-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathpopnn4.py
187 lines (154 loc) · 6.87 KB
/
popnn4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
''' Imports '''
import tensorflow as tf
from DataLoader import DataLoader
import numpy as np
import sklearn.model_selection as ms
import sklearn.preprocessing as pr
import os
import argparse
from Var import Var
global debug
parser = argparse.ArgumentParser(description='data loader')
parser.add_argument('--transfer', '-t', dest='transfer', action='store_true')
parser.add_argument('--debug', dest='debug', action='store_true')
parser.add_argument('--dest_ckpt_name', '-d', dest='ckpt_name', type=str)
parser.add_argument('--num_frames', '-f', dest = 'num_frames', type = int, default = 4)
parser.add_argument('--only-arm', '-o', dest='use_arm', action='store_true',
help="only use arm data")
parser.add_argument('--multiply-by-score', '-m', dest='m_score', action='store_true')
parser.set_defaults(debug=False)
parser.set_defaults(transfer=False)
parser.set_defaults(use_arm=False)
parser.set_defaults(m_score=False)
args = parser.parse_args()
debug = args.debug
ckpt_name = "ckpts/popnn/" + args.ckpt_name
transfer = args.transfer
numFrames = args.num_frames
use_arm = args.use_arm
m_score = args.m_score
v = Var(use_arm)
input_size = v.get_size()
num_classes = v.get_num_classes()
popnn_vars = v.get_POPNN()
''' Set working directory '''
working_dir = os.getcwd() + "/"
''' Tensorflow placeholder for inputs '''
x = tf.placeholder(shape=[None, input_size], dtype=tf.float32)
y = tf.placeholder(shape=[None, num_classes], dtype=tf.float32)
''' Log in TensorFlow '''
tf.logging.set_verbosity(tf.logging.INFO)
''' Load data from dataloader '''
loader = DataLoader(numFrames, use_arm, m_score)
inp1, out1 = loader.load_all()
''' Separate data "randomly" using sklearn! '''
trin, valin, trout, valout = ms.train_test_split(inp1, out1, test_size=0.2, random_state=21)
print trin, trin.shape
if (debug):
print("TRAIN INPUT SHAPE: ", trin.shape)
print("TRAINING OUTPUT SHAPE: ", trout.shape)
print("VALIDATION INPUT SHAPE: ", valin.shape)
print("VALIDATION OUTPUT SHAPE: ", valout.shape)
''' Normalize data using sklearn!!! '''
trin = pr.normalize(trin)
valin = pr.normalize(valin)
''' Define network architecture (3 layer relu) '''
tf.logging.set_verbosity(tf.logging.INFO)
ninput = input_size
nhidden1 = popnn_vars['hidden1']
nhidden2 = popnn_vars['hidden2']
nhidden3 = popnn_vars['hidden3']
# nhidden4 = 8
noutput = popnn_vars['hidden4']
EPOCHS = popnn_vars['num_epochs']
BATCH_SIZE = popnn_vars['batch_size']
weights = {
'h1': tf.Variable(tf.random_normal([ninput, nhidden1])),
'h2': tf.Variable(tf.random_normal([nhidden1,nhidden2])),
'h3': tf.Variable(tf.random_normal([nhidden2, nhidden3])),
#'h4': tf.Variable(tf.random_normal([nhidden3, nhidden4])),
'out': tf.Variable(tf.random_normal([nhidden3, noutput]))
}
#b4 remains to keep consistency with best model, 4311
biases = {
'b1': tf.Variable(tf.random_normal([nhidden1])),
'b2': tf.Variable(tf.random_normal([nhidden2])),
'b3': tf.Variable(tf.random_normal([nhidden3])),
'b4': tf.Variable(tf.random_normal([8])),
'out': tf.Variable(tf.random_normal([noutput]))
}
keep_prob = tf.placeholder("float")
def network(x, weights, biases, keep_prob):
'''define network components'''
layer1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer1 = tf.nn.relu(layer1)
layer1 = tf.nn.dropout(layer1, keep_prob)
layer2 = tf.add(tf.matmul(layer1, weights['h2']),biases['b2'])
layer2 = tf.nn.relu(layer2)
layer2 = tf.nn.dropout(layer2, keep_prob)
layer3 = tf.add(tf.matmul(layer2, weights['h3']),biases['b3'])
layer3 = tf.nn.relu(layer3)
layer3 = tf.nn.dropout(layer3, keep_prob)
#layer4 = tf.add(tf.matmul(layer3, weights['h4']),biases['b4'])
#layer4 = tf.nn.relu(layer4)
#layer4 = tf.nn.dropout(layer4, keep_prob)
outlayer = tf.layers.dense(inputs=layer3, units = noutput)
outlayer = tf.nn.softmax(outlayer, name ="softmax_tensor")
return outlayer
''' Define cost, prediction, accuracy, etc. '''
predictions = network(x, weights, biases, keep_prob)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=predictions, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=popnn_vars['lr']).minimize(cost)
correct_prediction = tf.equal(tf.argmax(predictions, 1), tf.argmax(y, 1))
accTr = tf.reduce_mean(tf.cast(correct_prediction, "float"))
accVal = tf.reduce_mean(tf.cast(correct_prediction, "float"))
''' Define saver to save network checkpoints (model weights) '''
saver = tf.train.Saver()
''' Define summaries '''
tf_cost_summary = tf.summary.scalar('Cost', cost)
tf_accTr_summary = tf.summary.scalar('Train_Accuracy', accTr)
tf_accVal_summary = tf.summary.scalar('Validation_Accuracy', accVal)
summaries = tf.summary.merge([tf_cost_summary,tf_accTr_summary])
valSummary = tf.summary.merge([tf_accVal_summary])
name = ""
if transfer:
name = raw_input("Enter the ckpt file to transfer from: ")
''' Run training '''
with tf.Session() as sess:
''' Initialize variables '''
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter('/tmp/popnn/summaries/first', sess.graph)
''' Restore previous weights (Comment if this is original running of the network, aka no transfer learning) '''
if transfer:
saver.restore(sess, working_dir+'ckpts/popnn/'+name)
''' Run network through epochs, and print progress at the end of each loop '''
for epoch in range(EPOCHS):
avg_cost = 0.0
total_batch = int(len(trin) / BATCH_SIZE)
print total_batch, len(trin), BATCH_SIZE
x_batches = np.array_split(trin, total_batch)
y_batches = np.array_split(trout, total_batch)
for i in range(total_batch):
batch_x, batch_y = x_batches[i], y_batches[i]
_, c, summ = sess.run([optimizer, cost, summaries],
feed_dict={
x: batch_x,
y: batch_y,
keep_prob: 0.8
})
avg_cost += c / total_batch
writer.add_summary(summ, (float(epoch)+float(i)/float(total_batch)))
summVal = sess.run([valSummary], feed_dict={x:valin,y:valout, keep_prob:1.0})
writer.add_summary(summVal[0], epoch)
saver.save(sess, working_dir + ckpt_name)
print("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost), "TrainAcc=", accTr.eval({x: trin, y: trout, keep_prob: 1.0}), \
"ValAcc=", accVal.eval({x: valin, y: valout, keep_prob: 1.0}))
print("Finished!")
''' Save the model checkpoint, change the name based on preference '''
if (debug):
print("SAVED!")
''' Do final runthrough of network and print final accuracy in train and validation '''
print("Train Accuracy:", accTr.eval({x: trin, y: trout, keep_prob: 1.0}))
print("Validation Accuracy:", accVal.eval({x: valin, y: valout, keep_prob: 1.0}))