc((void**) &A_d, sizeA));
HANDLE_CUDA_ERROR(cudaMalloc((void**) &C_d, sizeC));
uint32_t const kAlignment = 128; // Alignment of the global-memory device pointers (bytes)
assert(uintptr_t(A_d) % kAlignment == 0);
assert(uintptr_t(C_d) % kAlignment == 0);
floatTypeA *A, *C;
HANDLE_CUDA_ERROR(cudaMallocHost((void**) &A, sizeof(floatTypeA) * elementsA));
HANDLE_CUDA_ERROR(cudaMallocHost((void**) &C, sizeof(floatTypeC) * elementsC));
if (A == nullptr || C == nullptr)
{
printf("Error: Host allocation of A or C.\n");
return -1;
}
/*******************
* Initialize data
*******************/
for (size_t i = 0; i < elementsA; i++)
{
A[i] = (((float) rand())/RAND_MAX)*100;
}
HANDLE_CUDA_ERROR(cudaMemcpy2DAsync(A_d, sizeA, A, sizeA, sizeA, 1, cudaMemcpyDefault, nullptr));
/*************************
* CUTENSOR
*************************/
cutensorHandle_t handle;
HANDLE_ERROR(cutensorCreate(&handle));
/**********************
* Create Tensor Descriptors
**********************/
cutensorTensorDescriptor_t descA;
HANDLE_ERROR(cutensorCreateTensorDescriptor(handle,
&descA,
nmodeA,
extentA.data(),
nullptr /* stride */,
typeA,
kAlignment));
cutensorTensorDescriptor_t descC;
HANDLE_ERROR(cutensorCreateTensorDescriptor(handle,
&descC,
nmodeC,
extentC.data(),
nullptr /* stride */,
typeC,
kAlignment));
/*******************************
* Create Permutation Descriptor
*******************************/
cutensorOperationDescriptor_t desc;
HANDLE_ERROR(cutensorCreatePermutation(handle,
&desc,
descA,
modeA.data(),
CUTENSOR_OP_IDENTITY,
descC,
modeC.data(),
descCompute));
/*******************************
* Set Padding Information
*******************************/
HANDLE_ERROR(cutensorOperationDescriptorSetAttribute(handle,
desc,
CUTENSOR_OPERATION_DESCRIPTOR_PADDING_LEFT,
paddingLeftVec.data(),
sizeof(int) * nmodeC));
HANDLE_ERROR(cutensorOperationDescriptorSetAttribute(handle,
desc,
CUTENSOR_OPERATION_DESCRIPTOR_PADDING_RIGHT,
paddingRightVec.data(),
sizeof(int) * nmodeC));
HANDLE_ERROR(cutensorOperationDescriptorSetAttribute(handle,
desc,
CUTENSOR_OPERATION_DESCRIPTOR_PADDING_VALUE,
&paddingValue,
sizeof(paddingValue)));
/*****************************
* Optional (but recommended): ensure that the scalar type is correct.
*****************************/
cutensorDataType_t scalarType;
HANDLE_ERROR(cutensorOperationDescriptorGetAttribute(handle, desc,
CUTENSOR_OPERATION_DESCRIPTOR_SCALAR_TYPE,
(void*)&scalarType,
sizeof(scalarType)));
assert(scalarType == CUTENSOR_R_32F);
/**************************
* Set the algorithm to use
***************************/
const cutensorAlgo_t algo = CUTENSOR_ALGO_DEFAULT;
cutensorPlanPreference_t planPref;
HANDLE_ERROR(cutensorCreatePlanPreference(handle,
&planPref,
algo,
CUTENSOR_JIT_MODE_NONE));
/**************************
* Create Plan
**************************/
cutensorPlan_t plan;
HANDLE_ERROR(cutensorCreatePlan(handle,
&plan,
desc,
planPref,
0 /* workspaceSizeLimit */));
/**********************
* Run
**********************/
double minTimeCUTENSOR = 1e100;
for (int i = 0; i < 3; i++)
{
GPUTimer timer;
timer.start();
HANDLE_ERROR(cutensorPermute(handle,
plan,
&alpha, A_d, C_d, nullptr /* stream */));
auto time = timer.seconds();
minTimeCUTENSOR = (minTimeCUTENSOR < time) ? minTimeCUTENSOR : time;
}
/*************************/
double transferedBytes = 2.0 * sizeC;
transferedBytes /= 1e9;
printf("cuTensor: %.2f GB/s\n", transferedBytes / minTimeCUTENSOR);
HANDLE_ERROR(cutensorDestroy(handle));
HANDLE_ERROR(cutensorDestroyPlan(plan));
HANDLE_ERROR(cutensorDestroyOperationDescriptor(desc));
HANDLE_ERROR(cutensorDestroyPlanPreference(planPref));
HANDLE_ERROR(cutensorDestroyTensorDescriptor(descA));
HANDLE_ERROR(cutensorDestroyTensorDescriptor(descC));
if (A) cudaFreeHost(A);
if (C) cudaFreeHost(C);
if (A_d) cudaFree(A_d);
if (C_d) cudaFree(C_d);
return 0;
}